## Rotational and Centrifugal Parameters of H<sub>2</sub><sup>17</sup>O and H<sub>2</sub><sup>18</sup>O (010) States

We report here the results of solving the inverse problem for the (010) states of the molecules  $H_2^{17}O$  and  $H_2^{18}O$  which are of interest for some applied problems of water vapor spectroscopy, in particular, for analyzing the hot bands.

The rotational and centrifugal constants of the (010) states for the molecules  $H_2^{17}O$  and  $H_2^{18}O$  have been given in Ref. (1). However, it appears that the parameters given in Ref. (1) can be improved. In particular, contrary to expectations, some parameters of  $H_2^{17}O$  and  $H_2^{18}O$  (e.g.,  $\delta_K$ ,  $H_{KJ}$ ,  $H_{JK}$ ,  $H_J$ ,  $h_K$ ,  $h_{JK}$ ) differ for these two isotope species and in comparison with  $H_2^{16}O$  species (2). Therefore, in this note we once again consider the problem of determining the (010)-state parameters of the molecules  $H_2^{17}O$  and  $H_2^{18}O$  based on precise line centers of the  $\nu_2$  bands (3) as well as on the energy levels of the (000) states from Ref. (4). The energy levels ( $E_{enn}^i$ ) for the (010) states obtained from the experimental data are presented in Table I.

The data from Table I were used as initial information in determining the rotational and centrifugal distortion constants. Making use of the known (010)-state constants of the H<sub>2</sub><sup>16</sup>O molecule (2) and simple and sufficiently accurate isotopic relations (5) for the rotational and centrifugal constants, the parameters at large orders of the  $J_{\alpha}$  operators in the Watson's Hamiltonian (6) were determined. They are presented in columns 2 and 4 of Table II without confidence intervals. The remaining parameters were determined by fitting the results of calculations to the experimental data (the initial approximations for these parameters were also determined using the isotopic relations and are given in columns 3 and 5 of Table II). The parameters thus obtained and the 95% confidence intervals for them are given in Table II. As an illustration of the correctness of the obtained parameters, Table I gives the values  $\Delta = (E_{exp}^i - E_{exp}^i) \times 10^4 \text{ cm}^{-1}$  for energy levels. It is seen that the parameters from Table II allow the energy levels to be reproduced with an accuracy close to the experimental values. In this case for 90 initial levels of the H<sub>2</sub><sup>18</sup>O molecule the following condition is fulfilled:

| $0 \times 10^{-3} \le  \Delta  < 2 \times 10^{-3} \mathrm{cm}^{-1}$  | 64.5% levels, |
|----------------------------------------------------------------------|---------------|
| $2 \times 10^{-3} \le  \Delta  < 4 \times 10^{-3} \mathrm{cm}^{-1}$  | 27.8%,        |
| $4 \times 10^{-3} \le  \Delta  < 6 \times 10^{-3} \mathrm{cm}^{-1}$  | 4.4%,         |
| $6 \times 10^{-3} \le  \Delta  < 9 \times 10^{-3}  \mathrm{cm}^{-1}$ | 3.3%.         |

Similarly, for 71 levels of the H<sub>2</sub><sup>17</sup>O molecule,

 $\begin{aligned} 0 \times 10^{-3} &\leq |\Delta| < 1 \times 10^{-3} \text{ cm}^{-1} & 71.9\% \text{ levels,} \\ 1 \times 10^{-3} &\leq |\Delta| < 2 \times 10^{-3} \text{ cm}^{-1} & 21.1\%, \\ 2 \times 10^{-3} &\leq |\Delta| < 3 \times 10^{-3} \text{ cm}^{-1} & 5.6\%, \\ 3 \times 10^{-3} &\leq |\Delta| < 5 \times 10^{-3} \text{ cm}^{-1} & 1.4\%. \end{aligned}$ 

One more additional criterion of correctness of the obtained parameters is their satisfactory agreement with the ones predicted on the basis of isotopic relations.

## NOTES

## TABLE I

# Energy Levels for the States (010) of $H_2^{17}O$ and $H_2^{18}O$

|   |   |    | H2 <sup>18</sup> 0 | •   | H2 <sup>17</sup> 0 |     |     |    |                | <sup>18</sup> 0    |     | H2 <sup>17</sup> 0 |        |
|---|---|----|--------------------|-----|--------------------|-----|-----|----|----------------|--------------------|-----|--------------------|--------|
| J | ĸ | ĸc | <sup>F</sup> exp.  | Δ   | Eexp.              | Δ   | J   | ĸ, | к <sup>С</sup> | <sup>E</sup> exp.  | Δ   | <sup>E</sup> exp.  | ۵      |
| 0 | 0 | 0  | 1588.2760          | 16  | -                  | -   | 6   | 5  | 2              | 2536.9095          | -45 | 2544.4091          | 21     |
| 1 | 0 | 1  | 1612.0495          | -17 | 1615.1150          | - 1 | 6   | 5  | 1              | 2536.9352          | -49 | 2544.4327          | 25     |
| 1 | 1 | 1  | 1628.0594          | 15  | 1631.3150          | 3   | 6   | б  | 1              | 2714.4427          | 21  | 2723.6295          | - 1    |
| 1 | 1 | 0  | 1633.6363          | - 9 | 1636.8738          | - 8 | 6   | 6  | 0              | 2714.4427          | 24  | 2723.6195          | 2      |
| 2 | 0 | 2  | 1658.3346          | 12  | 1661.4592          | - 2 | 7   | 0  | 7              | 2171.7396          | 8   | 2175.9365          | 10     |
| 2 | 1 | 2  | 1670.0376          | - 2 | 1673.3475          | - 8 | 7   | 1  | 7              | 2172.1432          | -11 | 2176.3594          | 3      |
| 2 | 1 | 1  | 1686 • 7325        | 9   | 1689.9924          | - 2 | 7   | 1  | 6              | 2300.7733          | 11  | 2305.0021          | -19    |
| 2 | 5 | 1  | 1734.2207          | -16 | 1738.0274          | 14  | 7   | 2  | 6              | 2308.9059          | -22 | 2313.4449          | 0      |
| 2 | 2 | 0  | 1735+4382          | 0   | 1739•2284          | 12  | 7   | 2  | 5              | 2384.0413          | 26  | 2388.0712          | - 1    |
| 3 | Ō | 3  | 1725.0177          | 5   | 1728.2596          | 0   | 7   | 3  | 5              | 2429.1341          | 25  | 2434.2280          | 7      |
| 3 | 1 | 3  | 1732.2625          | 1   | 1735.6652          | - 9 | 7   | 3  | 4              | 24 <b>53.</b> 0571 | 30  | 2457.6748          | - 9    |
| 3 | 1 | 2  | 1765•3991          | -11 | 1768,7036          | - 4 | 7   | 4  | 4              | 2556.4627          | 11  | -                  | -      |
| 3 | 2 | 2  | 1805.5770          | -21 | 1809+4435          | 0   | 7   | 4. | 3              | 2559.3135          | 38  | 2565.3441          | 26     |
| 3 | 2 | 1  | 1811-2915          | -27 | 1815.0784          | - 2 | 7   | 5  | 3              | 2707.9219          | -32 | _                  | -      |
| 3 | 3 | 1  | 1897.4525          | 41  | 1902.1590          | 17  | 7   | 5  | 2              | 2708.0617          | -20 | 2715.6400          | - 6    |
| 3 | 3 | 0  | 1897.6283          | 27  | 1902.3285          | 18  | 7   | 6  | 2              | 2885.7189          | -16 | -                  | -      |
| 4 | 0 | 4  | 1810.1881          | 13  | 1813.6109          | 5   | . 7 | 6  | 1              | 2885.7202          | 4   | -                  | -      |
| 4 | 1 | 4  | 1814.0867          | 1   | 1817.6253          | - 8 | 7   | 2  | 1              | 3086.1884          | - 3 | -                  | -      |
| 4 | 1 | 3  | 1868.2539          | 7   | 1871.6541          | 3   | 7   | 7  | 0              | 3086.1884          | - 3 | -                  | -      |
| 4 | 2 | 3  | 1899.6093          | -36 | 1903,5683          | - 9 | 8   | ō  | 8              | 2327.8832          | 5   | 2332.4050          | -41    |
| 4 | 2 | 2  | 1914.8807          | -21 | 1918.6568          | - 8 | 8   | 1  | 8              | 2328.0644          | - 2 | 2332.5908          | 8      |
| 4 | 3 | 2  | 1994 7036          | -11 | 1999.4624          | 0   | 8   | 1  | 7              | 2480.5031          | 0   | 2485.1500          | 12     |
| 4 | 3 | 1  | 1995.8700          | - 8 | 2000.5979          | - 2 | 8   | 2  | 7              | 2484 • 8743        | 4   | 2489.7253          | 0      |
| 4 | 4 | 1  | 2117.0093          | 34  | 2122.9318          | -16 | 8   | 2  | 6              | 2586.6329          | -10 | _                  | -      |
| 4 | 4 | Ō  | 2117.0287          | 52  | 2122.9517          | -11 | 8   | 3  | 6              | 2618.9198          | 66  | 2624,2283          | - 1    |
| 5 | 0 | 5  | 1913.0228          | 14  | 1916.6723          | 7   | 8   | 3  | 5              | 2661.0026          | 33  | -                  | -      |
| 5 | 1 | 5  | 1914 9355          | - 4 | 1918.6535          | - 4 | 8   | 4  | 5              | 2751.4170          | 84  | 2757.6641          | - 2    |
| 5 | 1 | 4  | 1993.2766          | 21  | 1996.8525          | 16  | 8   | 5  | 4              | 2903.3290          | 27  | _                  |        |
| 5 | 2 | 4  | 2015.4540          | -35 | 2019.5506          | - 7 | 8   | 6  | 3              | 3081.2002          | - 3 | _                  | -      |
| 5 | 2 | 3  | 2045.9224          | - 6 | 2049.7109          | - 2 | 9   | 0  | 9              | 2501.9532          | 38  | 2506.8255          | 11     |
| 5 | 3 | 3  | 2116.1385          | -27 | 2120.9713          | - 5 | 9   | 1  | 9              | 2502.0382          | 1   | 2506.9119          | 11     |
| 5 | 3 | 2  | 2120.4547          | -27 | 2125.1780          | -11 | 9   | 1  | 8              | 2677.2812          | -32 | 2682.3744          | - 1    |
| 5 | 4 | 2  | 2238.9740          | - 2 | 2244.9584          | -13 | 9   | 2  | 8              | 2679.5309          | - 7 | 2684.7462          | - 6    |
| 5 | 4 | 1  | 2239+1574          | -15 | 2245.1332          | -11 | 9   | 2  | 7              | 2808 . 2784        | -70 | _                  | -      |
| 5 | 5 | 1  | 2390.3545          | -17 | 2397.7783          | - 5 | 9   | 4  | 6              | 2969.7327          | -15 |                    | -      |
| 5 | 5 | 0  | 2390+3557          | - 5 | 2397.7805          | - 4 | 10  | 0  | 10             | 2693.9534          | 2   | 2699.2077          | 8      |
| 6 | ó | 6  | 2033.4890          | 4   | 2037.3966          | 9   | 10  | 1  | 10             | 2693.9917          | -10 | 2699.2473          | 7      |
| 6 | 1 | 6  | 2034.3763          | 0   | 2038,3239          | - 1 | 10  | 1  | 9              | 2891.3557          | -33 | -                  | '      |
| 6 | 1 | 5  | 2138+0884          | 19  | 2141.9432          | 24  | 10  | 2  | 9              | 2892.4892          | -18 | 2898.1181          | 1      |
| 6 | 2 | 5  | 2152.1814          | -22 | 2156.4702          | - 1 | 10  | 2  | 8              | 3047.0763          | - 2 | -                  | -<br>- |
| 6 | 2 | 4  | 2202.9924          | 18  | 2206.8538          | 5   | 11  | 0  | 11             | 2903.8453          | -35 | 2909.5148          | - 1    |
| 6 | 3 | 4  | 2261+2172          | -13 | 2266.1567          | 2   | 11  | 1  | 11             | 2903.8603          | -13 | -                  | -      |
| 6 | 3 | 3  | 2272.6457          | - 3 | 2277.3226          | - 2 | 11  | 2  | 10             | 3123.5012          | - 1 | _                  | -      |
| 6 | 4 | 3  | 2385.5128          | -12 | 2391.5661          | 2   | 12  | 1  | 12             | 3131.5829          | 9   | -                  | -      |
| 6 | 4 | 2  | 2386.3657          | -13 | 2392.3853          | 8   | 12  | 2  | 11             | 3372.4158          | -12 | -                  |        |

### NOTES

### **TABLE II**

|                                  | н <sub>2</sub> <sup>18</sup> 0 | )      | H2 <sup>17</sup> 0          |        |  |  |
|----------------------------------|--------------------------------|--------|-----------------------------|--------|--|--|
| 1                                | 2                              | 3      | 4                           | 5      |  |  |
|                                  | 1588.27756(224)                | 1588   | 1591.32584(122)             | 1592   |  |  |
| A                                | 30 <b>•7</b> 29085(993)        | 30.712 | 30.918292(570)              | 30.921 |  |  |
| В                                | 14.684494(316)                 | 14.689 | 14•685687(16 <del>9</del> ) | 14.688 |  |  |
| c                                | 9.091301(175)                  | 9.092  | 9•10 <b>8943(</b> 106)      | 9•111  |  |  |
| 10_2 Ar                          | 5.62144(931)                   | 5•59   | 5•73413(754)                | 5.67   |  |  |
| 10_2 ATK                         | -7•5345(498)                   | -7.43  | -7.6368(134)                | -7.52  |  |  |
| 10_3 A.T                         | 1•39154(331)                   | 1•38   | 1•39091(186)                | 1.39   |  |  |
| 10_x 8 x                         | 3.5882(257)                    | 3.67   | 3.68550(5 <b>7</b> 0)       | 3.72   |  |  |
| 10_1 0 T                         | 5,7684(226)                    | 5•77   | 5.78577(966)                | 5.78   |  |  |
| 10_1H                            | 3.5701(366)                    | 3.41   | 3.7630(362)                 | 3.47   |  |  |
| 10_5HR.T                         | -5.050(301)                    | -4•34  | -4•9217(544)                | -4.42  |  |  |
| 10_6 <sup>H</sup> .TK            | 4•367(294)                     | 3.3    | 3.6                         |        |  |  |
| 10_9H,                           | 5.775(240)                     | 6.19   | 5.6968(832)                 | 6.15   |  |  |
| 10_5hr                           | 8.055(337)                     | 8.06   | 8.6212(578)                 | 8.24   |  |  |
| 10                               | 2.768(150)                     | 2.93   | 2.92                        |        |  |  |
| 10_6LK                           | -2.2244(500)                   | -1.91  | -2.4780(512)                | -2.05  |  |  |
| 10_0L_RK.1                       | 1.056(518)                     | 0.59   | 0.70                        |        |  |  |
| 10_71m                           | -3.292(610)                    | -4.08  | -4.19                       |        |  |  |
| 10_01_T                          | 3.2                            |        | -                           |        |  |  |
| 10_8Pr                           | 1.01                           |        | 1,03                        |        |  |  |
| <sup>10</sup> _10 <sup>P</sup> K | 8.28                           |        | 8.6                         |        |  |  |
| 10_11%K                          | -3.03                          |        | -3.09                       |        |  |  |
| <sup>10</sup> –14 <sup>R</sup> K | 3.8                            |        | -                           |        |  |  |

Rotational and Centrifugal Parameters for the States (010) of H2<sup>17</sup>O and H2<sup>18</sup>O

Values in the Parentheses are 26 confidence intervals

#### REFERENCES

- 1. J. W. C. JOHNS AND A. R. W. MCKELLAR, Canad. J. Phys. 56, 737-743 (1978).
- 2. C. CAMY-PEYRET AND J.-M. FLAUD, Mol. Phys. 32, 523-537 (1976).
- 3. G. GUELACHVILI, JOSA 73, 137-150 (1983).
- 4. E. KYRÖ, J. Mol. Spectrosc. 88, 167-174 (1981).
- 5. A. D. BYKOV, YU. S. MAKUSHKIN, AND O. N. ULENIKOV, "Isotope Substitution in Polyatomic Molecules," Nauka, Novosibirsk, 1985. [in Russian]
- 6. J. K. G. WATSON, J. Chem. Phys. 46, 1935-1948 (1967).

A. D. Bykov V. N. Saveliev O. N. Ulenikov

The Institute of Atmospheric Optics Siberian Branch USSR Academy of Sciences Tomsk 634055, USSR Received November 25, 1985