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Vibrational excitations in H2O in the framework of a local model
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Abstract

The vibrational description of H2
16O in terms of Morse local oscillators for both bending and stretching degrees of freedom is

presented. Expansions of the kinetic and potential energies of the vibrational Hamiltonian are considered up to quartic terms. The

local Morse coordinates yi as well as the momenta pi are thereafter expanded in terms of creation and annihilation operators of

the Morse functions keeping terms up to order 1=
ffiffiffi
j

p
(up to quadratic terms in the operators), where j is a parameter related with

the depth of the potential. Only terms conserving the polyad are considered. The resulting Hamiltonian includes the known Darling–

Dennison and Fermi-like interactions, but unlike the description in terms of a harmonic basis, all the force constants up to quartic

order are involved. A tensorial formalism is developed to expand the Hamiltonian in powers of 1=
ffiffiffi
k

p
in terms of symmetry adapted

operators. An energy fit is carried out for 72 experimental energies up to 23 000 cm�1, obtaining an rms deviation of 5.00 cm�1. The

force constants are determined and predictions for the isotopes H2
17O, H2

18O, D2
16O, and T2

16O are presented.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In the last decades a diversity of approaches to de-
scribe the vibrational degrees of freedom of molecular

systems has been proposed mainly due to the develop-

ment of new spectroscopic methods which are able to

characterize highly excited vibrational states, a region

where chemical activation may take place [1–5]. It has

been found that the appropriate approach to describe

systems in such situations should be given in terms of

local mode models [6–9]. In the framework of a local
model the Hamiltonian as well as the basis are given in

terms of internal variables. A remarkable result when

using a local scheme is that the basis tends to approach

the eigenstates at higher energies, usually associated to

the local stretches of certain bonds. Although it is clear

that a local mode scheme provides a better physical in-

sight in the high energy regions of the spectra, it has two

technical disadvantages with respect to the standard
approach in terms of normal coordinates. On one hand

the kinetic energy must be obtained through the calcu-
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lation of the Wilson matrix, together with the momen-

tum-independent contribution, and on the other hand

redundant coordinates appear, which must be elimi-
nated from both the Hamiltonian and the basis [3].

Once the expansion of the Hamiltonian in terms of

local coordinates and momenta is obtained, the appro-

priate method to determine the structure constants

greatly depends on the size of the molecular system. The

appearance of fast computers in the last decades has

allowed to use ab initio methods to calculate the force

constants of small and some medium size molecules, and
to carry out variational calculations using a discrete

variable representation and exact kinetic energy opera-

tors [5]. This is not the case, however, for molecules with

more than four atoms. In complex systems the potential

surface is obtained from fittings to experimental ener-

gies. However, in both cases, the Wilson matrix together

with the expansion of the Hamiltonian in terms of the

local variables and momenta must be obtained in order
to establish the correspondence with the structure con-

stants, which may represent a formidable task for

large molecules, a fact that constraints the applicability

of this method. The conventional effective Hamilto-

nian approach provides a partial solution to this prob-

lem. It deals with the kinetic and potential energies
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simultaneously and consequently different spectroscopic
parameters are needed for different isotopic species. This

approach has been widely used to fit experimental data

using a Hamiltonian in terms of creation and annihila-

tion operators of harmonic functions [10]. It is possible,

however, to establish a similar approach in the frame-

work of a local model. In this work we present the

vibrational Hamiltonian of the H2O molecule as an

expansion in terms of local creation and destruction
Morse operators in the spirit to establish the connection

between effective Hamiltonian approach and the stan-

dard local mode method in a basis of Morse functions.

The analysis of this molecule will pave the way to the

application of this approach to large molecules.

In the framework of a local mode approach the

local oscillators may be approximated with harmonic

potentials, but it is preferable to consider Morse os-
cillators because they more accurately reflect the main

physical properties of a pure local bond [11]. Hence, in

the zeroth-order approximation, independent Morse

oscillators are considered. In a Morse oscillator basis,

however, the interaction terms couple the whole space

in the Hamiltonian matrix, not allowing to take ad-

vantage of the simplifications brought about by ap-

proximately conserved polyad numbers [12]. This
problem is avoided by carrying out some approxima-

tions concerning the matrix elements of the interaction

terms. The crudest approximation consists in consid-

ering the interaction between the Morse oscillators in a

harmonic fashion (harmonically coupled anharmonic

oscillator, HCAO model) [13]. This approximation has

proved to be very useful to understand the structure of

the spectra, and provides the same advantages existing
when considering a harmonic basis. Although this

model represents an attractive alternative for the de-

scription of complex molecules, it is possible to develop

significant improvements by taking into account higher

order corrections to the coupling matrix elements be-

tween Morse oscillators in such a way that polyads are

still preserved. This goal can be achieved by expanding

the interactions in terms of creation b̂y and annihilation
b̂ operators for the Morse functions [14,15]. An im-

portant property of these operators is that they are

associated to an suð2Þ algebra, which allows to estab-

lish the vibrational systems of a set Morse oscillators

as an algebraic problem, in the same fashion as the

harmonic oscillator description [16].

A remarkable feature of the expansions of the dy-

namical variables in terms of the operators {b̂y, b̂} is that
they are given in terms of powers of the parameter

1=
ffiffiffi
j

p
, where j is known as the Child�s parameter [7] and

is related to the depth of the Morse potential. In the

limit j ! 1, the harmonic results are recovered. This

property suggests to include terms in the expansion in

successive form, an approach that breaks the polyad in

natural form. This problem, however, can be avoided by
keeping only the terms which preserve the polyad. When
only the leading terms (ð1=

ffiffiffi
j

p
Þ0) are taken into account,

the description is given in the framework of the vibron

model approximation [17,18]. From the point of view of

the general expansion mentioned previously the natural

approach to go beyond the vibron model consists in

taking the next terms of order (1=
ffiffiffi
j

p
). This can be done

keeping again only the terms conserving the polyad. It

can be shown however that a better convergence is ob-
tained when the expansion of the Hamiltonian is carried

out in terms of the Morse variable y ¼ 1� ebx, instead

of the variable x [8,9]. In this work we shall first proceed

to obtain the Hamiltonian in terms of the Morse vari-

ables yi and the momenta, and thereafter carry out their

expansions in terms of the operators fb̂yi ; b̂ig, keeping
the terms preserving the polyad. For simplicity, we have

chosen the water molecule to illustrate our approach,
but the same procedure can be applied in more complex

situations. In a future work we shall consider the polyad

breaking effects provided by the method [19].

An important consequence of taking the terms of

order (1=
ffiffiffi
j

p
) in the expansion in the Morse coordinate

and momenta is that all the involved force constants up

to quartic terms in the potential are well determined,

even with the constraint of the polyad as a good quan-
tum number. This is in contrast with the HCAO and

vibron models, where only a subset of force constant can

be obtained when the preservation of polyads are con-

sidered. In such cases only by breaking the polyad the

potential surface can be determined in complete form

(up to the approximation considered).

Because of its importance, the water molecule has

been the subject of several studies since the early days of
molecular quantum mechanics [20]. At first the vibra-

tional description was focused on the stretching degrees

of freedom [21], but later on the analysis was extended

to the bending modes [22–24]. Nowadays very accurate

methods based on ab initio calculations have been ap-

plied to describe in complete form the ro-vibrational

spectroscopic properties of water [25]. Concerning the

different approximations involved in the expansion of
the coordinates and momenta, a detailed spectroscopic

study of H2O was carried out [26], where one of the

objectives was the evaluation of the HCAO model by

comparison with variational calculations. Later on an

spectroscopic analysis of H2O was carried out in the

framework of the vibron model approximation [18],

where both energies and intensities were studied and the

potential energy surface was determined. Because of the
approximation involved not all the force constant were

able to be obtained.

In this work we develop a tensorial formalism in

terms of the Morse operators fb̂y; b̂g to express the ex-

pansion of Hamiltonian of water in terms powers of the

parameter 1=
ffiffiffi
j

p
. Both stretching and bending degrees

of freedom are treated in the same fashion. An energy fit
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is obtained and the force constants are determined.
Prediction for different isotopic species are also pre-

sented.

This paper is organized as follows. The expansion of

the vibrational Hamiltonian in terms of the Morse co-

ordinate up to quartic terms is presented in Section 2. In

Section 3 we present the expansion of the coordinates

and momenta in the suð2Þ space. In Section 4, a sym-

metry adapted tensorial formalism is introduced. Sec-
tion 5 is devoted to the H2O results for energies,

determination of the force constants and isotopic pre-

dictions. Finally, our summary and conclusions are gi-

ven in Section 6.
2. Description of water in terms of internal coordinates

The equilibrium structure of the water molecule is

non-linear with structure parameters rOH ¼ 0:9575�A
and \HOH ¼ 104:51� [26]. The point symmetry is C2v,
but it is enough to consider the subgroup C2 since all

vibrations take place on a plane. This molecule has three

degrees of freedom, two of them associated to the

stretching modes ðA� BÞ and the other to the bending

mode (A). The harmonic approximation provides a
complete basis in terms of normal modes which can be

used to diagonalize a general Hamiltonian. In the

standard notation this basis is labeled by jm1m2m3i, where
m1 and m3 are the number of quanta in the stretching A
and B modes, respectively, while m2 is associated with the

bending A mode [27]. In our approach this basis will not

be used, but we shall include this labeling scheme in the

energy fits.
If we use internal displacement coordinates the quan-

tum mechanical Hamiltonian that describes the vibra-

tional excitations of the H2O molecule takes the form

[28,29]

H ¼ 1

2
p̂yGðqÞp̂þ V ðqÞ; ð1Þ

where q and p̂ are three dimensional column vectors

corresponding to the displacement internal coordinates

and conjugate momenta, respectively. In (1) we have

omitted the purely quantum mechanical term derived
from the kinetic energy not involving momentum op-

erators, since it has been proved that it is negligible for

H2O [24]. The components qr and qr0 will be assigned to

displacements from equilibrium re of the two internal O–

H stretching coordinates r and r0, while q/ corresponds

to the displacement from equilibrium of the \HOH-

bending coordinate re/e:

qr ¼ Dr; q/ ¼ reD/; qr0 ¼ Dr0: ð2Þ
In the kinetic energy contribution, the GðqÞ matrix de-

pends on the internal coordinates and atomic masses,

and is given explicitly by [30]
GðqÞ

¼
lHþlO �lO

re sin/
r3

lO cos/

�lO
re sin/

r3
lHr

2
e

1
r2
1

þ 1
r2
3

� �
þlOr

2
e

r2
1
þr2

3
�2r1r3 cos/

r2
1
r2
3

� �
�lO

re sin/
r1

lO cos/ �lO
re sin/

r1
lHþlO

2
664

3
775;
ð3Þ

where we have introduced the variables li ¼ 1=mi,

i ¼ O;H, corresponding to the inverse of the masses.

For semirigid molecules both the GðqÞ matrix and the
potential V ðqÞ are expanded as a Taylor series about the

equilibrium configuration. It has been pointed out,

however, that these expansions do not have the correct

asymptotic behavior, and an expansion in terms of the

Morse variable y ¼ 1� e�bq is more appropriate for the

stretches, because has a radios of convergence that ex-

tends all the way to dissociation [24,31–34]. Here we

consider an expansion of the variables fyi; i ¼ r; r0;/g
for both stretching and bending coordinates. In this

spirit the elements gij of the GðqÞ matrix takes the form

gijðqÞ ¼ gij
� �

0
þ
X3
k¼1

ogij
oqk

� �
0

b�1
k yk

þ 1

2

X3
k¼1

o2gij
oq2k

� �
0

�
þ ogij

oqk

� �
0

bk

	
b�2
k y2k

þ 1

2!

X3
k 6¼l¼1

o2gij
oqkoql

� �
0

b�1
k b�1

l ykyl; ð4Þ

where i; j ¼ r; r0;/. Here we have taken into account up

to quadratic terms, since we intend to consider an ex-

pansion in the Hamiltonian up to quartic terms. Con-

sequently an expansion up to quartic terms is carried out

for the potential. It is worth noting the relevance of the
ratio yi=bi. In the rigid limit this ratio tends to the var-

iable qi:

lim
qi!0

yi
bi

¼ qi: ð5Þ

In a local mode picture the system is described as a set

of interacting oscillators associated to the internal co-

ordinates. For the stretching degrees of freedom each

independent oscillator is usually described with a Morse

potential, while for the bendings a harmonic oscillator is
usually assumed. In this work we propose to use also a

Morse oscillator to deal with the bending degree of

freedom. This selection is based on the asymmetry of the

potential and the fact that the oscillator can be made

deep enough so that the dissociation limit is far away

from the energies of interest. In case of tunneling effects

a double Morse potential may be used, which has the

advantage of being associated to an suð2Þ algebra [35].
The identification with Morse oscillators is carried out

in natural form through the quadratic terms in the po-

tential expansion and the diagonal zeroth order terms in

the expansion of GðqÞ:
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ĤM
i ¼ 1

2
ðgiiÞ0 p2i þ

1

2
fiiy2i ; i ¼ r; r0;/: ð6Þ

For the Morse potential the force constants have the

explicit form

fii ¼ 2Dib
2
i ; ð7Þ

where the parameters Di and bi are defined through the

explicit expression of the potential

VMðqiÞ ¼ Dið1� e�biqiÞ2: ð8Þ

The Morse Hamiltonians (6) have the eigenvalues [11]

EMðviÞ
hc

¼ xi
eðvi þ 1=2Þ � xexieðvi þ 1=2Þ2; ð9Þ

where xe and xexie are the harmonic wave number and
anharmonicity constants, respectively. In terms of the

Morse parameters they have the form

hcxi
e ¼ �hxi ¼ �h

ffiffiffiffiffi
fii
li

s
¼ 2�hbi

ffiffiffiffiffiffiffi
Di

2li

s
; hc xexie ¼

�h2b2
i

2li
;

ð10Þ

where li ¼ ðgiiÞ�1
, with i ¼ r; r0;/. Note that we used the

same character for the inverse of the mass, but there

should not be any confusion since the nature of the sub

indices involved are different. The zeroth order Hamil-

tonian is then given by

Ĥ0 ¼ ĤM
r þ ĤM

r0 þ ĤM
/ ; ð11Þ

while the complete Hamiltonian up to quartic terms

takes the form

Ĥ ¼ Ĥ0 þ ðgrr0 Þ0 pr pr0 þ
1

2

og//
oqr

� �
0

b�1
r ðyr þ yr0 Þp2/

þ ogr/
oq/

� �
0

b�1
/ ðpr þ pr0 Þ

ðy/p/ þ p/y/Þ
2

þ 1

4

o2g//
oq2r

� �
0

�
þ og//

oqr

� �
0

br

	
b�2
r y2r
�

þ y2r0
�
p2/

� 1

2

o2g//
oq2/

 !
0

b�2
r yryr0p2/

þ 1

4

o2g//
oq2/

 !
0

"
þ og//

oq/

� �
0

b/

#
b�2
/ p/y2/p/

þ 1

2

o2grr0
oq2/

 !
0

"
þ oqrr0

oq/

� �
0

b/

#
b�2
/ prpr0y2/

þ ðgr/Þ0ðpr þ pr0 Þp/

þ 1

2

og//
oq/

� �
0

b�1
/ p/y/p/

þ ogrr0
oq

� �
b�1
/ pry/pr0 þ

ogr/
oq 0

� �
b�1
r ðpryr0 þ pr0yrÞp/
/ 0 r 0
þ 1

4

o2g//
oq2/

0

b�1
r b�1

/ ðpryr0 þ pr0yrÞðy/p/ þ p/y/Þ

þ 1

2

o2g//
oqroq/

� �
0

b�1
r ðyr þ yr0 Þp/y/p/

þ 1

2

o2qr/
oq2r

� �
0

�
þ o2gr/

oqr

� �
0

br

	
b�2
r pry2r0
�

þ pr0y2r
�
p/

þ 1

2

o2gr/
oq2/

 !
0

"
þ ogr/

oq/

� �
0

b/

#
b�2
/ ðpr þ pr0 Þ

�
y2/p/ þ p/y2/
� �

2
þ frr0b

�2
r yryr0

þ 1

2
ðb/fr/ þ fr//Þ b�1

r b�2
/ ðyr þ yr0 Þy2/

þ 1

4!
11b2

/f//
�

þ 6b/f/// þ f////
�
b�4
/ y4/

þ 1

4!
11b2

r frr
�

þ 6brfrrr þ frrrr
�
b�4
r y4r
�

þ y4r0
�

þ 1

4!
6ðbrb/fr/ þ b/frr/ þ brfr// þ frr//Þ

� b�2
r b�2

/ y2r
�

þ y2r0
�
y2/

þ 1

4!
12ðb/frr0/ þ frr0//Þ b�2

r b�2
/ yryr0y2/

þ 1

4!
6 b2

r frr0
�

þ 2brfrr0r0 þ frrr0r0
�
b�4
r y2r y

2
r0

þ 1

4!
4 2b2

r frr0
�

þ 3brfrrr0 þ frrrr0
�
b�4
r yr0y3r
�

þ yry3r0
�

þ fr/b
�1
r b�1

/ ðyr þ yr0 Þy/

þ 1

6
ð3brfrr þ frrrÞ b�3

r y3r
�

þ y3r0
�

þ 1

6
ð3b/f// þ f///Þ b�3

/ y3/

þ 1

2
ðbrfrr0 þ frrr0 Þ b�3

r yr0y2r
�

þ yry2r0
�

þ 1

2
ðbrfr/ þ frr/Þ b�1

/ b�2
r y2r
�

þ y2r0
�
y/

þ frr0/ b�2
r b/yryr0y/

þ 1

4!
4 2b2

r fr/
�

þ 3brfrr/ þ frrr/
�
b�3
r b�1

/ y3r
�

þ y3r0
�
y/

þ 1

4!
4 2b2

/fr/
�

þ 3b/fr// þ fr///
�
b�3
/ b�1

r ðyr þ yr0 Þy3/

þ 1

4!
12ðbrfrr0/ þ frr0r0/Þ b�3

r b�1
/ yry2r0
�

þ yr0y2r
�
y/:

ð12Þ

Since we consider non-interacting Morse oscillators as
the zeroth-order Hamiltonian, the natural basis to di-

agonalize the Hamiltonian (12) consists in a set of
products of Morse functions

jvrv/vr0 i ¼ jWDs
vr
ijWDb

v/
ijWDs

vr0
i; ð13Þ

where vr and vr0 stand for the number of quanta asso-
ciated to qr and qr0 , respectively, while v/ corresponds

to the bending q/ coordinate. Here we have introduced

the notation Ds and Db for the stretches fqr; q0rg and

the bending q/, respectively. This approach, however,
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presents the inconvenience of having to deal with the full
space in the diagonalization procedure; the interaction

terms mix the whole space. One way to bypass this

problem is by using the concept of polyad, which implies

simplifications in the Hamiltonian, allowing to reduce

the Hamiltonian matrix to a block form. In general the

polyad can be defined on the basis of the resonances of

the first overtones with the fundamentals. For H2O the

energy of the symmetric mode is approximately twice
the bending energy. Hence the appropriate polyad

number is defined by

P ¼ 2ðvr þ vr0 Þ þ v/ ¼ 2ðm1 þ m3Þ þ m2; ð14Þ
where we remark that P is well defined in terms of either

local or normal quantum numbers. The appearance of

the number of quanta vi in (14) implies that their cor-

responding operators should be well defined. This is the

case in a harmonic basis, where the local number op-

erators are given by

n̂i ¼ âyi âi; i ¼ r; r0;/; ð15Þ
where

âyi ¼
ffiffiffiffiffiffiffiffiffi
lixi

2�h

r
qi �

iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hlixi

p p̂i; ð16aÞ

âi ¼
ffiffiffiffiffiffiffiffiffi
lixi

2�h

r
qi þ

iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hlixi

p p̂i; ð16bÞ

with the commutation relations

âi; â
y
j

h i
¼ dij; ½âi; âj� ¼ âyi ; â

y
j

h i
¼ 0; ð17Þ

and xi defined in (10). In a harmonic basis jnrn/nr0 i we
thus have

n̂ijnrn/nr0 i ¼ nijnrn/nr0 i; ð18Þ
whose relation with the basis (13) is given in the har-

monic limit:

lim
Di!1

jvrv/vr0 i ¼ jnrn/nr0 i: ð19Þ

The introduction of the operators âyi and âi, makes clear

whether an interaction preserves the polyad. For ex-

ample, an interaction of the form ðâyr þ âyr0 Þâ/â/ con-

serves P , but ðâr þ âr0 Þâ/â/ does not. It is important to

note that this interpretation is valid only when a har-

monic basis is considered. In the case of the basis (13) it

is still possible to expand the Hamiltonian in terms of
the operators (16a) and (16b), but they cease being

creation and annihilation operators, and consequently

the advantage of using such operators fades. Because of

the evident advantages of expressing the Hamiltonian in

terms of creation and annihilation operators, it is con-

venient to introduce such operators in the context of

Morse oscillators. This will be done in the next section.

For comparison, however, we next present the form of
the Hamiltonian in terms of the operators (16a) and
(16b). Since the Hamiltonian has been expanded in
terms of the Morse coordinates yi, the direct substitution
in terms of the operators fâyj ; âjg leads to an infinite

expansion. To simplify the problem we must consider

the rigid limit (5). When this is the case we obtain a

Hamiltonian with both polyad conserving and non-

conserving contributions. If we neglect the contributions

that do not preserve the polyad, we obtain the simple

Hamiltonian [18]

lim
qi!0

Ĥ ¼ Ĥ0þXs
âyr ârþ ârâyr þ âyr0 âr0 þ âr0 â

y
r0

2

 !

þXb

ây/â/þ â/â
y
/

2

0
@

1
Aþk âyr âr0

�
þ âyr0 âr

�

þxxr âyr âr â
y
r âr

�
þ âyr0 âr0 â

y
r0 âr0

�
þxx/ ây/ â/ â

y
/ â/

� �
þxxrrâyr âr â

y
r0 âr0

þxxr/
âyr ârþ âr âyr
� �

þ âyr0 âr0 þ âr0 â
y
r0

� �
2

�
ây/ â/þ â/ â

y
/

� �
2

þk½2� âyr â
y
r âr0 âr0

�
þ âyr0 â

y
r0 âr âr

�

þb1

âyr ârþ âr âyr
� �

þ âyr0 âr0 þ âr0 â
y
r0

� �
2

2
4

� âyr âr0
�

þ âyr0 âr
�
þhc

3
5

þb2 âyr âr0
�

þ âyr0 âr
� ây/ â/þ â/ â

y
/

� �
2

þF âyr â/ â/
�h

þ âyr0 â/ â/
�

þ ây/ â
y
/ âr

�
þ ây/ â

y
/ âr0
�i

; ð20Þ

where the spectroscopic parameters are given in terms of

the structural and potential constants by

k ¼ �hxr

2

frr0
frr

�
þ ðGrr0 Þ0

ðGrrÞ0

	
; ð21aÞ

Xs ¼
�h2

l2
rx

2
r

1

8
frrrr½ þ 2frrr0r0 �; ð21bÞ

Xb ¼
�h2

8

o2G//

oq2/

 !
0

; ð21cÞ

wxr ¼
1

16

�h2

l2
rx

2
r

frrrr; ð21dÞ

wx/ ¼ �h2

16

1

l2
/x

2
/

f////

"
þ 1

2

o2G//

oq2/

 !
0

#
; ð21eÞ
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wxrr ¼
1

4

�h2

l2
rx

2
r

frrr0r0 ; ð21fÞ

wxr/ ¼ �h2

16

o2G//

oq2r

� �
0

l/x/

lrxr

�
þ 1

lrxrl/x/
frr//

	
; ð21gÞ

k½2� ¼ 1

4
xxrr; ð21hÞ

F ¼ �h
4

ffiffiffiffiffiffiffiffiffiffiffiffi
�h

2lrxr

s
fr//
l/x/

�
� oG//

oqr

� �
0

l/x/

þ 2
oGr/

oq/

� �
0

lrxr

	
; ð21iÞ

b1 ¼
1

6

�h2

2l2
rx

2
r

frrrr0 ; ð21jÞ

b2 ¼��h2

4

o2G//

oq2/

 !
0

l/x/

lrxr

�
þ 1

2

lrxr

l/x/

	
þ �h2

4

frr0//
lrxrl/x/

:

ð21kÞ
From these expressions we notice that only 8 force

constants remain, namely, ffrr0 ; frrrr; frrrr0 ; frrr0r0 ; f////;
frr//; fr//; frr0//g, which together with the Morse pa-

rameters fDs; Db; bs; bbg, constitute the set of parameters
to be fitted. The number of force constant in the Hamil-

tonian (12), however, is 17,whichmeans that 9of the force

constants cannot be determined in this approximation. It

is then necessary either to break the polyad or go beyond

the approximation (5) in order to determine the parame-

ters. We should remark upon the constraint (21f). This

equation arises as a consequence of our approximations

and it is expected to be relaxed in a more general de-
scription. This situation will be considered in Section 4.

In practice all matrix elements of the interactions in

(12) may be computed in a harmonic basis, while for the

diagonal part aMorse oscillator basismust be considered.

This approximation makes plausible the application of

the polyad concept. The use of a full Morse basis to

compute the interaction matrix elements breaks the

polyad and there is no obvious method similar to the one
leading to (20) in order to generate a polyad preserving

Hamiltonian. In the next section, we establish an ap-

proachwhere the interactionmatrix elementswith respect

to theMorse basis are calculated in an systematic fashion

in such a way that the polyad is still preserved.
3. The su(2) representation

In this section, we introduce algebraic representations

of the Morse coordinate and momentum, which are

based on the connection between the Morse oscillator

and the uð2Þ algebra [36]. We start by establishing the

bound solutions for the Morse Potential. Choosing the
separated atoms limit as the zero of energy, the Morse
potential has the following form:

V ðxÞ ¼ Dðe�2bx � 2e�bxÞ; ð22Þ
where D > 0 corresponds to its depth, b is related with

the range of the potential, and x gives the relative dis-

tance from the equilibrium position of the atoms.

The solution of the Schr€odinger equation associated

to the potential (22) is given by [11]

Wj
vðzÞ ¼ Nj

v e�z=2 zs L2s
v ðzÞ; ð23Þ

where L2s
v ðzÞ are the associated Laguerre functions, the

argument z is related with the physical displacement co-

ordinate x by z ¼ ð2jþ 1Þe�bx, Nj
v is the normalization

constant

Nj
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð2j� 2vÞCðvþ 1Þ

Cð2j� vþ 1Þ

s
; ð24Þ

and the variables j and s are related with the potential

and the energy, respectively, through

j ¼ 2jþ 1 ¼
ffiffiffiffiffiffiffiffiffi
8lD

b2�h2

s
; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�2lE

b2�h2

s
; ð25Þ

with the constraint condition

s ¼ j� v; ð26Þ
where l is the reduced mass of the molecule. The vari-

able j ¼ 2jþ 1 has been introduced in order to simplify

subsequent results and because it turns out to be the

relevant parameter in the expansions. This variable

corresponds to the Child�s parameter introduced in [7].

The constraint (26) gives rise to the energy spectrum

Ev ¼ ��hx0ðv� jÞ2; ð27Þ
where

x0 ¼
�hb2

2l
: ð28Þ

It is possible to obtain an algebraic representation of the

solutions (23) by introducing creation b̂y and annihila-

tion b̂ operators, which have the following action on the

Morse functions:

b̂yWj
vðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvþ 1Þð1� ðvþ 1Þ=jÞ

p
Wj

vþ1ðzÞ; ð29aÞ

b̂Wj
vðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð1� v=jÞ

p
Wj

v�1ðzÞ; ð29bÞ
with

v̂ Wj
vðzÞ ¼ v Wj

vðzÞ: ð30Þ
The explicit form of these operators are obtained in [37].

We must note, however, that they are functions of the

operator v̂, which means that are defined in the space of

solutions (23). The operators fby; bg, together with the

number operator v̂, satisfy the commutation relations

½b̂; b̂y� ¼ 1� 2v̂þ 1

j
; ½v̂; b̂y� ¼ b̂y; ½v̂; b̂� ¼ �b̂; ð31Þ
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which can be identified with the usual suð2Þ commuta-
tion relations by introducing the set of transformations

fby ¼ Ĵ�=
ffiffiffi
j

p
; b ¼ Ĵþ=

ffiffiffi
j

p
; v̂ ¼ j� Ĵ0g, where Jl satisfy

the usual ‘‘angular momentum’’ commutation relations

[38]. The suð2Þ group is the dynamical symmetry for

the bound states for the Morse potential and any

dynamical variable can be expanded in terms of the

generators [16]

Gsuð2Þ ¼ fb̂y; b̂; v̂g: ð32Þ
From the group theoretical point of view the parameter

j labels the irreducible representations of the suð2Þ
group. The projection of the angular momentum m is

related with v by [16]

m ¼ v� j: ð33Þ
From this relation we see that the ground state ðv ¼ 0Þ
corresponds to m ¼ �j, while from the dissociation

condition in (27)

j� v ¼ 0; ð34Þ
the expected maximum number of quanta is v ¼ j
(m ¼ 0). The state corresponding to v ¼ j, however, is
not normalizable, and consequently

vmax ¼ ½j�; ð35Þ
where the notation ½j� stands for the closest integer to j
that is smaller than j. We shall thus consider Morse

potentials with ½j� þ 1 bound states. In the algebraic

space the functions (23) acquire the simple form

jWj
vi ¼ N j

vðb̂yÞ
vjWj

0i; ð36Þ
with normalization constant

N j
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv

ð2j� vÞ!
v!ð2jÞ!

s
: ð37Þ

The Morse functions are then associated to one brach

(in this case to m6 � 1) of the suð2Þ representations.

The bound solutions (23), however, do not form a

complete set of states in the Hilbert space. A complete

set is obtained when the continuum part of the spectrum

is taken into account [39]. Since in the present analysis

the vibrational excitations are far from the dissociation

limit, it is a reasonable approximation to consider the
bound states as a complete space.

The realization of the Morse Hamiltonian in terms of

the suð2Þ algebra is given by

Ĥ ¼ �h~x
2

ðb̂yb̂þ b̂b̂yÞ: ð38Þ

From (29a) and (29b) we obtain the corresponding ei-

genvalues

EMðvÞ ¼ �h~x
ðj� 1Þ

j
ðvþ 1=2Þ � �h~x

j
ðvþ 1=2Þ2; ð39Þ

which can now be compared with the Morse eigenvalues

(9) to establish the identification
hc xe ¼ �hx ¼ �h~x
ðj� 1Þ

j
; hc xexe ¼

�h~x
j

: ð40Þ

The values of j and ~x are then fixed by the potential

shape.

The harmonic limit is obtained by taking the limit

j ! 1:

lim
j!1

b̂ ¼ â; ð41aÞ

lim
j!1

b̂y ¼ ây; ð41bÞ

while for the Morse Hamiltonian

lim
j!1

Ĥ ¼ lim
j!1

�h~x
2

ðb̂yb̂þ b̂b̂yÞ ¼ �h~x
2

ðâyâþ ââyÞ; ð42Þ

with eigenstates given by the harmonic functions

jni ¼ ðâyÞnffiffiffiffi
n!

p j0i: ð43Þ

Since the set of operators (32) constitutes the dy-

namical algebra for the Morse potential, any dynamical

variable can be expanded in terms of them. In particular

we are interested in the expansion of the momenta and

Morse coordinates. For the momenta the following

second order expansion is obtained [14]

p̂ ¼ i

2

ffiffiffiffiffiffiffiffiffiffiffiffi
2�hxl

p
hvb̂y
�

� b̂hv þ
1ffiffiffi
j

p b̂b̂qv
�

� qvb̂yb̂y
�
þOð1=jÞ

	
;

ð44Þ
where hv and qv are functions of the operator v̂. Since
this operator is diagonal we can substitute v̂ by v, so that

hv ¼ 1� v
ðj� vÞ ; ð45aÞ

qv ¼ rv þ sv; ð45bÞ
with the definitions

rv ¼
3j� 2ð2v� 1Þ

4jð1� ðv� 1Þ=jÞð1� v=jÞ

� �
; ð46aÞ

sv ¼
j� 2ð2v� 1Þ

4jð1� ðv� 1Þ=jÞð1� v=jÞ

� �
; ð46bÞ

For the Morse variable the expansion takes the form

[15]

y
b
¼

ffiffiffiffiffiffiffiffiffi
�h

2xl

s
fvb̂y
�

þ b̂fv þ
1ffiffiffi
j

p f d
v

�
þ gvb̂yb̂y þ b̂b̂gv

�

þOð1=jÞ
	
; ð47Þ

where

f d
v ¼ 1þ 2v; ð48aÞ

fv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj� 2v� 1Þðj� 2vþ 1Þ

ðj� vÞ2

s
; ð48bÞ
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gv ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ðj� 2v� 1Þðj� 2vþ 3Þ

ðj� vþ 1Þ2ðj� vÞ2

s
; ð48cÞ

On the other hand, for the x variable the expansion is

given by [14]

x¼ 1

2

ffiffiffiffiffiffiffi
2�h
xl

s
ð2
�

�hvÞb̂y þ b̂ð2�hvÞ

þ 1ffiffiffi
j

p gdv
�

þq0vb̂
yb̂y þ b̂b̂q0v

�
þOð1=jÞ

	
; ð49Þ

where

q̂0v ¼ sv � rv; ð50Þ
with the diagonal contribution given by

ĝdv ¼ j lnj

(
�Uðj� 2v� 1Þ þ

Xv
j¼1

1

ðj� v� jÞ ð1� dv;0Þ
)
;

ð51Þ
where U is the digamma function [40]. Combining the

expressions (44) and (51) we can also obtain the ex-

pansion of the operators

ĉyi ¼
ffiffiffiffiffiffiffiffiffi
lixi

2�h

r
qi �

iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hlixi

p p̂i; ð52aÞ

ĉi ¼
ffiffiffiffiffiffiffiffiffi
lixi

2�h

r
qi þ

iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hlixi

p p̂i: ð52bÞ

Although these operators have the same definition as
fây; âg in (16a) and (16b), the difference between them

rely on the basis upon which they act. While the oper-

ators (16a) and (16b) are intended to act over harmonic

functions, the operators (54a) and (54b) are general, and

their action is determined by the operators fq; p̂g. We

can thus substitute (44) and (49) into (52a) and (52b) in

order to obtain the their representation in the suð2Þ
space. For ĉy we have

ĉy ¼ b̂y þ b̂ð1� ĥvÞ þ
1ffiffiffi
j

p gdv
2

�
þ b̂b̂ŝv � rvb̂yb̂y

	
þOð1=jÞ;

ð53Þ
while ĉ is obtained by taking its hermitian conjugate.
From this result it is clear that in the Morse basis the

operators are not ladder operators, although by defini-

tion are bosons. The expressions (44), (47), (49), and

(53) are given in terms of a expansion of powers of the

parameter 1=
ffiffiffi
j

p
. Since in the harmonic limit j ! 1,

the form of the expansions makes particularly clear the

relevance of the different terms and consequently allows

to carry out the harmonic limit in a straightforward way
as well as to establish successive approximations. In

order to achieve this task we first present the harmonic

limit of the diagonal operators

lim
j!1

hv ¼ lim
j!1

fv ¼ lim
j!1

gv ¼ 1; ð54aÞ
lim
j!1

qv ¼
1

2
; lim

j!1
q0v ¼ � 1

2
: ð54bÞ

These results lead to the harmonic limit

lim
j!1

p̂ ¼ i

2

ffiffiffiffiffiffiffiffiffiffiffi
2�hxl

p
½ây � â�; ð55aÞ

lim
j!1

y
b
¼ lim

j!1
x ¼

ffiffiffiffiffiffiffiffiffi
�h

2xl

s
½ây þ â�; ð55bÞ

lim
j!1

ĉy ¼ ây: ð55cÞ

The importance of the expansions we have presented

is that they provide different approximations, which may

be useful depending of the parameter j. Let us suppose
that j is large but finite. In this case the anharmonic

effect can be taken into account through

ĉy ’ b̂y ð56Þ
and consequently

p ’ i

2

ffiffiffiffiffiffiffiffiffiffiffi
2�hxl

p
½b̂y � b̂� ð57aÞ

y
b
¼ x ’

ffiffiffiffiffiffiffiffiffi
�h

2xl

s
½b̂y þ b̂�: ð57bÞ

This is the simplest approximation beyond the harmonic
limit, and takes into account the anharmonic effects

through the leading terms in the Morse matrix elements

[14]. This approximation is equivalent to carry out the

substitution ây ! b̂y in (20). We could thus work in the

harmonic scheme and at the end the above substitution

allows to take into account the effect of theMorse basis in

the interactions, which represent an improvement to the

Child�s model.
As the parameter j diminishes, the anharmonic

effects becomes more important and eventually the

diagonal operators as well as the terms of order 1=
ffiffiffi
j

p

become relevant. This fact can be established by

analyzing the behavior of the diagonal functions. In

Figs. 1–3 we display the different diagonal operators as a

function of the number of quanta for different values of

the parameter j. We have included the results for the
values j ¼ 83, 43, and 23. Except for f d

v , which is in-

dependent of j, the curves approach the harmonic limit

as the parameter j increases. For high number of

quanta, however, the anharmonic effects become patent,

which makes clear the need to include the second order

terms in the expansions. Remarkable differences be-

tween the functions involved in the expansion of x and

y=b should be appreciated. While the absolute value of
gdv and q0v (involved in x) increases exponentially as the

number of quanta approach to the dissociation limit,

the deviation with respect to the harmonic limit of the

functions f d
v and gv are moderate. This difference re-

flects the better convergence of the Morse variable y, in



Fig. 1. Diagonal contributions hv and fv involved in the linear terms of

the expansions (44) and (47), respectively.
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contrast to the coordinate x. We next establish a ten-

sorial formalism to express the Hamiltonian (12) in

terms of the expansions (44) and (47).
Fig. 2. Diagonal contributions qv, gv, and q0v involved in the quadratic

terms of the expansions (44), (47), and (49), respectively.
4. Symmetry adapted scheme

The diagonalization of the Hamiltonian (12) gives

rise to the set of eigenfunctions carrying irreducible

representations of the symmetry group, as established by

Wigner�s theorem [41]. In our case the eigenstates are

linear combinations of the local functions (13). In

practice, however, in order to optimize the procedure as

well as to facilitate the identification of the functions
with the normal mode scheme, a change of basis before

the diagonalization is required. The new basis should

carry quantum numbers isomorphic to the normal

quanta, as well as irreducible representations of the

symmetry group. A basis with these characteristics can

be constructed in several ways, but the most efficient

approach consists in a combination of the eigenfunction

method developed by Chen [42] and the diagonalization
of the symmetry adapted number operators in a har-

monic basis. This approach is explained in detail in

[43,44]. Here we shall only present the relevant aspects

concerning the symmetry adapted basis.

The generation of a symmetry adapted functions

carrying labels isomorphic to the normal labels repre-

sents a simple task in the harmonic limit. To show this

we define the symmetry adapted operators
âyA;s ¼
1ffiffiffi
2

p âyr
�

þ âyr0
�
; ð58aÞ

âyA;b ¼ ây/; ð58bÞ

âyB;s ¼
1ffiffiffi
2

p âyr
�

� âyr0
�
; ð58cÞ

where the set fâyr ; â
y
r0 ; â

y
/g is defined by (16a) and (16b) and

the subindices s; b stand for stretching and bending, re-

spectively. The transformation (58a)–(58c) is canonical,

and consequently the symmetry adapted operators to-

gether with their hermitian conjugates satisfy the com-

mutation relations for bosons. The harmonic basis for

any number of quanta in terms of such operators is then

given by

j�n1�n2�n3iC ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n1!�n2!�n3!

p âyA;s
� ��n1

âyA;b
� ��n2

âyB;s
� ��n3

j0i; ð59Þ

where f�n1; �n2; �n3g correspond to the eigenvalues of the

operators



Fig. 3. Diagonal contributions f d
v and gdv involved in the expansions

(47) and (49), respectively.
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�̂n1 ¼ ayA;saA;s; �̂n2 ¼ ayA;baA;b; �̂n3 ¼ ayB;saB;s: ð60Þ

The irrep C in (59) is obtained by simple direct products.

It is then clear that the basis (60) is isomorphic to the

normal basis

jm1m2m3i � j�n1�n2�n3i: ð61Þ
In terms of the harmonic local basis, the states (59) take
the general form

j�n1�n2�n3iC ¼
X
fnig

Afnig
f�nigjfnigi; ð62Þ

where jfnigi are defined by (18) and the coefficients Afnig
f�nig

are obtained either by expanding the operators (58a)–

(58c) in (59) or through group theoretical techniques [43].
We can construct an orthonormal symmetry adapted

basis in terms of the local anharmonic set (13) by simply

applying the correspondence ây ! b̂y:

j½js; jb�; �v1�v2�v3i ¼
X
fvig

Afvig
f�mig j½ji�fvigi; ð63Þ

where the labels f�vig have the same association as the
harmonic labels fnig and j½ji�fvigi is a shorthand nota-

tion for (13). The coefficients satisfy

Afvig
f�vig ¼ Afnig

f�nig; ð64Þ

a simple result which is a consequence of the corre-
spondence

lim
j!1

j½ji�fvigi ¼ jfnigi; ð65Þ
and the orthonormality of both (13) and jfnigi. The
states (63) do not correspond to the normal basis, but

are isomorphic to it. The eigenfunctions of the Hamil-

tonian (12) can thus be expressed in terms of an ex-

pansion of the form

wa ¼
X
f�vig

Cj
f�vig j½js; jb��v1�v2�v3i; ð66Þ

which are labeled by the state associated to the maximum

contribution in (66). The substitution of (63) into (66)

provides the eigenstates in terms of the local basis (13).

In any system the symmetrization comprises both the

basis and the operators. In particular, theHamiltonian by

definition is totally symmetric. Although by construction

this is the case for (12), we can make it explicit by ex-

pressing the Hamiltonian in terms of symmetry adapted
tensors coupled to the totally symmetric irreducible rep-

resentation. Sincewe intend to express theHamiltonian in

the suð2Þ representation, it is convenient to introduce

symmetry adapted tensors in terms of the different con-

tributions to the expansions (44) and (47). For tensors

related to the Morse coordinates we define

ŶC
0;x ¼

X
i

aCx;i f
d
v;i; ð67aÞ

ŶCy
1;x ¼

X
i

aCx;i fv;ib̂
y
i ; ð67bÞ

ŶCy
2;x ¼

X
i

aCx;i gv;ib̂
y
i b̂

y
i ; ð67cÞ

while for the momenta

P̂Cy
1;x ¼

X
i

aCx;i hv;ib̂
y
i ; ð68aÞ

P̂Cy
2;x ¼

X
i

aCx;i qv;ib̂
y
i b̂

y
i ; ð68bÞ

where the subindex x ¼ s; b was included in order to

distinguish tensors arising from the stretching and

bending degrees of freedom, respectively, and the coef-

ficients aC;cx;i are obtained using projection techniques

[45]. In general they coincide with the factors appearing
in the symmetry adapted functions for one quantum,

e.g., in this case the coefficients are obtained directly

from (58a)–(58c). Note that the same coefficients are

assigned to all tensors, independently of their order and

nature (coordinate or momenta). Because of the limits

(54a) the tensors ŶCy
1;x and P̂Cy

1;x coincide in the approxi-

mation (57a) and (57b):

lim
j!large

ŶCy
1;x ¼ lim

j!large
P̂Cy

1;x ¼ T̂ Cy
x ; ð69Þ

where

T̂ Ay
s ¼ 1ffiffiffi

2
p b̂yr
�

þ b̂yr0
�
; ð70aÞ

T̂ Ay
b ¼ b̂y/; ð70bÞ
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T̂ By
s ¼ 1ffiffiffi

2
p b̂yr
�

� b̂yr0
�
: ð70cÞ

Similar expressions are obtained for the hermitian con-

jugate operators. Note that the tensors (67a) are her-

mitian and consequently their adjoint are not needed.

The tensors (70a)–(70c) correspond to the same tensors

introduced in the symmetry adapted version of the vi-

bron model [45].

When the expressions (44) and (47) are substituted

into (12), each term of the Hamiltonian will be given in
terms of an expansion in powers of the parameter 1=

ffiffiffi
j

p
,

which according to the approximation, range from

ð1=
ffiffiffi
j

p
Þ0 to 1=j2. If we restrict ourselves to keep only the

polyad conserving terms, not all these powers appear.

Concerning the interactions leading to the Hamiltonian
Ĥ ¼ Ĥ0 � x1 PAy
1;sPA

1;s

�h
� PBy

1;sPB
1;s

�i
� x2

ffiffiffi
2

p
YAy

1;sPA
1;bPA

1;b

�
þ 1p

� x4 YAy
1;sYA

1;s

��
þ YBy

1;sYB
1;s

�
PAy

1;bPA
1;b �

1ffiffiffi
j

p YA
0;sY

Ay
1;s

�n
þ YB

0;

þ YAy
1;sYA

2;s

�
þ YBy

1;sYB
2;s

�
PAy

1;bP
Ay
1;b þ YA

1;sY
Ay
2;s

�
þ YB

1;sY

� x5 YAy
1;sYA

1;s

��
� YBy

1;sYB
1;s

�
PAy

1;bPA
1;b

�
þ PA

1;bP
A;y
1;b

�
� 1ffiffiffi

j
p

�n

þ YAy
1;sYA

2;s

�
� YBy

1;sYB
2;s

�
PAy

1;bP
Ay
1;b þ hc

o	

þ x6 PAy
1;bYA

1;bYA
1;bP

Ay
1;b

nh
þ hc
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(20) there is always a contribution of zeroth-order , but
for interactions which do not contribute to (20), only

some terms ranging from ð1=
ffiffiffi
j

p
Þ to 1=j2 appear. This

situation is best reflected in the tensorial formalism.

As mentioned above, we could introduced directly the
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Hamiltonian in term of the suð2Þ generators for each os-

cillator, in similar form to the procedure followed to ob-

tain the Hamiltonian (20). Instead we shall invoke the
symmetry adapted tensors (67a)–(67c) and (68a) and

(68b), in order to make clear the invariance of the Ham-

iltonian as well as the order of the interactions. To sim-
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In Tables 1 and 2 are given the coefficients with their

the associated interactions. In spite of the apparent

complexity of the Hamiltonian (71), the form of the

tensorial expansion is very enlightening. On one hand it

makes clear the order of the interaction involved in each
Table 1

Coefficients involved in the Hamiltonian (71) associated to the

interactions of the kinetic energy
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4
ðogr/
oqr0

Þ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hx/l/

p
ðpryr0 þ pr0yrÞðy/p/ þ p/y/Þ x12 ¼ � �h2

16
ðo

2g//
oq2

/
Þ0

ðyr þ yr0 Þp/y/p/ x13 ¼ � �h2

8
ð o

2g//
oqroq/

Þ0
ffiffiffiffiffiffiffiffi
x/l/
xrlr

q
ðpry2r0 þ pr0y2r Þp/ x14 ¼ � �h2

8
½ðo

2qr/
oq2r

Þ0 þ ðo
2gr/
oqr

Þ0br�
ffiffiffiffiffiffiffiffi
x/l/
xrlr

q
ðpr þ pr0 Þ

ðy2
/
p/þp/y

2
/
Þ

2
x15 ¼ � �h2

16
½ðo

2gr/
oq2

/
Þ þ ðogr/

oq/
Þb/�

ffiffiffiffiffiffiffiffi
xrlr
x/l/

q

term, and on the other hand provides the type of the

additional interactions which are taken into account

when the polyad is conserved. Concerning the potential
Coefficients involved in the Hamiltonian (71) associated to the inter-

actions of the potential energy

Interaction Coefficient

yryr0 z1 ¼ �h
2
frr0 1

xrlr

ðyr þ yr0 Þy2/ z2 ¼ �h
4
ðb/fr/ þ fr//Þ 1

x/l/

ffiffiffiffiffiffiffi
�h

xrlr

q
y4/ z3 ¼ �h2

4!
ð11b2

/f// þ 6b/f/// þ f////Þ 1
4x2

/
l2
/

ðy4r þ y4r0 Þ z4 ¼ �h2

4!
ð11b2

r frr þ 6brfrrr þ frrrrÞ 1
4x2

r l
2
r

ðy2r þ y2r0 Þy2/ z5 ¼ �h2

16
ðbrb/fr/ þ b/frr/ þ brfr// þ frr//Þ 1

xrlrx/l/

yryr0y2/ z6 ¼ �h2

8
ðb/frr0/ þ frr0//Þ 1

xrlrx/l/

y2r y
2
r0 z7 ¼ �h2

16
ðb2

r frr0 þ 2brfrr0r0 þ frrr0r0 Þ 1
x2
r l

2
r

ðyr0y3r þ yry3r0 Þ z8 ¼ �h2

4!
ð2b2

r frr0 þ 3brfrrr0 þ frrrr0 Þ 1
x2
r l

2
r

ðyr þ yr0 Þy/ z9 ¼ 1
2
fr/ �hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xrlrx/l/
p

ðy3r þ y3r0 Þ z10 ¼ �h
12
ð3brfrr þ frrrÞ 1

xrlr

ffiffiffiffiffiffiffiffiffi
�h

2xrlr

q
y3/ z11 ¼ �h

12
ð3b/f// þ f///Þ 1

x/l/

ffiffiffiffiffiffiffiffiffiffi
�h

2x/l/

q
ðyr0y2r þ yry2r0 Þ z12 ¼ �h

4
ðbrfrr0 þ frrr0 Þ 1

xrlr

ffiffiffiffiffiffiffiffiffi
�h

2xrlr

q
ðy2r þ y2r0 Þy/ z13 ¼ �h

4
ðbrfr/ þ frr/Þ 1

xrlr

ffiffiffiffiffiffiffiffiffiffi
�h

2x/l/

q
yryr0y/ z14 ¼ frr0/ �h

2xrlr

ffiffiffiffiffiffiffiffiffiffi
�h

2x/l/

q
ðy3r þ y3r0 Þy/ z15 ¼ 1

4!
ð2b2

r fr/ þ 3brfrr/ þ frrr/Þ �h2

xrlr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

xrlrx/l/

q
ðyr þ yr0 Þy3/ z16 ¼ 1

4!
ð2b/fr/ þ 3b/fr// þ fr///Þ �h2

x/l/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

xrlrx/l/

q
ðyry2r0 þ yr0 y2r Þy/ z17 ¼ 1

8
ðbrfrr0/ þ frr0r0/Þ �h2

xrlr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

xrlrx/l/

q
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expansion, the interactions associated with the param-
eters fz1; z3; z4; z7; z8g do not present additional contri-

butions of order 1=
ffiffiffi
j

p
, although they do of higher

order. They are not included because we are writing the

interactions only up to order 1=
ffiffiffi
j

p
. The interaction for

z2, which gives rise to a Fermi interaction in zeroth or-

der, presents a bending one-quantum transfer term of

order 1=
ffiffiffi
j

p
. The interactions for z5 and z6, which

present stretching-bending anharmonic interactions, in-
clude Fermi interactions of order 1=

ffiffiffi
j

p
. The interac-

tions associated to fz9; z15; z16; z17g give rise to Fermi

interactions of order 1=
ffiffiffi
j

p
. On the other hand the in-

teractions associated to fz10; z11; z12g present Darling–

Dennison interactions, in addition to the one-quantum

transfer interactions, all of them of order 1=
ffiffiffi
j

p
.

If in this Hamiltonian we carry out the limit j ! 1,

the Hamiltonian (20) is recovered. If we keep the ap-
proximation (57a) and (57b) we obtain the same Hamil-

tonian from the functional point of view, but with the

change ây ! b̂y. Another advantage of having rewritten

the Hamiltonian (12) in the form (71) is that it becomes

clear up to which order the force constants are deter-

mined. In practice, however, it ismore convenient to carry

out the calculations from (12). In principle, using the suð2Þ
commutation relations the Hamiltonian (71) can be re-
arranged to obtain a simple expression, but it does not

provide additional physical insight to the problem.

In the same spirit we could break the polyad taking

terms up to order 1=
ffiffiffi
j

p
, or any order we decide by

means of the expansions (44) and (47). This analysis we

be presented in future publication [19]. In the next sec-

tion we shall present the results when the Hamiltonian

(71) is used to describe the vibrational energy spectrum
of H2O.
5. Results

In this section we start by considering the Hamilto-

nian (71) to describe the vibrational spectrum of the

most abundant isotopic species of water, H2
16O, in-

cluding data up to 22 500 cm�1. The Hamiltonian (71)

includes 17 force constants, the Morse parameters br
and b/, plus the Child�s parameters js and jb. Since the
latter parameters are connected with the anharmonicity

of the oscillators, we can estimate their values by con-

sidering the energy levels for one and two quanta. Al-

though this approach provides both sets of parameters

fbr; b/g and fjr; j/g, it is possible to extract from the
data only the Child�s parameters. This procedure is ex-

plained in [18] and gives rise to the parameters

js ¼ 47; jb ¼ 86: ð72Þ
These values reflect the anharmonic character of the

stretching modes, compered with the more harmonic-

like behavior of the bending mode. Since the parameters
fbr; b/g and fjr; j/g are involved in the zeroth-order
Hamiltonian (11) as well as in the parameters fxi; zig
through xr and x/, the strategy to follow in the fitting

procedure must be a self consistent approach. We start

by taking an initial set of parameters fbr; b/g. Such

values can be taken from the previous fit given in [18]:

br ¼ 2:1542; b/ ¼ 0:7296: ð73Þ

These parameters, together with the equilibrium geom-

etry of the molecule allows to fix the constants xi. We

then proceed to carry out an energy fit varying the linear

parameters zi and the Morse frequencies ~xi; i ¼ r;/.
The fitting provides a set of force constants, but also a
new values for br and b/ through the ~x0s. The new pa-

rameters together with (72) are then used as initial pa-

rameters to start a new fit. This procedure is repeated

until the input and output values of the b0s parameters

are the same. We should note that during this procedure

the Child�s parameters remain fixed. In order to obtain

the best possible set we vary the j0s parameters and re-

peat the approach described above. The quality of the fit
is expressed in terms of the rms deviation

rms ¼
XNexp

i¼1

Ei
exp

�"
� Ei

cal

�2

Nexp

�
� Npar

�#1=2
; ð74Þ

where Nexp is the total number of experimental energies

and Npar the number of parameters used in the fit.

We now present the results of the least-square fit to
the vibrational spectrum of H2

16O, including 72 exper-

imental energies with equal weights. In this analysis we

have taken into account the same experimental energies

considered in [18], plus 14 energies taken from [47]. In

Table 3 we present the theoretical and experimental

energies, where an rms deviation of 5.0 cm�1 was ob-

tained with the parameters js ¼ 47 and jb ¼ 66. In

Table 4, we display the parameters zi provided by the
fitting procedure. From this set of parameters and their

explicit expressions given in Table 2 we derive the force

constants displayed in Table 5. In Table 3 we have also

included predicted levels up to polyad P ¼ 14. As ex-

plained before, the quantum number assignment of the

states corresponds to the maximum component in the

symmetry adapted basis. Since the basis is isomorphic to

the normal basis, there is a full coincidence with stan-
dard labeling.

In order to determine the significance of the fits, a

statistical error analysis for the parameters was carried

out [48]. Two types of uncertainty measures were de-

fined and computed for the parameters zi: the delta-error
(dzi) and the epsilon-error (�zi). They are defined in such

a way that the value of the quadratic energy deviation

Q2, defined by

Q2 ¼
XNexp

i¼1

Ei
exp

�
� Ei

cal

�2
; ð75Þ



Table 3

Energies (in cm�1) provided by the fit using the Hamiltonian (71)

Polyad State Energies

ðm1m2m3Þ Exp.a Theor. DEo�c

Symmetry A

1 (0, 1, 0) 1594.75 1591.55 3.20

2 (0, 2, 0) 3151.63 3152.42 )0.79
2 (1, 0, 0) 3657.05 3658.13 )1.1
3 (0, 3, 0) 4666.8 4669.52 )2.7
3 (1, 1, 0) 5235. 5234.45 0.5

4 (0, 4, 0) 6134.03 6133.06 0.97

4 (1, 2, 0) 6775.1 6780.47 )5.37
4 (2, 0, 0) 7201.54 7200.73 0.8

4 (0, 0, 2) 7445.07 7449.74 )4.7
5 (0, 5, 0) 7542.39 7535.94 6.45

5 (1, 3, 0) 8273.98 8278.81 )4.8
5 (2, 1, 0) 8761.59 8760.7 0.89

5 (0, 1, 2) 9000.14 8996.45 3.69

6 (0, 6, 0) 8870.5 8872.85 )2.35
6 (1, 4, 0) 0 9721.96 —

6 (2, 2, 0) 10284.4 10289.1 )4.8
6 (0, 2, 2) 10524.3 10523.7 0.6

6 (3, 0, 0) 10599.7 10597.9 1.77

6 (1, 0, 2) 10868.9 10870.8 )1.9
7 (0, 7, 0) 0 10140.2 —

7 (1, 5, 0) 0 11104.7 —

7 (2, 3, 0) 0 11768.7 —

7 (0, 3, 2) 0 12014. —

7 (1, 1, 2) 12139.2 12136. 3.2

7 (1, 1, 2) 12407.6 12404.5 3.1

8 (0, 8, 0) 0 11336.2 —

8 (1, 6, 0) 0 12423. —

8 (2, 4, 0) 13205.1 13193.9 11.21

8 (0, 4, 2) 13448. 13457. )9.0
8 (1, 2, 2) 13642.2 13643.4 )1.16
8 (2, 0, 2) 13828.3 13826.9 1.4

8 (1, 2, 2) 13910.9 13914.5 )3.6
8 (4, 0, 0) 14221.2 14221.7 )0.5
8 (0, 0, 4) 14536.5 14532.5 3.96

9 (0, 9, 0) 0 12460.7 —

9 (1, 7, 0) 13661.3 13674.1 )12.81
9 (2, 5, 0) 0 14560. —

9 (0, 5, 2) 0 14844.8 —

9 (1, 3, 2) 15107. 15104.9 2.14

9 (2, 1, 2) 15344.5 15341.6 2.9

9 (1, 3, 2) 0 15381.6 —

9 (4, 1, 0) 15742.8 15740.4 2.4

9 (0, 1, 4) 0 16035.3 —

10 (1, 10, 0) 0 13515. —

10 (1, 8, 0) 0 14857. —

10 (2, 6, 0) 0 15863.3 —

10 (0, 6, 2) 0 16171.7 —

10 (3, 4, 0) 0 16516.5 —

10 (1, 4, 2) 0 16793.4 —

10 (2, 2, 2) 16825.2 16824.6 0.6

10 (3, 0, 2) 16898.4 16898.7 )0.3
10 (4, 2, 0) 17227.7 17231.2 )3.5
10 (5, 0, 0) 17458.3 17455.8 2.5

10 (0, 2, 4) 0 17527.7 —

10 (1, 0, 4) 17748.1 17748.1 0.0

11 (0, 11, 0) 0 14501.5 —

11 (1, 9, 0) 0 15972.1 —

11 (2, 7, 0) 0 17101.6 —

11 (0, 7, 2) 0 17433.6 —

11 (3, 5, 0) 0 17872.2 —

Table 3 (continued)

Polyad State Energies

ðm1m2m3Þ Exp.a Theor. DEo�c

11 (1, 5, 2) 0 18156.4 —

11 (2, 3, 2) 0 18265. —

11 (3, 1, 2) 18393. 18394. )1.00
11 (4, 3, 0) 0 18674.9 —

11 (5, 1, 0) 0 18950.6 —

11 (0, 3, 4) 0 18992. —

11 (1, 1, 4) 0 19232.9 —

12 (0, 12, 0) 0 15423.1 —

12 (1, 10, 0) 0 17021.3 —

12 (2, 8, 0) 0 18274.2 —

12 (0, 8, 2) 0 18628.5 —

12 (3, 6, 0) 0 19167.3 —

12 (1, 6, 2) 0 19459.5 —

12 (2, 4, 2) 0 19664.1 —

12 (4, 0, 2) 0 19781.9 —

12 (3, 2, 2) 0 19871.5 —

12 (4, 4, 0) 0 20068.6 —

12 (0, 4, 4) 0 20400.5 —

12 (1, 2, 4) 0 20430.3 —

12 (6, 0, 0) 0 20532.4 —

12 (1, 2, 4) 0 20703.6 —

12 (6, 0, 0) 0 20913.4 —

12 (0, 0, 6) 0 21262.1 —

13 (0, 13, 0) 0 16283.4 —

13 (1, 11, 0) 0 18007.5 —

13 (2, 9, 0) 0 19382.3 —

13 (0, 9, 2) 0 19756.3 —

13 (3, 7, 0) 0 20398.9 —

13 (1, 7, 2) 0 20701.3 —

13 (2, 5, 2) 0 21012.8 —

13 (4, 1, 2) 0 21225.2 —

13 (3, 3, 2) 0 21321.2 —

13 (4, 5, 0) 0 21409.9 —

13 (0, 5, 4) 0 21774.6 —

13 (5, 3, 0) 0 21850.6 —

13 (2, 1, 4) 0 22004.5 —

13 (1, 3, 4) 0 22138.9 —

13 (6, 1, 0) 0 22383.8 —

13 (0, 1, 6) 0 22720.6 —

14 (0, 14, 0) 0 17086. —

14 (1, 12, 0) 0 18934.2 —

14 (2, 10, 0) 0 20428.1 —

14 (0, 10, 2) 0 20818.4 —

14 (3, 8, 0) 0 21566.6 —

14 (1, 8, 2) 0 21880.5 —

14 (2, 6, 2) 0 22303.8 —

14 (3, 0, 4) 0 22525.9 —

14 (4, 2, 2) 0 22634. —

14 (4, 6, 0) 0 22690.2 —

14 (3, 4, 2) 0 22755.4 —

14 (0, 6, 4) 0 23087.9 —

14 (5, 4, 0) 0 23229.7 —

14 (5, 0, 2) 0 23418.8 —

14 (6, 2, 0) 0 23466.2 —

14 (1, 4, 4) 0 23534.7 —

14 (6, 2, 0) 0 23833.4 —

14 (7, 0, 0) 0 23980.9 —

14 (0, 2, 6) 0 24175.3 —

14 (1, 0, 6) 0 24294.1 —

Symmetry B

2 (0, 0, 1) 3755.93 3762.48 )6.55
3 (0, 1, 1) 5331.27 5329.2 2.07
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Table 3 (continued)

Polyad State Energies

ðm1m2m3Þ Exp.a Theor. DEo�c

4 (0, 2, 1) 6871.51 6873.16 )1.65
4 (1, 0, 1) 7249.81 7253.5 )3.7
5 (0, 3, 1) 8373.85 8377.65 )3.8
5 (1, 1, 1) 8807. 8804.8 2.2

6 (0, 4, 1) 9833.58 9832.29 1.29

6 (1, 2, 1) 10328.7 10331.3 )2.6
6 (2, 0, 1) 10613.4 10615.4 )2.07
6 (0, 0, 3) 11032.4 11032.8 )0.40
7 (0, 5, 1) 0 11229.4 —

7 (1, 3, 1) 11813.2 11815.2 )2.0
7 (2, 1, 1) 12151.3 12149.2 2.1

7 (0, 1, 3) 12565. 12557.1 7.93

8 (0, 6, 1) 0 12563.1 —

8 (1, 4, 1) 13256.2 13248.9 7.3

8 (2, 2, 1) 13652.7 13655.7 )3.0
8 (3, 0, 1) 13830.9 13831.4 )0.5
8 (0, 2, 3) 14066.2 14066.8 )0.6
8 (1, 0, 3) 14318.8 14319.7 )0.9
9 (0, 7, 1) 13835.4 13829.5 5.9

9 (1, 5, 1) 14640. 14626.2 13.83

9 (2, 3, 1) 15119. 15118.9 0.1

9 (3, 1, 1) 15348. 15345.9 2.1

9 (0, 3, 3) 15534.7 15543.9 )9.22
9 (1, 1, 3) 15832.8 15825.2 7.56

10 (0, 8, 1) 0 15026.6 —

10 (1, 6, 1) 0 15942.2 —

10 (2, 4, 1) 0 16534.1 —

10 (3, 2, 1) 16821.6 16824.4 )2.80
10 (2, 0, 3) 16898.8 16899.2 )0.4
10 (0, 4, 3) 0 16977.1 —

10 (1, 2, 3) 17312.5 17314.3 )1.80
10 (4, 0, 1) 17495.5 17500. )4.52
10 (0, 0, 5) 0 17938.6 —

11 (0, 9, 1) 0 16154.3 —

11 (1, 7, 1) 0 17193.5 —

11 (2, 5, 1) 0 17895.2 —

11 (3, 3, 1) 18265.8 18265.8 0.07

11 (0, 5, 3) 0 18356.7 —

11 (2, 1, 3) 18393.3 18395.5 )2.18
11 (1, 3, 3) 0 18767.5 —

11 (4, 1, 1) 18990. 18987.8 2.17

11 (0, 1, 5) 0 19418.9 —

12 (0, 10, 1) 0 17213.8 —

12 (1, 8, 1) 0 18378.9 —

12 (2, 6, 1) 0 19197.2 —

12 (0, 6, 3) 0 19656.3 —

12 (0, 6, 3) 0 19687.6 —

12 (3, 0, 3) 19781.1 19782.4 )1.2
12 (2, 2, 3) 0 19872.1 —

12 (1, 4, 3) 0 20176.7 —

12 (4, 2, 1) 0 20454.8 —

12 (5, 0, 1) 20543.1 20545.8 )2.7
12 (0, 2, 5) 0 20892.2 —

12 (1, 0, 5) 0 21039.9 —

13 (0, 11, 1) 0 18207.5 —

13 (1, 9, 1) 0 19498.5 —

13 (2, 7, 1) 0 20436.9 —

13 (0, 7, 3) 0 20930.4 —

13 (3, 5, 1) 0 21021.3 —

13 (3, 1, 3) 21221.8 21225.8 )4.02
13 (2, 3, 3) 0 21322.7 —

13 (1, 5, 3) 0 21535.8 —

Table 3 (continued)

Polyad State Energies

ðm1m2m3Þ Exp.a Theor. DEo�c

13 (4, 3, 1) 0 21884.5 —

13 (5, 1, 1) 0 22015.1 —

13 (0, 3, 5) 0 22339.7 —

13 (1, 1, 5) 0 22497.3 —

14 (0, 12, 1) 0 19138.7 —

14 (1, 10, 1) 0 20554.3 —

14 (2, 8, 1) 0 21613.2 —

14 (0, 8, 3) 0 22124.2 —

14 (3, 6, 1) 0 22313. —

14 (4, 0, 3) 22529.4 22526. 3.41

14 (3, 2, 3) 0 22638.3 —

14 (3, 2, 3) 0 22748. —

14 (1, 6, 3) 0 22841.6 —

14 (4, 4, 1) 0 23273.3 —

14 (6, 0, 1) 0 23425.3 —

14 (5, 2, 1) 0 23476. —

14 (0, 4, 5) 0 23748.4 —

14 (1, 2, 5) 0 23947.6 —

14 (4, 0, 3) 0 24049.8 —

14 (0, 0, 7) 0 24498. —

aExperimental energies were taken from [26,47].

Table 4

Parameters of the Hamiltonian (71) in cm�1 obtained in the fit to 72

vibrational energies of H2
16O

Parameter Fit Errors

Delta Epsilon

xr 3889.69 0.146 5.917

x/ 1633.01 0.197 6.052

z1 )36.95 0.417 3.250

z2 )145.85 0.272 28.353

z3 )15.39 0.007 0.821

z4 3.69 0.006 0.326

z5 )9.15 0.016 2.333

z6 )0.18 0.10 0.861

z7 )3.33 0.043 0.344

z8 0.74 0.037 0.323

z9 )569.56 1.795 236.577

z10 44.20 0.076 4.421

z11 )221.09 0.090 11.421

z12 )5.61 0.405 1.792

z13 352.52 1.011 112.992

z14 )114.00 5.142 33.42

z15 11.71 0.234 10.48

z16 3.04 0.109 1.832

z17 )3.93 0.762 4.509

The Child�s parameters are taken to be ks ¼ 47 and kb ¼ 66. The

statistical error analysis has been included in the last two columns,

where the Epsilon and Delta errors are shown.
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does not increase more than a fraction D of the mini-

mum value Q2
min. Specifically, the delta-error for the

parameter zi is defined through the condition that Q2

remains smaller than ð1þ DÞQ2 when zi is chosen in the

interval ½zi � dzi; zi þ dzi� around its optimum value zi. In
this case all other parameters are kept fixed at their

optimized values. On the other hand, �zi determines the



Table 5

Force constants provided by the fit displayed in Table 3

Order Force

constant

This

work

Jensena Halonen–

Carringtonb

Lemus et al.c Ab initiod

1 bs/
�A�1 2.1573 2.053 2.1542

1 Ds=aJ 0.8694 0.999 0.9050

1 bb/
�A�1 0.8279 0.7296

1 Db=aJ 0.5190 0.7055

1 frr=aJ �A�2 8.093 8.4393 8.428 8.401 8.443

1 r2e f//=aJ 0.652 0.7070 0.699 0.688 0.7921

1 frr0=aJ �A�2 )0.1571 )0.1051 )0.101 )0.11 )0.100
1=

ffiffiffi
j

p
refr/=aJ �A�1 –1.0578 0.3064 0.219 0.2743

1=
ffiffiffi
j

p
frrr=aJ �A�3 )35.880 )55.40 )51.91 )56.400

1=
ffiffiffi
j

p
refrr0/=aJ �A�2 )3.098 )0.447 0.414 )0.505

1=
ffiffiffi
j

p
frrr0=aJ �A�3 )0.358 )0.318 0.645 )0.076

1 r2afr//=aJ �A�1 )2.6243 )0.3383 )0.314 )0.51 )0.3210
1=

ffiffiffi
j

p
refrr/=aJ �A�2 21.442 )0.252 1.341 )0.084

1=
ffiffiffi
j

p
r3e f///=aJ )8.4312 )0.7332 )0.918 )0.7482

1 frrrr=aJ �A�4 130.87 306.0 248.7 275.39 338

1 r2e frr//=aJ �A�2 )15.89 )0.950 )2.0 )15.699 )0.28
1 frrrr0=aJ �A�4 7.861 2.57 3.728 )0.30
1 r2e frr0//=aJ �A�2 2.3910 0.1150 )0.632 0.62

1 frrr0r0=aJ �A�4 )9.843 1.93 )12.68 0.52

1 r4e f////=aJ 23.349 )0.238 )0.1 2.32 )0.74
1=

ffiffiffi
j

p
refrrr/=aJ �A�3 )100.98 )6.14 )1.2

1=
ffiffiffi
j

p
refrrr0/=aJ �A�3 3.5584 )3.22 0.2

1=
ffiffiffi
j

p
r3e fr///=aJ �A�1 8.955 0.87 0.648

a From [25].
b From [24].
c From [18].
d From [53].
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range in which zi varies when all other parameters are

optimized again. The epsilon error is generally much

larger than the delta-error, as can be seen in Table 4,

where the fraction D was chosen to be 0.05.

From Table 4, we identify z6 as the only parameter

displaying an error comparable to the parameter itself,

but this situation appears only for the epsilon error,

the delta error being significantly smaller. In addition to
the delta and epsilon errors we have also calculated the

correlation matrix for the parameters. From this point

of view the set of parameters are well determined since

for all cases the matrix correlation values are not greater

than 0.94, to be compared with the value of 0.99 esti-

mated to be typical for correlation [49].

In this work the relation between the spectroscopic

parameters and the structure and force constants has
been established in the framework of suð2Þ representa-

tion. Using the relations (72) of Table 2 we have derived

the force constants displayed in Table 5. We have in-

cluded for comparison the force constants obtained by

other approaches. While the Morse parameters for the

stretches are quite similar, the rest of the constants

display significant differences, in particular fr/, frr/,
frrrr0 , and f////, whose signs differ from the ab initio
results. These differences can be attributed to a renor-

malization of the constants, owing to the different con-
tributions which are taken into account in the

Hamiltonian and the approximations involved. We re-

mark that the approach presented here establishes a

method to determine all the force constants when the

polyads are preserved and only the leading Morse ma-

trix elements are taken into account. Here we have

considered up to quartic order terms, but the method

can be applied to higher order expansions. This ap-
proach represents the extension to the algebraic ap-

proach developed in [10], whose corresponding force

constants are displayed in the sixth column of Table 5.

There are three main differences between the description

of Halonen and Carrington [24] and this work. First, the

Hamiltonians are different, as indicated by the absence

of some constants in Table 5. Second, the expansion in

[24] is given in terms of the Morse variables for the
stretches and the coordinate for the bending, while we

are using in both cases the Morse variables. Finally, the

approximation involved in [24] is concerned only with

the use of a limited basis set, but the interactions con-

nect the whole basis. In contrast, in our description only

the leading matrix elements Dv ¼ 0;�1;�2 are consid-

ered, in such a way that the polyad number (14) is ex-

actly conserved. On the other hand, the description of
Jensen [25] is based on the Morse oscillator rigid bender

internal dynamics (MORBID) approach [50], which is



Table 6

Predicted vibrational levels for different isotopic species

Polyad State Energies

(m1m2m3) Exp.a Theor. DEo�c

H2
17O

Symmetry A

1 (0, 1, 0) 1591.32 1588.35 3.0

2 (1, 0, 0) 3653.15 3653.46 )0.31
2 (0, 2, 0) 3144.98 3145.85 )0.87
3 (1, 1, 0) 5227.75 5226.7 1.0

Symmetry B

2 (0, 0, 1) 3748.32 3754.65 )6.33
3 (0, 1, 1) 5320.26 5318.12 2.1

4 (1, 0, 1) 7238.73 7241.08 )2.35

H2
18O

Symmetry A

1 (0, 1, 0) 1588.28 1585.5 2.78

2 (1, 0, 0) 3649.69 3649.3 0.39

2 (0, 2, 0) 3139.05 3140. )0.95
3 (1, 1, 0) 5221.25 5219.81 1.44

3 (0, 3, 0) 4648.46 4650.79 )2.33
4 (0, 0, 2) 7418.72 7421.54 )2.82
4 (2, 0, 0) 7185.9 7181.78 4.12

4 (1, 2, 0) 6755.51 6759.61 )4.10

Symmetry B

2 (0, 0, 1) 3741.57 3747.68 )6.1
3 (0, 1, 1) 5310.46 5308.25 2.21

4 (1, 0, 1) 7228.9 7230.04 )1.1
4 (0, 2, 1) 6844.6 6845.98 )1.4

D2
16O

Symmetry A

1 (0, 1, 0) 1178.38 1170.15 8.23

2 (1, 0, 0) 2669.40 2651.81 19.84

2 (0, 2, 0) 2336.84 2314.54 22.30

4 (2, 0, 0) 5291.6 5225.73 65.9

5 (2, 1, 0) 6452. 6382.89 69.1

6 (3, 0, 0) 7853. 7710.12 142.88

7 (1, 1, 2) 9205.86 9043.54 162.32

Symmetry B

2 (0, 0, 1) 2787.92 2767.01 20.9

3 (0, 1, 1) 3956.21 3912.58 43.6

4 (1, 0, 1) 5373.98 5296.17 77.8

4 (0, 2, 1) 5105.44 5041.08 64.36

5 (1, 1, 1) 6533.37 6434.97 98.4

6 (2, 0, 1) 7899.8 7740.21 159.6

7 (0, 1, 3) 9376.05 9194.14 181.9

T2
16O

Symmetry A

1 (0, 1, 0) 995.37 987.4 8.0

2 (1, 0, 0) 2233.9 2213.22 23.93

2 (0, 2, 0) 1977.9 1947.87 30.03

3 (1, 1, 0) 3223.3 3204.46 18.84

3 (0, 3, 0) 2946.2 2880.18 66.02

4 (0, 0, 2) 0 4607.84 —

4 (2, 0, 0) 0 4364.42 —

4 (1, 2, 0) 4199.2 4146.06 53.14

4 (0, 4, 0) 3899.3 3783.65 115.65

Symmetry B

2 (0, 0, 1) 2366.61 2335.3 31.31

3 (0, 1, 1) 3354.3 3298.37 55.93

4 (1, 0, 1) 0 4444.86 —

4 (0, 2, 1) 4330.2 4244.07 86.13
aThe experimental values were taken from [24,25].
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designed to describe the rotations and vibrations for non
rigid molecules. The potential energy function is ex-

panded in terms of the Morse variable for the stretches,

where the coefficients are in turn functions of the

bending variable [50,51]. The ro-vibrational energies and

wave functions are obtained by diagonalization of a

matrix representation of the Hamiltonian. The basis

functions used are products of rotation–contortion

functions for the bending coordinate and Morse oscil-
lators for the stretches. On the basis of the above dis-

cussion we remark that our description represents a way

to include in a systematic fashion the Morse matrix el-

ements in an algebraic framework, which represents a

simpler approach to carry out the calculations as well as

to establish the relevant interactions involved in the

conservation of the polyad. The use of the suð2Þ repre-
sentation may be particularly relevant for more complex
molecules, where other models are more difficult to ap-

ply. In this work we have taken the approximation (44)

and (47) up to second order, but the next order terms

may be included. We believe, however, that a more

promising approach to improve the description is the

breaking of the polyad pseudoquantum number and/or

increasing the order of the expansions in the kinetic and

potential energies.
From Table 3 we identify two sets of states with

particularly large deviations. The states ð2; 4; 0Þ; ð0; 4; 2Þ;
ð1; 7; 0Þ, with symmetry A, and ð1; 5; 1Þ; ð0; 3; 3Þ, with

symmetry B. The deviation of these states are of the

order of 9–14 cm�1, which is in contrast to the deviation

of 5 cm�1 obtained in the fit. Most of these states have a

large number of bending quanta, which at first suggests

that either the Morse potential for the bending mode is
not appropriate to describe the spectrum or that addi-

tional interactions involving pure bending and bending-

stretching interactions should be included. We note,

however, that the energies of these states are similar to

the energies of adjacent polyads. In the subspace with

symmetry A, the state ð1; 7; 0Þ of polyad 9 overlaps with

the states ð0; 4; 2Þ; ð2; 4; 0Þ, and ð1; 2; 2Þ of polyad 8. A

similar situation occurs in the B subspace, where the
energy of the state (0,7,1) of polyad 9 resembles the

energy of the state (3,0,1) of polyad 8. Same situation is

present in the case of the states ð1; 1; 3Þ and ð1; 6; 1Þ. It is
thus clear that an interaction among these states must be

present, since the overlap of polyads increases for higher

energy regions of the spectrum. We are currently ex-

ploring polyad-mixing by taking into account all the

terms involved in the expansions (44) and (47). The
states discussed above may be an interesting test for this

approach.

In order to test the reliability of the force constants,

we have obtained the kinetic energy constants xi pre-
dicted for the isotopes H2

17O, H2
18O, D2

16O, and

T2
16O. In Table 6 we present the predicted energies as

well as their comparison with the observed energies.
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From the general quality of the predictions we are led to
believe that the potential surface defined by the con-

stants in Table 5, provides a reliable physical description

of the systems H2
17O, H2

18O, consistent with the ap-

proximations involved. In contrast, for the isotopes

D2
16O, T2

16O, where a large percent of change in mass is

involved, the predictions are poor. The approximations

considered in the description are too strong to take into

account large mass changes. To improve the description
is clear that polyad mixing must be taken into account,

although another ingredients, like adding terms in the

Hamiltonian expansion and taking into account rota-

tion–vibration interactions, must be eventually consid-

ered [25].
6. Conclusions

In this work, we have presented a local mode de-

scription of the vibrational excitations of H2
16O. The

model we consider uses a local Morse basis for both

stretching and bending degrees of freedom, and is based

on the expansion of the momenta and Morse coordi-

nates in terms of creation and annihilation operators of

the Morse functions. This approach represents a con-
siderable improvement to both the Child Lawton Model

and the vibron model approximation.

Using an expansion of the Hamiltonian up to fourth

order terms in the coordinates and momenta we have

carried out a polyad conserving fit to 72 experimental

levels with an rms deviation of 5.0 cm�1. In contrast to

the harmonic and vibron model approximation where

the preservation of polyads restricts the number of
computed force constants, we have calculated the whole

set of force constants associated to the potential up to

forth order. This is possible because the expansions (44)

and (47) take into account in the Hamiltonian higher

order terms, which are a consequence of considering the

Dv ¼ 0;�2 Morse matrix elements in addition to the

leading term Dv ¼ �1. In order to make clear the order

of approximation which is needed to determine the force
constants, an expansion of the Hamiltonian in terms of

symmetry adapted tensors has been developed. These

tensors, in addition to the irreducible representations,

are characterized by their order, nature (coordinates or

momenta), and type of degree of freedom (stretching or

bending). For small oscillations the tensors associated to

the coordinates and momenta reduce to the tensors

previously introduced in the context of the vibron model
approximation [46].

An important ingredient of our description is the

expansion of the Hamiltonian in terms of the Morse

variable y ¼ 1� e�bq, which allows to establish a one to

one correspondence with the traditional local models in

configuration space [15]. The algebraic framework,

however, has the advantage of simplifying the compu-
tation of matrix elements, establishing a specific way to
approximate the results of the exact Morse matrix ele-

ments. In this manner we are able to determine a natural

order for polyad mixing, thus improving precision while

maintaining the simplifications that arise from the al-

gebraic approach, which can be readily extended to

more complex molecules. In the latter situation, how-

ever, further work is needed to assess the relevance of

these methods.
The physical content of the generated potential sur-

face was tested by comparing the predicted energies for

the isotopes H2
17O, H2

18O, D2
16O, and T2

16O with their

experimental spectrum. With the exception of D2
16O

and T2
16O, where a large percentage of change in mass is

involved, the surface is reliable. It seems that in this case

a higher order potential surface is needed or the rotation

vibration interaction must be taken into account, al-
though additional effect may be important.

Several improvements to the model can be consid-

ered. According to the discussion concerning the overlap

of polyads, the natural step to improve the description is

to proceed to break the polyads. The algebraic approach

presented here is particularly suitable to investigate the

effects because it allows to carry out the polyad breaking

in a systematic fashion. A problem which arises is con-
cerned with the dimension of the space. A limited space

must be considered, whose criteria to establish its di-

mensions is the convergence of the description. A work

dealing with this situation is in progress [19]. A fact that

should be kept in mind is that the states which are ex-

pected to interact by breaking the polyads involve high

number of bending quanta. Two effects may thus be

important to improve the description, on one hand the
polyad breaking, but on the other hand the use of a

Morse potential for the bending coordinate may not

provide the best description. Both effects must be in-

vestigated simultaneously. Finally, one could also cal-

culate infrared absorption intensities and compare the

results with experiment, similarly to the case of the vi-

bron model approximation [18]. This analysis will be

included in the work on polyad breaking [19].
This analysis involve only the vibrational degrees of

freedom, but in a more complete study, the rotation–

vibration interactions should be included. A rotation–

vibration description, however, represent a project by

itself. A Hamiltonian including the most important in-

teractions must be proposed and a new code must be

written to carry out the diagonalization. This work is in

progress.
The present approach in completely general. Once we

have constructed the Hamiltonian in configuration

space in terms of local coordinates and momenta, the

substitution of the expansions (44) and (47) gives rise to

an algebraic representation that allows to carry out

successive approximations for the Morse matrix ele-

ments. The physical interpretation of the interactions is
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carried out with the help of the tensorial formalism in-
troduced in Section 4.

Finally, we should remark that the goal of this con-

tribution is to analyze the consequences and perspectives

of using the expansions (44) and (47) in the framework

of a local model based on interacting Morse oscillators.

This approach does not intend to improve the accuracy

of previous descriptions. The importance of this work is

based on the possibility to be applied to complex situ-
ations where the existing numerical methods are not

effective. For example, the vibron model approximation

has been applied to triatomic molecules, but also to

medium size molecules like methane [52]. This analysis

could not have been possible without previous studies of

simple systems [46]. In the present case, the Hamiltonian

(71), which is impossible to write down in more complex

situations, is fundamental to interpret the different in-
teractions derived from the use of the expansions (44)

and (47). In the latter case the program should be

adapted to interpret the interactions according to the

tensorial formalism of Section 4.
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