The Rotational Spectrum of Water between 650 and 50 cm⁻¹ H₂¹⁸O and H₂¹⁷O in Natural Abundance¹

F. WINTHER

Abt. Chemische Physik, Institut für Physikalische Chemie der Universität Kiel, D 23 Kiel, West Germany

In the far infrared spectrum of water, 121 H₂¹⁸O and 48 H₂¹⁷O pure rotational lines have been identified. From the line frequencies and a minimum number of literature values of near infrared rotation-vibration transitions and lines from microwave spectra, the ground-state energy levels have been calculated up to J = 12 and 11, respectively. For low J levels, the agreement with earlier calculations from other microwave lines and near infrared results is within the experimental error, but deviations up to 0.6 cm⁻¹ are found for high J, high K_a levels.

INTRODUCTION

The far infrared spectrum of natural water is of considerable interest, because rotational lines of the various isotopic species of water are responsible for most of the atmospheric absorption in the region below 650 cm⁻¹. The transitions of the H₂¹⁶O molecule are quite well known, partly from direct measurement (1-4), and partly as calculated from the ground-state levels of Flaud *et al.* (5) with an accuracy of a few thousandths of a cm⁻¹.

Contrary to this situation, no systematic investigation of the $H_2^{18}O$ and $H_2^{17}O$ rotational spectra has been made above 40 cm⁻¹. A few rotational lines of both isotopic species have been reported in the literature, generally in infrared test spectra (e.g., $(\delta-8)$) without frequency values or assignments. Two (unidentified) $H_2^{18}O$ line frequencies have been given: $3_{21} \leftarrow 3_{12}$ at 37.913 cm⁻¹ (9) and $7_{07} \leftarrow 6_{16}$ at 138.431 cm⁻¹ (2). (Here and in the following the quantum numbers are given in the order J, K_a , K_c , for the water molecule equivalent to J, K_{-1} , K_{+1} .) In the region below 30 cm⁻¹, 12 and 7 lines, respectively, of $H_2^{18}O$ and $H_2^{17}O$ have been measured using microwave techniques (see, e.g., (11, 12)). After completion of the present work, Fleming and Gibson (10) published frequencies and assignments of 12 $H_2^{18}O$ lines and 1 $H_2^{17}O$ line between 13 and 40 cm⁻¹. Their spectra were obtained with a Michelson-type interferometer.

For low quantum numbers, the ground-state levels of $H_2^{18}O$ have been calculated several times from rotation-vibration bands, most recently by Toth and Margolis (13). In their paper earlier determinations are listed for comparison. De Lucia and Helminger (12) have calculated a set of energy levels for $H_2^{17}O$ based upon the microwave lines

¹ Presented in part at the IVth Colloquium on Molecular Spectroscopy, Tours, 1975 and at the IVth International Seminar on High Resolution IR Spectroscopy, Liblice, 1976.

Copyright © 1977 by Academic Press, Inc. All rights of reproduction in any form reserved,

						H_2^{18} 0 Line	5								verl	apping Line	5	
<u> </u>	K	K'	٦.	Ka	Kč	Observed	Calc Obs.	Wt.	Inten.	<u> </u>	Ka	K,	J.,	Ka	K.	Pos./Sep.	Isot.	Int.Rat.
Z	2	1	2	1	2	54.498	-0.010	2	37	8	2	6	8	1	1	54.526	HDO	37/1
5	3	2	5	2	3	60.562	0.011	1	32									
3	2	2	3	1	3	63.192	-0.004	1	19	3	3	1	4	0	4	63.167	н ¹⁶ 0	1/1
5	z	3	4	3	2	65.878	-0.012	2	5.9	9	2	7	9	1	8	65.909	ноо	1/8
4	1	3	3	2	2	70.050	-0.003	2	10									
3	3	0	3	2	1	71.523	-0.014	2	43									
3	1	3	2	٥	2	71.658	-0.017	2	55									
5	1	4	5	0	5	74.322	-0.008	1	44									
4	2	3	4	1	4	74.793	-0.001	1	61									
7	2	5	7	1	6	78.757	0.003	1	16									
4	0	4	3	1	3	79.665	0.001	2	61									
4	3	2	4	2	3	80.671	0.002	4	58									
4 1	1	4	3	٥	3	87.491	0.002	8	239									
2	2	1	1	1	0	91.449	0.003	9	206									
2	2	0	1	1	1	98.064	-0.029	2	66	7	1	7	6	0	6	98.131	HD0	5/1
5	1	4	4	2	3	99.750		4	72	12	4	8	12	3	9	99.7763	H2 ¹⁶ 0	8/1
						(99.747)	-0.007										-	
5	0	5	4	1	4	100.198		13	255	10	3	7	10	Z	8	100.1809	H2 ¹⁶ 0	1.4/1
						(100.211)	0.008										-	
8	2	б	8	1	7	100.751	-0.020	2	3.3									
4	4	0	4	3	1	101.965	0.007	2	12									
4	4	1	-4	3	2	103.345	0.009	5	36	٢5	4	2	5	3	3	103.952	H ¹⁸ 0	7/1
5	1	5	4	0	4	104.005		10	94	{ 10	7	7	9	5		104.0389	"2 _{H16}	0 1.6/1
•						(103.984)	-0.001			(10	•	'	,	3	*	104.0303	-	0 1.0/1
6	2	5	6	1	6	105.078		11	43	9	4	5	8	5	4	105.0690	н ¹⁶ 0	1/4
•						(105.115)	-0.009										-	
7	4	4	7	3	5	109.176	-0.035	2	5.3									
3	2	z	2	1	1	109.973	-0.005	9	81	8	I	8	7	0	7	110.046	HDO	7/1
6	0	6	5	1	5	119.631	0.001	9	90	6	Z	5	5	1	4	119.639	HDO	9/1
6	1	6	5	0	5	121.305	-0.004	17	279									
4	z	3	3	1	2	125.738	0.001	20	249									
6	5	1	6	4	2	127.907	0.025	1	5,5	7	2	6	6	1	5	127.920	HDO	1/1.6
5	5	C	5	4	1	128,901	-0.007	3	18	67	5	3	7	4	4	129.105	_H 18	0 4,8/1
6	5	2	6	4	3	129.044	0.004	3	17	ł÷	1	ŝ	,	D	7	129.0829	H16070	10) 2.3/1
,	2	5	6	3	4	135.056	0.013	4	21	C /	•	v	'	v	'			10/ 1.0/1
7	0	7	6	1	6	138.434	-0.000	25	233	4	3	2	3	2	1	138.422	HDO	11/1
8	1	7	8	D	8	138.572	0.011	4	5.6									
7	1	7	6	0	6	139.162	-0.020	1	79									
5	2	4	4	1	3	139.405	-0.038	1	75	7	1	7	6	0	6	139.445	H270	5/1
8	2	7	8	ı	8	140.959	-0.044	1	17								•	
3	3	1	2	2	0	147.309	0.003	15	159									
3	3	0	2	2	1	148.833	-0.001	8	483									
6	2	5	5	1	4	152.090	0.003	15	182	10	3	8	10	2	9	152.029	H ¹⁸ 0	6.8/1
•	-	-	-	-						6	6	O	6	5	1	(-0.038)	H180	3/1
6	6	1	6	5	2	153.120	-0.015	3	6.4	18	6	3	8	5	4	153,066	1,80	2/1

T a b l e I Assignment and Positions (cm^{-1}) of H_2^{18} O Rotational Lines

and upon higher-order centrifugal distortion constants taken from the other water isotopes. $H_2^{17}O$ lines have been observed in rotation-vibration bands (14-16), but some assignments were uncertain, and energy levels from combination differences of these infrared lines have not been published.

A selection of $H_2^{16}O$ lines in the spectra which are the basis of this work have been used for calibration of the spectrometer. To avoid errors in the calibration due to overlapping lines a complete assignment had to be made, also including rotational transitions of HDO and of the (010) vibrational state of $H_2^{16}O$. These and the ground-state lines of $H_2^{16}O$ will be the subject of another paper.

	_					H2 ¹⁸ 0 Line	s	-						0	verl	apping Line	5	
J.	K'a	K,	J*	Ka	K.	Observed	Calc Obs.	Wt.	Inten.	. J	• •	(K'	J″			Pos./Sep.	Isot.	Int.Rat.
8	٥	8	7	1	7	156.933	-0.005	3	57	11	1	10	10	2	9	156.901	HDO	29/1
8	1	8	7	0	1	157.222	0.001	12	172	8	C	8 (7	1	7	157.239	H270	17/1
7	2	6	6	1	5	165.426	-0.006	8	44								-	
4	3	2	3	2	1	168.490	0.005	25	400									
4	2	2	3	1	3	172.900	-0.007	11	51	8	1	L 7	7	2	6	172.878	H2 ¹⁸ 0	2/1
9	0	9	8	1	8	175.263	~0,002	9	109								-	
9	1	9	8	0	8	175.384	-0.001	6	36									
8	2	7	7	1	6	180.218	0.004	6	87	11	4	17	10	5	6	180.2893	H210	1/1
5	3	2	5	0	5	181.680	0.007	2	6.9								-	
5	3	3	4	2	2	186.135	0.006	14	95									
9	1	8	8	2	7	192.852	-0.001	11	48									
9	2	8	8	1	7	196.423	-0.007	5	17									
9	2	7	8	3	6	196.505	-0.008	1	16									
6	3	4	5	2	3	200.210	0.019	15	179	۶ 6	4	1 2	5	3	3	200.305	ноо	30/1
4	4	1	3	3	0	200.337	0.003	30	545	1 11	8	3 3	11	7	4	200.3617	H ¹⁶ 0	32/1
4	4	0	3	3	1	200.578	0.004	20	182	•							2	
5	3	2	4	2	3	207.113	0.000	29	286									
7	3	5	6	2	4	211.519	0.010	10	34								10	
11	0	11	10	1	10	211.668		10	31	11		1 11	10	0	10	(0.021)	н <mark>18</mark> 0	3/1
						(211.662)	-0.010											
10	1	9	9	2	8	211.813	0.014	2	8.4									
10	2	9	9	1	8	213.499	0.007	5	26									
8	3	6	7	2	5	221.255	0.003	3	54									
5	2	3	4	1	4	221.347	-0.015	4	96	8	2	35	7	2	6	221.369	HDO	17/1
5	4	2	4	3	1	223.850	-0.002	6	129									
5	4	1	4	3	2	225.501	D.007	27	390									
12	1	12	11	0	11	229,748		6	4.5	12	0	12	11	1	11	(0.009)	н <mark>18</mark> 0	3/1
						(229.750)	-0.002											
11	1	10	10	2	9	230.288	-0.010	2	12	12	1	1 12	11	0	11	230.216	H ₂ 170	3.6/1
10	3	8	9	2	7	242.089	0.005	6	12									
4	Э	2	3	0	3	242.957	0.002	6	23									
6	3	3	5	2	4	244.393	0.055	1	54								10	
5	5	0	4	4	1	251.028		50	375	5	1	51	4	4	0	(-0.033)	H ² B0	3/1
						(251.036)	0.011											
6	4	2	5	3	3	251.583	0.016	20	80								16	
7	4	4	6	3	3	263.275		28	40	4	4	4 1	4	1	4	263.2695	H200	1/4.8
						(263.300)	-0.006											
6	5	2	5	4	1	275.288	0.004	25	231									
6	5	1	5	4	2	275.579	0.000	14	77									
8	4	5	7	3	4	277.087	0.008	12	53									
5	3	3	4	0	4	279.351	0.017	2	11									
9	4	6	8	3	5	287.152		6	7.1	10	9	56	9	4	5	287.167	HDO	3/1
						(287.147)	0.013											
7	3	4	6	2	5	289.100	0.005	9	76									

TABLE I-Continued

EXPERIMENTAL DATA

A modified Beckman/RIIC FS-720 Michelson interferometer was used for obtaining the water spectra. The instrument and the computational procedures have been described in (17, 18). Seven separate spectra were considered, each of these being the average of 4 to 11 Fourier transformations of single-sided interferograms run under identical conditions. The resolution of the spectra was in the range 0.08–0.15 cm⁻¹, and different pressures between 0.5 and 17.8 Torr were employed in a 3 m cell at $23 \pm 2^{\circ}$ C. All regions of the spectrum were recorded at least once at maximum resolution. The spectra were calibrated independently with H₂¹⁶O frequencies known to better than ± 0.005 cm⁻¹ (99% confidence interval), calculated from the levels of Ref. (5). Further details of the calibration procedure and a reproduction of the whole spectrum will be

						H2 ¹⁸ 0 Line	Table	<u> </u>	conti	lued									
- <u>J'</u>	κ.		J*			0bserved	Calc Dbs.	Wt.	Inten		.			1.0		eri K	Pos./Sep.	lsot.	
	_	K,		K,	K						J .	K	`c		K,	×ç.	Pos./Sep.	ISOL	. Int.Rat.
10	4	7	9	3	6	294.654	0.007	3	7.8	ſ	7	7	L	6	6	0]			
7	5	3	6	4	2	298.775		12	41	1	7	7 (1	6	6	ı Ì	298.738	HDO	4/1(E)
~	~		5	5	٥	(298.784)	0.028			-					-				
6	6	1	2	2	U	299.514		29	176		6	6 (,	5	5	1	(0.004)	н <mark>18</mark> 0	3/1
-	-			4	•	(299.513)	-0.009												
7 12	5 4	2 9	6 11	4	3 8	300.173 308.190	0.007	26 1	124										
4		1	3	1	8 2	308.190	0.035	1	2.4	{}	7	1 10	5	17	0 1	7	309.7855 309.7891	116.	- / . /
-	-	•	3	1	2	303.700	0.000	1	2.7	-				17	1 1	7		J"2 V	3/1(E)
8	4	4	7	3	5	313.693		15	19	{ }	8	7	2	?	6 6	$\frac{1}{2}$	313.714	KDO	2.7/1(E)
						(313.685)	0.000				0	'		'	•				
8	5	4	7	4	3	320.674	0.006	15	57										
6	3	4	5	0	5	321.341	0.002	10	33										
7	6	1	6	5	2	324.112		5	94	;	7	6 2	2	6	5	1	(-0.044)	H280	3/1
						(324,122)	-0.032											•	
8	5	3	7	4	4	325,302	0.019	3	19										
9	5	5	8	4	4	339.574	0.016	2	7.4										
8	3	5	1	2	6	340,732	0.005	1	10		,	, ,		6		•	(-0.0006)	u180	3/1
7	7	0	6	6	1	345,840		24	59	₹ '	·	7 1 4 (•	•	6 1	•			
						(345:803)	-0.135			1	ب	4 ()	3	1	3	345.8556	H200	{£}1/2.5
8	6	3	7	5	2	348.229	-0.011	13	44										
8	6	2	7	5	3	348.472		13	15		9	6 3	3	9	з	6	348.4647	H ¹⁶ 0	1/3.Z
						(348.495)	-0,028											2	
6	4	3	5	1	4	352.675	0.009	5	15										
9	4	5	8	3	6	353.483	0.017	2	21										
7	3	5	6	0	6	367.923	0.000	2	7.8										
8	7	2	7	6	1	370,508		6	27	1	8	7 1	1	7	6	2	(0.006)	H ¹⁸ 0	3.3/1
-		-				(370.506)	-0.130											-	
9	6	4	8	5	3	371.700	-0.014	2	6.0	1	7	3 14	1	16	4 1	3	371.6322	H ¹⁶ 0	14/1
9	6	3	8	5	4	372.678	0,005	6	18									~	
10	5	5	9	4	6	381,783	-0.052	1	2.7										
8	8	1	7	7	0	389.818	-0.575	7	15	4	в.	8 ()	7	7	1	(0.0001)	н ¹⁸ 0	3/1
10	6	5	9	5	4	393.841	0.003	1	6.5	٢.	9	7 :		8	5	2	(-0.041)		3/1
9	7	2	8	6	3	394.945		3	11	4									
						(394.955)	-0.123			(1	6	5 1	2	15	4 1	1	394.9360	H2°0	(1)20/1
9	3	6	B	2	7	397.887	0.005	1	12	r :	•	8 3	,	8	7	1	(0.001)	H ¹⁸ 0	3/1
9	8	1	8	7	2	414.680		2	6.1	{							414.727		
						(414.674)	-0.568			L:	B	2 (5	7	1	1	414./2/ 1	2-0(0)	[0](2)//1
8	4	5	7	1	6	414.937	0.019	2	13										
11	5	6	10	4	7	416.351	0.070	1	2.4										
10	7	4	9	6	3	418.730	0.041	1	4.1										
9	9	0	8	8	1	429.792	-0.025	1	2.9		9	9	L	8	8	0	(-0.0000)) H ¹ 20	3/1
11	7	4	10	6	5	442.816	-0.046	1	1.3										
11	4	7	10	3	8	453.937	-0.012	1	1.9									16	
9	4	6	8	1	7	454.979	0.019	1	2.6		8	4 3	5	7	1	6	454,9714	H200(0	010) 1/1
9	z	7	8	1	8	457.195	0.014	2	7.2										
8	5	4	7	2	5	465.882	0.054	1	3.4										
9	3	7	8	D	8	470,281	0.000	1	2.3										
10	4	7	9	1	8	499.707	-0.005	1	3.6										
7	5	Z	6	2	5	500.733	0.038	1	1.9										
11	3	8	10	2	9	520,198	-0.068	1	1.6										
	3	8	9	0	9	524.059	-0.017	2	3.2										

Table I. continued

presented in a succeeding report. Three short sections of the 17.8 Torr spectrum containing some $H_2^{18}O$ and $H_2^{17}O$ lines are given here as Fig. 1.

Most of the line frequencies were determined by the polynomial fit program described in (17), but all were checked manually for obvious distortions. Some partly resolved lines were separated graphically on a large scale plot. The digitizing interval of spectra extending to >400 cm⁻¹ was 0.038 cm⁻¹ and of those of the low-frequency region, 0.019 cm⁻¹. Each line in each spectrum was weighted according to its appearance as follows: 1, in noise, uncertain, ± 0.04 cm⁻¹; 2, about two times the mean noise level, $\pm 0.03 \text{ cm}^{-1}$; 3, weak but clear, $\pm 0.025 \text{ cm}^{-1}$; 5, medium, slight distortions, $\pm 0.01 \text{ cm}^{-1}$; 10, strong, undistorted, $\pm 0.005 \text{ cm}^{-1}$ (if a single line). The mean frequencies of Tables I and II were calculated accordingly from the spectra. The total weight (Wt.) of each line is given in Tables I and II, also as a rough indication of the line intensity, which was considered to be too uncertain to justify a more precise evaluation. Because the region below 150 cm⁻¹ was not recorded at maximum pressure, it should be noticed that

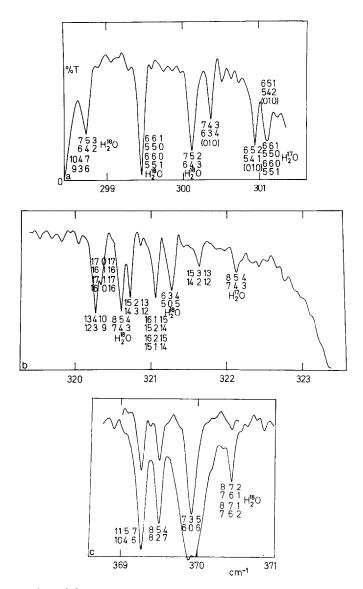


FIG. 1. Three sections of the room temperature water spectrum showing some $H_2^{18}O$ and $H_2^{17}O$ lines in natural abundance. The quantum numbers J, K_a , K_c are given in this order, with the upper state above the lower one. Lines without isotopic specification are due to $H_2^{16}O$ in the ground or (010) state. Path length = 3 m, pressures 17.8 and 5 Torr, and resolution 0.08 cm⁻¹.

<u> </u>						H ¹⁷ O Line		(Cm	-) of F	2				L11 (apping Line	5	
_ <u>J</u> .	K'a	K'c	J"	Kä	K.	Observed	Calc Obs.	Wt.	Inten.	J	' K,	ί K	J		K	Pos./Sep.	Isot.	Int.Rat.
5	3	2	5	2	3	61.437	-0.051	1	5.8									
3	1	3	2	0	2	71.893	0.014	1	9.9									
4	2	3	4	1	4	75.184	-0.047	1	11									
2	2	1	1	1	0	91,958	0.001	2	37									
4	4	1	4	3	2	104.414	-0.011	1	6.6									
6	2	5	6	1	6	105.383	-0.017	2	7.8									
6	0	6	5	1	5	119.861	-0.022	2	16									
6	1	6	5	0	5	121.576	0.011	7	51	9	1	9	8	1	8	121,584	HDO	34/1
4	2	3	3	1	2	126.335	-0.003	5	45									
3	2	1	2	1	2	132.204	0.019	3	36									
7	0	7	6	1	6	138.684	0.012	4	42									
3	3	1	2	2	0	148.109	0.023	3	29									
3	3	0	2	2	1	149.623	0.003	10	88									
6	2	5	5	1	4	152.725	0.007	4	33									
7	2	6	6	1	5	165.988	0.040	2	8.0									
4	3	2	3	2	1	169.383	-0.012	4	72									
9	0	9	8	1	8	175.609	0.004	5	20									
4	3	1	3	2	2	176.705	-0.009	5	25									
8	2	7	7	1	6	180.761	0.007	3	16	-			8		8	187.0743	"16 ₀	2/1
5	3	3	4	2	2	187.096		7	17	7	4	3	8	1	•	187.0743	"2 0	2/1
		_	_		-	(187.107)	-0.005											
9	1	8	8	2	7	193.157	-0.010	1 2	8.7 11	10	0	10	9		9	(-0.054)	µ170	3/1
10	1	10	9	0	9	193.943	0.010	2	11	10	U	10	,	1	,	(-0.034)	"2 0	5/1
	-		-	•		(193.956)	-0.018 0.001	7	32									
6	3	4	5	2	3	201.276	0.002	14	32 99									
4	4	1 0	3	3 3	0 1	201.443 201.683	-0.005	6	33									
	4		3 4	2	3	201.083	-0.001	10	52									
5	3	2		1	3 10	207.743	-0.001	10	5.5	∫'n	1	11	10	۵	10	(0.023)	H_2^{17} 0	3/1
11	0	11	10	1	10	(212.103)	-0.018	•		{];	3	1	2	ō	2	212,169	H180	3/1
5	2	3	4	1	4	221.481	0.012	1	17								2	
5	4	2	4	3	1	224.995	-0.004	3	23									
5	4	1	4	3	2	226.597	-0.002	7	71	8	4	5	7	3	4	226.603	HDO	10/1
10	3	8	9	z	7	243.069	0.028	1	2.2									
6	3	3	5	2	4	244.881	-0.042	1	9.8									
6	4	3	5	3	2	246.526	0.008	11	42									
5	5	0	4	4	1	252.402		20	68	5	5	1	4	4	0	(-0,031)	H270	3/1
•	•	•			-	(252.409)	0.008										-	
6	4	2	5	3	3	252.627	0.006	2	15									
7	4	4	6	3	3	264.663	0.001	4	7.2									
6	5	2	5	4	1	276.682	0.006	6	42									
6	5	1	5	4	2	276.966	-0.002	3	14									
7	4	3	6	3	4	281.235	0.000	3	23	Г 6	۶	1	5	4	2	301,1834	H160/01	0) 2.5/1
6	6	1	5	5	0	301.157		11	32	<u>۲</u>								
						(301.141)	0.006			ί6	6	0	5		1	(0.004)	H2.0	3/1
7	5	2	6	4	3	301.581		3	22	7	3	4	6	2	5	301.5940	H200(01	1.6/1
						(301.573)	-0.016											
8	4	4	7	3	5	314.334	0.009	1	3.4									
8	5	4	7	4	3	322.202	0.005	3	10	[7	5	2	6		3	325.7850	H210(01	1/1.4
7	6	1	6	5	2	325.744	0.014	10	17	٦,	6	z	6	5	1	(-0.041)	H270	3/1
8	5	3	7	4	4	326.637	0.015	2	3.5	-	7	1	6	6	0			3/1
							0 008	3	11					Ð		(-0.001)	"2 V	3/1
7	7	0	6	6	1	347.657	0.000				-	-						
7 8	7 7	0 2	7	6	1	372.370	0.015	3	5.0	8	7	1	7	6	2	(0.006) (0.000)	H2170	3.3/1

T a b l e II Assignment and Positions (cm^{-1}) of $H_2^{17}O$ Rotational Lines

the total weight of the lines here is lower than if it were corresponding to their actual intensity.

Tables I and II list all observed lines of $H_2^{13}O$ and $H_2^{17}O$, respectively. Some lines are unresolved doublets or are overlapped by lines due to other isotopic species. To obtain more accurate transition frequencies from such blended lines, it was assumed that

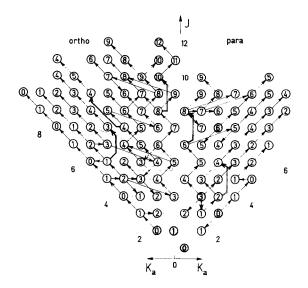


FIG. 2. Schematic representation of the ground-state rotational levels and far infrared transitions of $H_2^{18}O$. Each level is given as a circle with the K_c quantum number inside. J and K_a are ordinate and abscissa, respectively. Dotted lines indicate microwave measurements and double lines represent combination differences, both from Table V. All other lines in the scheme show far infrared transitions observed in this work and listed in Table I. Lines without arrowheads have not been used in the calculation of Table III. It should be noted that the arrows show the direction of calculation, not that of the transition of the molecule.

the observed line position was the mean of the frequencies of the components, weighted by their respective intensities. This has been verified for doublets recorded at spectral slit widths larger than five times the separation (21). The method is just approximate

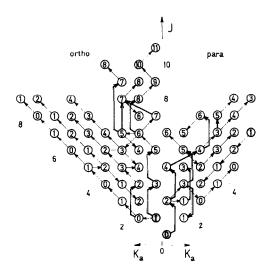


FIG. 3. Schematic representation of the ground-state rotational levels and far infrared transitions of $H_2^{17}O$ (see caption of Fig. 2).

	n ¹⁷ n
111	of 4180
a b l e	n slaval
۲	Enerav
	e te

	н <mark>1</mark> 60	H270	م'	•••	H	н <mark>1</mark> 80 Н2	H210	<u>_</u> 0
fork	This Work Ref. (13)	This Work	This Work Ref. (<u>12</u>)	J K K	This Work	Ref. (<u>13</u>)	This Work Ref. (<u>12</u>)	Rof. (12)
0000	0.000	0000	0.000	827	881.925	881,900	883.630	883.664
23, 755	23.756	23,773	23.773	B 2 6	980.236	980.230		981.504
36.720	36.750	36.930	36.931	836	1001.688	1001.709		1003.791
42,023	42.024	42.187	42,187	8 3 5	1047.340	1047.317		1048.662
	010 07			845	1116.644	1116.620		1119.484
116.64	066.69	70.005	70.004	8 4 4	1126.455	1126.480	1128.965	1128,935
78.975	78,995	79.210	79,226	8 5 4	1246.379	1246.369	1250.499	1250.505
94.788	94.790	94.972	94.970	853	1247.167	1247.20	1251.310	1251.298
133.475	133.480	134.145	134.144	c.	1309.444	1399.74		
134.782	134.785	135.427	175.430	20 (0) 20 (0) 20 (0)	1399.465			
136.341	136.344	136.537	136.536	872	1574.716		1582.226	
<u>141.568</u>	141.577	141.899	141.901	881	1768.823		1778.292	
172.885	172,888	173.109	173,109	0 0 0	016 265	916.250	040.040	
204.761	204.763	205.451	205.479	, a	01 01 010	916 300		
210.808	210.800	211.414	211.434	n ac 1 - 1 -	1074.777	1074.779	1076,788	
282.093	282,093	283.536	283.559	80 0 0 0 0 0	1075.909	1075.920		
282.306	282.304	283,768	283.765	9 2 7	1198.195	1198,190	1199.982	
221.233	221,237	221.624	221.618	937	1211.195			
223.832	223,830	224,282	224.302	936	1279.821	1279.800		
274.811	274.793	275.130	275.128	946	1334.476	1334.68		
298.624	298.629	299.444	299.436	9 4 5	1355,171	1355,19		
314.468	314.460	315.075	315.076	955	1466.029			
379.298	379.293	380.797	380.804	9 5 4	1468.615			
580.705	380.700	382.156	382.174	964	1618.867			
\$82.644	482.632	485.211	485,209	5 6 3	1619.057			
182.671	482,660	485.219	485.237	972	1794.400			
524.043	324.044	324.661	324.658	981	1989.389			
525.217	325.216	325.876	325.878	066	2198.615			
598.367	398.372	398.895	398.877	10 010		1109.808		
114.173	414.177	415.130	415,126	10 I 10	1109.809	1109.770	1112.046	
445.160	445.160	445.785	445.792	10 1 9	1287.722	1287.727		
				-				

	505.736	505.727	507.187	507.174	10 2 9		1433.061	
5 4 2	604.555	604.550	607.151	607.165	10 3 8	1440.304	1440.295	1443.051
5 4 1	504.799	504.796	607.395	607.403	10 3 7		1534.308	
5 5 1		733.673		737.629	4	1574.484		
550	733.690	733.678	737.620	737.632	10 5 5	1716.259		
606	444.848	444.860	445.737	445.717	10 6 5	1862.455		
616	445.347	445.355	446.237	446.243	10 7 4	2037.787		
615	541.182	541.183	542.048	541.996	TT 0 TT	1321.47L	1321.44	1324.149
625	550.457	550.447	551.620	551.610	01 1 11	1518.564	1518.55	
6 2 4	501.251	601.246		601.961	11 3 8	1608.473		
634	645.377	645.387	647.062	647.074	1 4 7	1894.242		
633	658.565	558.623	660,910	659.988	11 5 6	1990.835		
543	751.043	751.040	753.713	753.712	11 7 4	2305.272		
642	752.186	752.195	754.809	754.819			0, 535	
652	880.087	980,079	884.076	684.104	 	122.16GT	61.1661	
6 5 l	680.13 4	680.121	884.112	884.140	12 4 9	2110.003		
6 6 1	1033.203	1033.195	1038.761	1038.934				
660		1033.195		1038.934	The inder 11	The Mnderlined Levels Rave bear dred as to to to the the tot.		Botate Tot.
7 0 7	583.781	583.767	584.921	584.941	NTROFNO AUA	ATT DETINITY OF AN AVENUE TO TAME OF A AVENUE AVEN		
7 1 7	583.981	583.972		585.162				
716	701.707	701.697	702.869	702.888				
726	706.608	706.608	708.036	708.022	7			
7 2 5	780.433	780.440		781.381	44-00			
735	812.770	812.753	814.630	314.616				
7 3 4	839.557	839.561		840.868				
7 4 4	921,865	921.910	924.673	924.647	<u></u>			
7 4 3	925.705	925.698	928,296	928.301				
753	1050.970	1050.990		1055.082				
752	1051.215	1051.210	1055.285	1055.283				
762		1204.172						
761	1204.209	1204.186	1209,856					
771		1378,98						
1 7 0	1379.006	1378.98	1386.418					
8 0 8	740.914	740,930		742.401				
818	741.005	741.000	742.481	742.494				
	•				_			

TABLE III—Continued

as used here because the slit width dependence was left out, but the frequency corrections of Tables I and II are so small (generally $\leq 0.01 \text{ cm}^{-1}$) that the residual errors are less than the precision of the line positions. Exceptions are the lines of $H_2^{18}O$ $7_{44} \leftarrow 6_{33}$ (corr. 0.025 cm⁻¹) and $7_{70} \leftarrow 6_{61}$ (corr. 0.038 cm⁻¹), where the error of the correction may be as high as 50%. For $H_2^{16}O$, doublet separations such as, for instance, between $6_{61} \leftarrow 5_{50}$ and $6_{69} \leftarrow 5_{51}$ are well known (5). The calculated separations for the corresponding $H_2^{18}O$ and $H_2^{17}O$ doublets (19, 12) are almost unchanged from those of $H_2^{16}O$ so that the correction method described above may be applied with confidence, even where the absolute level height for $H_2^{18}O$ and $H_2^{17}O$ is uncertain. In Tables I and II the corrected frequencies are given in brackets below the observed ones.

The calculated frequencies of Table I are from Ref. (19). For those of Table II the empirical expression $\nu_{17} = (1 - 0.529)\nu_{16} + 0.529 \nu_{18}$ given in Ref. (14) has been used. (The indices of the expression refer to the corresponding oxygen isotope.) ν_{16} 's have been obtained from the levels of Ref. (5) and ν_{18} 's were taken from this work. The empirical expression was used for calculating the line positions of Table II because it yields precise predictions and because high J levels are missing from the list of Ref. (12). Where both calculation methods were applicable, the agreement is within the experimental error, except for the $6_{61} \leftarrow 5_{50}$ transition. The line is predicted from Ref. (12) to be at 301.302 cm^{-1} , whereas the empirical expression gives 301.147 cm⁻¹, much nearer the observed line at 301.157 (corr. 301.141) cm⁻¹.

The intensities (Int.) listed in Tables I and II in units of 10^{-23} cm⁻¹/molecules \cdot cm⁻² have been obtained from the intensities of the corresponding H216O lines as given in Ref. (20), multiplied by the isotopic ratios. For overlapping lines the positions (Pos.) have been taken from this work in the case of $H_2^{18}O$ or $H_2^{17}O$ lines, from Ref. (20) for HDO lines, and from Ref. (5) for $H_2^{16}O$ or $H_2^{16}O(010)$ lines. Where instead the separations (Sep.) of narrow doublets are given in brackets, they have been obtained from Ref. (19) or (12). The sign convention for the doublet separation is: Positive, when the main component is at lower frequency than the overlapping one. The approximate intensity ratio of the line of interest and overlapping lines is given in the last column

	Co	mpa	rison of E	nergy Leve	ls (cm ⁻¹)	Used for Ta	able III
				H18 H2	c		H170
J	ĸ	ĸ	Ref. (14)	Ref. (15)	Ref. (13)	Ref. (19)	Ref. (12)
1	0	1	23.756	23.759	23.756	23.7548	23.773
1	1	0	42.024	42.023	42.024	42.0233	
2	2	٥	134.785	134.784	134.785	134.7832	
3	1	3	141.576	141.581	141.577	141.5682	
6	5	1	- differen	ce to level	6 ₅₂		0.036
7	2	6	706,608	706.603	706,608	706,6032]

Table IV

The underlined levels have been used in this work - see text.

Isotopic	linn		- т	eve	1	6-	0117	101 51	ate	Lev	els	Combination	Lit.
lao topic Species	v ₁ v ₂ v		1	Ka.	ĸ	J	K		J"		K"	Difference	Ref.
·		<u> </u>											
H280	(0 0 1)	2	1	2	3	1	3	2	l	1	46.7803	(16)
	(0 0 1)	4	2	3	5	2	4	3	S	2	209.4120	(16)
	(0 0 1)	6	4	2	7	4	3	5	4	l	320.9064	(16)
	(001)	7	0	7	8	0	8	6	0	6	296.0663	(16)
	(100)	8	4	5	9	5	4	7	3	4	629.058 (1	3,14)*
	(0 0 1)	9	1	9	10	1	10	8	1	8	368,8065	(16)
М	ic rowav	Ð	11	ne:		6	1	6	5	2	3	0.1876	(11)
H270	(001)	1	0	1	2	0	2	0	0	0	70.006	(16)
	(0 0 1)	2	0	2	3	0	3	1	0	1	112.7640	(16)
	(0 0 1	}	2	1	2	3	1	3	1	1	1	104.969	(16)
	(0 0 1)	2	ı	ı	3	1	2	1	1	0	130,9222	(16)
	(0 0 1)	3	0	3	4	0	4	2	0	2	151.6183	(16)
	(0 0 1)	3	1	2	4	1	3	2	1	l	180.1589	(16)
	(0 0 1	}	4	0	4	5	0	5	3	0	3	188.1236	(16)
	(0 0 1)	4	ı	4	5	1	5	3	1	3	183.9777	(16)
	(010)	5	l	5	5	2	4	4	0	4	193.506	(15)**
	(0 0 1)	6	2	5	7	2	6	5	2	4	292.906	(14)
	(0 1 0)	6	2	4	7	3	5	6	3	3	154.620	(15)†
	(0 0 1)	7	l	7	8	1	8	6	1	6	296.2446	(16)**
	(0 1 0)	7	ı	6	8	2	7	6	2	5	332.036 l	8
	(0 1 0)	7	ı	б	8	2	7	7	о	7	298.684 🕇	(15) §
	(0 0 1)	8	2	6	9	2	7	7	2	5	418.601	88
	(0 0 1)	6	2	4	7	2	5	6	2	5	229.761 ∫	(14) ^{§§}
M	icrowav	e	Li	nes	:	1	1	0	1	0	l	18,4134	(12)
						2	1	1	2	0	2	24.9659	(12)
						3	1	3	2	2	0	6.4712	(12)
						5	l	5	4	2	2	10,8017	(12)
						6	l	6	5	2	3	0.4515	(12)

Table V

Additional Data (in cm⁻¹) Used for Table III

* Calculated from line 183 (13) and line 158 (14). Lines 960 and 1010 (14) also have (100) 845 as the upper level, but seem to be misassigned.

** The assignment of the (010) $5_{15} \leftarrow$ (000) 5_{24} line has been changed from 1503.739 to 1503.533 cm⁻¹, because the combination difference differed 0.2 cm^{-1} from the calculated value (12).

† The assignment of the (010) $6_{24} \leftarrow (000)$ 7_{35} line has been changed from 1392.250 to 1392.147 cm⁻¹. because of disagreement with the calculated combination difference (12). The change is confirmed by the combination difference $7_{35} \leftarrow 6_{15}$ (from line 540 (15)).

†† The assignment of the (001) 7_{17} ← (000) 8_{18} line has been changed from 3581.89324 to 3581.54970 cm^{-1} because of disagreement with the calculated combination difference (12).

§ The mean of the values 883.656 and 883.605 cm⁻¹ has been used for the 827 level of Table III.

§§ The sum of the combination differences has been used for the 927 level of Table III.

(Int. Rat.) of Tables I and II, in this order. For triplets, a (Σ) together with one of the figures indicates that the total intensity of a narrow doublet relative to the third component is given. Again, the intensities have been taken from Ref. (20).

Т	а	ь	1	е	٧I
---	---	---	---	---	----

Comparison of Energy Level Differences (in cm⁻¹)

							H218	0		
Մբբ յ	er K	Level K	Gr J'	oun K'	K '	ate J"		els K"	Combination Difference	This Work - Comb.Dif.
1	0	1	5	0	2	a	0	0	69.9272	-0,017
1	0	1*	2	1	2	1	1	0	36.9649	-0.013
1	1	ı	5	1	2	1	1	0	36,963	
2	0	2	3	D	3	1	0	ı	112,5828	0,004
2	1	2	3	1	3	1	1	ı	104.8194	0,029
2	1	1	3	1	2	ı	1	0	130.8596	0.003
2	1	1	3	1	2	2	1	5	93.8943	0.016
2	2	1	3	2	2	2	2	0	69.9728	0.005
2	2	0	3	2	1	2	2	1	77.3233	0.012
3	0	3	4	0	4	5	0	2	151.3068	0.016
3	ı	3	4	1	4	2	1	2	144.8396	0.017
3	1	3	4	1	4	3	1	2	50.9454	0.001
3	1	2	4	1	3	2	l	1	180.0144	0.009
3	2	2	4	2	3	2	2	1	165.1446	0.006
3	2	5	4	2	3	3	٥	3	162,2830	-0.001
3	2	2	4	2	3	3	2	1	87,8209	-0.006
3	2	1	4	2	5	2	2	0	179.6756	0.009
3	2	1	4	2	2	3	2	2	109.7034	0.004
3	3	1	4	3	2	3	3	0	96.9842	0,008
3	3	0	4	3	1	3	3	1	98.6068	0.006
4	0	4	5	0	5	3	0	3	187,7100	-0.009
4	1	4	5	1	5	3	1	3	183.648	0.000
4	1	3	5	ı	4	3	ı	2	225.4779	0.004
4	ı	3	5	ı	4	4	1	4	174.5318	0.004
4	2	2	5	2	3	3	0	3	308.8226	-0.004
4	2	2	5	2	3	3	2	1	234.3596	-0.008
4	2	2	5	2	3	4	2	3	146.5383	-0.002
4	3	2	5	3	3	3	3	1	218,5040	0,006
4	3	1	5	3	2	3	3	0	223.4214	0.009
4	3	ı	5	3	2	4	3	2	126.4369	0.001

RESULTS

The number of observed rotational lines of $H_2^{18}O$ and $H_2^{17}O$ was in both cases almost equal to the number of energy levels to be determined. Thus the levels listed in Table III were built up as illustrated in Figs. 2 and 3 from the line frequencies of this work and a minimum number of additional data of comparable accuracy from the literature. In Table IV different values of the levels which were used as starting points in the calculation are compared. These levels are hatched in Figs. 2 and 3 and the direction of arrows shows how the energy level scheme was developed. For $H_2^{17}O$ it was appropriate to connect two series of transitions by the calculated separation of levels 6_{51} and 6_{52} (12). It should be noted that generally the values in Tables I to VII have been calculated to four figures after the decimal point, but just three are given in the Tables. This may lead to insignificant numerical discrepancies.

Table V contains the additional information used for calculating Table III, mainly ground-state combination differences from Ref. (16). Some lines from $H_2^{17}O$ rotation-vibration bands had to be reassigned as specified in the footnotes of Table V. No systematic search for dubious assignments has been made, but the number of reassigned

4	4	0	5	4	1	4	4	1	122.1482		0.007
5	0	5	6	0	6	4	0	4	223.6131		0.002
5	1	5	6	1	6	4	1	4	221.5181		-0.003
5	2	4	6	2	5	4	2	3	251.8309	l	
5	3	2*	6	2	5	4	2	3	25 1. 8314	ſ	0,002
5	2	4	6	2	5	5	ο	5	226.4074		0.007
5	2	4	6	2	5	5	2	3	105.2942		0.003
5	2	3	6	2	4	4	2	2	286.7783		0.005
5	3	3	6	3	4	4	3	2	266.0911		-0.013
5	3	3	ú	3	4	5	3	2	139.6531	l	
6	3	3	6	З	4	5	3	2	139.6542	ſ	-0,013
5	4	ε	6	4	3	4	4	1	268,3916	-	0.008
5	4	2	6	4	3	5	4	I	146.2429		0.001
6	5	1	б	5	2	5	5	0	146.3740		0.023
6	0	6	7	0	7	5	0	5	259.7313		0.007
б	1	5	7	1	б	5	ı	4	303.3339		0,006
6	2	5	7	2	6	5	2	4	292.4290		0.006
6	2	4	7	2	5	5	2	3	335.2946		-0.021
6	2	4	7	2	5	6	2	5	230,0002		-0.025
7	4	4	7	4	3	6	4	3	174.6668		-0.004
7	1	7	8	1	8	6	1	6	295.6525		0.003
7	2	6	8	2	7	6	2	5	331.4652		0.005
8	0	8	9	0	9	7	0	7	332.4789		0.006
Mi	сго	wave	Line	8							
			2	1	1	2	ø	2	24,8612		0.016
			4	1	4	3	2	1	13,0293		-0.006
			4	2	3	3	3	0	16.3131		0.004
			5	1	5	4	2	2	10.7563		-0.008
			5	3	3	4	4	Ð	17,9237		0.009
			5	3	2	4	4	ı	23.0853		0.007
			6	2	4	7	1	7	17.2513		0.018
			6	4	3	5	5	0	17.3499		0.002
FI	R L	ines									
			1	1	ı	0	υ	o	36.7450		-0.026
			3	1	2	2	2	1	39.4083		0.004
			3	2	1	3	1	2	37.9127		0.010
			4	2	2	4	ı	3	39.5518		0.005
								-			

TABLE VI-Continued

Near infrared data from Ref. (16), microwave lines from Ref. (11), and far infrared lines from Ref. (10). * Upper-level (100) vibrational state, all other upper levels (001) state.

 $H_2^{17}O$ lines indicates that the rotation-vibration bands of this species should be reinvestigated.

To test the accuracy and internal consistency of the energy levels obtained in this work a comparison was made between combination differences calculated from the levels of Table III and ground-state combination differences from such lines of Ref. (16), which have not been evaluated so far. The results are given as Tables VI and VII, also including some comparisons with microwave and far infrared lines which have not been used in the energy level calculation. It is seen that most of the deviations for $H_2^{18}O$ are less than 0.01 cm⁻¹ (rms deviation = 0.010 cm⁻¹), whereas for $H_2^{17}O$ the scattering is larger, corresponding to the weakness of the lines of this isotopic species. It is also interesting to note that the average value of a selection of 46 deviations less than 0.01 cm⁻¹ from Table VI is slightly positive: 0.0028 cm⁻¹. This is equivalent to 1/27 of the resolution used in this work and indicates that errors due to unsymmetrical line profiles have not been eliminated completely.

Τa	a b	l e	VII
----	-----	-----	-----

H270 Upper Level Ground State Levels Combination This Work J ка к J' K' K' J" K" K" a. c Difference - Comb.Dif. 37.0420 -0.019 93,8831 0.016 93.8830 145.0767 -0.004 51.1937 -0.021 165.2935 0.005 88.0043 0.026 97.0388 -0.010 225.7687 0.017 234.3572 0.014 . 146.354 -0.013 260.2797 -0.019 Microwave Lines l 12.8685 0.000 15.6712 0.004 FIR Line 3 1 2 -0.018 38.323

Comparison of Energy Level Differences (in cm⁻¹)

Near infrared data from Ref. (16), all upper levels are from the (001) vibrational state. Microwave lines from Ref. (12). The far infrared line is from (10).

ACKNOWLEDGMENTS

Drs. C. Camy-Peyret and J.-M. Flaud are thanked for providing revised energy levels of $H_2^{16}O$ prior to publication. The author also wishes to thank the late Dr. G. Steenbeckeliers for a list of calculated $H_2^{16}O$ levels and Dr. R. A. McClatchey for a magnetic tape copy of the AFCRL atmospheric absorption line compilation. Dr. B. P. Winnewisser kindly supplied a program and improved the style of the manuscript. The extensive calculations have been made in the computing centers of the Universities of Hamburg and Kiel.

RECEIVED: December 3, 1976

REFERENCES

- 1. R. T. HALL AND J. M. DOWLING, J. Chem. Phys. 47, 2454 (1967).
- 2. R. T. HALL AND J. M. DOWLING, J. Chem. Phys. 52, 1161 (1970).
- 3. K. NARAHARI RAO, W. W. BRIM, V. L. SINNETT, AND R. H. WILSON, J. Opt. Soc. Am. 52, 862 (1962).
- 4. J. R. IZATT, H. SAKAI, AND W. S. BENEDICT, J. Opt. Soc. Am. 59, 19 (1969).
- 5. J.-M. FLAUD, C. CAMY-PEYRET, AND J. P. MAILLARD, Mol. Phys. 32, 499 (1976).
- 6. R. B. SANDERSON AND H. E. SCOTT, Appl. Opt. 10, 1097 (1971).
- 7. J. KAUPPINEN, Appl. Opt. 14, 1987 (1975).
- 8. A. GIRARD, J. Phys. Paris 28, suppl. C2, 172 (1967).
- 9. J. W. FLEMING, IEEE Trans. Microwave Theory Tech. 22, 1023 (1974).
- 10. J. W. FLEMING AND M. J. GIBSON, J. Mol. Spectrosc. 62, 326 (1976).
- 11. F. C. DE LUCIA, P. HELMINGER, R. L. COOK, AND W. GORDY, Phys. Rev. A 6, 1324 (1972).
- 12. F. C. DE LUCIA AND P. HELMINGER, J. Mol. Spectrosc. 56, 138 (1975).
- 13. R. A. TOTH AND J. S. MARGOLIS, J. Mol. Spectrosc. 57, 236 (1975).
- 14. P. E. FRALEY, K. NARAHARI RAO, AND L. H. JONES, J. Mol. Spectrosc. 29, 312 (1969).

- 15. J. G. WILLIAMSON, K. NARAHARI RAO, AND L. H. JONES, J. Mol. Spectrosc. 40, 372 (1971).
- 16. C. CAMY-PEYRET, J.-M. FLAUD, G. GUELACHVILI, AND C. AMIOT, Mol. Phys. 26, 825 (1973).
- 17. F. WINTHER, Z. Naturforsch. 28a, 1179 (1973).
- 18. B. P. WINNEWISSER, M. WINNEWISSER, AND F. WINTHER, J. Mol. Spectrosc. 51, 65 (1974).
- 19. G. STEENBECKELIERS, private communication.
- 20. J. S. GARING AND R. A. MCCLATCHEY, Appl. Opt. 12, 2545 (1973); see also L. S. ROTHMAN AND R. A. MCCLATCHEY, Appl. Opt. 15, 2616 (1976).
- 21. A. R. H. COLE AND F. R. HONEY, Appl. Opt. 10, 1581 (1971).