# Frequency Measurement of Pure Rotational Transitions of $H_2^{17}O$ and $H_2^{18}O$ from 0.5 to 5 THz

Fusakazu Matsushima, Hajime Nagase, Takao Nakauchi, Hitoshi Odashima, and Kojiro Takagi

Department of Physics, Toyama University, Gofuku, Toyama 930, Japan

Received July 22, 1998

Frequencies of pure rotational transitions of isotopic species of water,  $H_2^{17}O$ , and  $H_2^{18}O$  were measured in the 1–5 THz region with a high-precision far-infrared spectrometer using a tunable radiation source. Measured frequencies of more than 100 spectral lines for each species provide an excellent frequency standard for the far-infrared region. Molecular parameters based on a Watson-type Hamiltonian have been obtained to reproduce the observed frequencies. © 1999 Academic Press

*Key Words:* tunable far-infrared; rotational spectra;  $H_2^{17}O$ ;  $H_2^{18}O$ .

## 1. INTRODUCTION

The rotational spectrum of water vapor falls in the farinfrared (FIR) region where new spectroscopic techniques have been developed in the last decades. The rotational spectrum of water vapor is so strong and dense in the FIR region that the line frequencies can be used as conventional calibration standards for spectrometers in the region. From the point of view of molecular theory, the H<sub>2</sub>O molecule is a good example of a light rotator with large centrifugal distortion effects which make the calculation of highly excited rotational levels so difficult. Spectroscopists are attempting to analyze the spectrum using new theories to obtain better fitting. Accurate measurement of the transition frequencies is desired to provide a reliable data set for testing the theories. In our previous work (1), we measured the frequencies of rotational transitions of  $H_2^{16}O$  from 0.5 to 5 THz using a tunable FIR spectrometer based on the difference frequency generation of two CO<sub>2</sub> laser lines. This work is extended to the rotational spectra of  $H_2^{17}O$ and  $H_2^{18}O$  in the present work.

Historically, in 1970s, several low-frequency rotational lines of  $H_2^{17}O(2)$  and  $H_2^{18}O(2-4)$  were measured by microwave spectroscopic technique and molecular parameters in the ground vibrational state were obtained for  $H_2^{17}O(5)$  and  $H_2^{18}O(4-6)$ . Rotational lines of  $H_2^{18}O$  were observed from 10 to 40 cm<sup>-1</sup> with a Fourier-transform (FT) spectrometer by Fleming and Gibson (7) in 1976. Then, a number of rotational lines of  $H_2^{17}O$  and  $H_2^{18}O$  were observed in natural abundance using FT spectrometers (8, 9). In 1980, Kauppinen and Kyrö (10) precisely measured rotational lines of  $H_2^{17}O$  and  $H_2^{18}O$ from 50 to 730 cm<sup>-1</sup> using a FT spectrometer. Measurement of more than 280 lines for each species with an accuracy of 0.001 cm<sup>-1</sup> resulted in a revision of molecular parameters for these species (11). Partridge measured rotational lines of these two species from 10 to 47 cm<sup>-1</sup> by using a FT spectrometer with an accuracy of 0.0006 cm<sup>-1</sup> (*12*). Johns measured the FT spectrum of  $H_2^{18}O$  from 33 to 280 cm<sup>-1</sup> with an accuracy of 0.0002 cm<sup>-1</sup> and improved the molecular parameters for  $H_2^{18}O$  (*13*).

In the present work, frequencies of pure rotational transitions of  $H_2^{17}O$  and  $H_2^{18}O$  have been measured in the range from 0.5 to more than 5.2 THz (16–173 cm<sup>-1</sup>) with accuracies better than 100 kHz (3 × 10<sup>-6</sup> cm<sup>-1</sup>). Molecular parameters of a Watson-type Hamiltonian have been determined to reproduce the observed frequencies.

## 2. EXPERIMENTAL

Our FIR spectrometer is based on a tunable FIR (referred to as TuFIR) technique developed by Evenson and coworkers (14). Because detailed descriptions of the spectrometer can be found in our previous papers (1, 15, 16), only a brief description is given here. As shown in Fig. 1, FIR radiation of high spectral purity is generated as a difference of two CO<sub>2</sub> laser radiations which are mixed in a metal-insulator-metal (MIM) diode. Microwave radiation tunable up to 18 GHz is added to generate tunable sidebands. Power of the sideband radiation is typically about 100 nW. With an appropriate choice of the pair of normal CO<sub>2</sub> laser lines, tunable FIR radiation up to 5.7 THz is generated. The frequency of each CO<sub>2</sub> laser is stabilized to the saturated fluorescence signal at 4.3  $\mu$ m from CO<sub>2</sub> in an external cell. A laser frequency modulation at 1 kHz which is used to stabilize the laser frequency results in a source modulation of FIR radiation at 1 kHz. The FIR radiation detected by a liquid helium-cooled silicon composite bolometer is phase sensitively detected at 1 kHz to obtain absorption lines.

The sample cell is a Pyrex glass tube of 0.5 m in length and 30 mm in diameter with polypropylene windows at each end. Because rotational lines of  $H_2^{17}O$  or  $H_2^{18}O$  are close in frequency to the corresponding lines of normal  $H_2O$ , the path of





FIG. 1. Block diagram of the tunable far-infrared spectrometer.

the FIR radiation outside of the sample cell was made as short as possible and was purged with nitrogen gas to prevent the absorption of FIR radiation by atmospheric water vapor. Though some of the strong lines of  $H_2^{18}O$  were measured using normal  $H_2O$  sample in natural abundance (0.2%), most of the lines were measured with an isotope-enriched sample. A 10% enriched sample of  $H_2^{17}O$  and a 96% enriched sample of  $H_2^{18}O$  were used.

#### 3. RESULTS

Prior to the present measurement, the most accurate frequency table covering the frequency range of our spectrometer (0.5-5.3 THz) had been given by Kauppinen and Kyrö (10), Kyrö (11), and Partridge (12) for H<sub>2</sub><sup>17</sup>O and by Johns (13) for H<sub>2</sub><sup>18</sup>O. So we chose spectral lines below 5.3 THz from tables in these references and remeasured them.

As for  $H_2^{17}O$ , several lines below 50 cm<sup>-1</sup> are missing in the table of Partridge (12). Therefore, we measured the lines higher than 50 cm<sup>-1</sup> first, then obtained a preliminary set of molecular parameters and searched for spectral lines below 50 cm<sup>-1</sup> around calculated frequencies using the parameters. About 130 rotational lines of  $H_2^{17}O$  and 120 lines of  $H_2^{18}O$ were measured. Each spectral lineshape, whose width is dominated by Doppler broadening, was fitted by a least squares program (17) to a theoretical Voigt profile to determine the line center. Measured and calculated center frequencies of  $H_2^{17}O$ and  $H_2^{18}O$  are shown in Tables 1 and 3, respectively.

### 4. ANALYSIS

Analysis of the rotational energy levels of  $H_2O$  has been a challenging task for spectroscopists because the molecule

shows an extremely large centrifugal distortion effect and the calculation based on the Taylor-series Hamiltonian in the Watson form (18) leads to large errors for highly excited rotational levels. A number of extensive studies with new theories have been reported to analyze the water molecule (19-26).

For the levels with low rotational quantum numbers like those observed in the present work, however, a calculation based on a Watson-type Hamiltonian is still a convenient method for giving precise energy values as shown in Refs. *1* and *13*. Therefore, the observed frequencies were analyzed using a Watson-type *A*-reduced Hamiltonian as follows:

$$\begin{split} H &= (B + C)/2J^{2} + \{A - (B + C)/2\}J_{z}^{2} + (B - C)/2J_{xy}^{2} \\ &- \Delta_{J}(J^{2})^{2} - \Delta_{JK}J^{2}J_{z}^{2} - \Delta_{K}J_{z}^{4} - 2\delta_{J}J^{2}J_{xy} - \delta_{K}\{J_{z}^{2}, J_{xy}^{2}\} \\ &+ H_{J}(J^{2})^{3} + H_{JK}(J^{2})^{2}J_{z}^{2} + H_{KJ}J^{2}J_{z}^{4} + H_{K}J_{z}^{6} \\ &+ 2h_{J}(J^{2})^{2}J_{xy}^{2} + h_{JK}J^{2}\{J_{z}^{2}, J_{xy}^{2}\} + h_{K}\{J_{z}^{4}, J_{xy}^{2}\} \\ &+ L_{J}(J^{2})^{4} + L_{JJK}(J^{2})^{3}J_{z}^{2} + L_{JK}(J^{2})^{2}J_{z}^{4} + L_{KKJ}J^{2}J_{z}^{6} \\ &+ L_{K}J_{z}^{8} - 2l_{J}(J^{2})^{3}J_{xy}^{2} + l_{JK}(J^{2})^{2}\{J_{z}^{2}, J_{xy}^{2}\} \end{split}$$

$$\begin{aligned} &+ l_{KJ}J^{2}\{J_{z}^{4}, J_{xy}^{2}\} + l_{K}\{J_{z}^{6}, J_{xy}^{2}\} + P_{J}(J^{2})^{5} + P_{JJK}(J^{2})^{4}J_{z}^{2} \\ &+ P_{JK}(J^{2})^{3}J_{z}^{4} + P_{KJ}(J^{2})^{2}J_{z}^{6} + P_{KKJ}J^{2}J_{z}^{8} + P_{K}J_{z}^{10} \\ &+ p_{JJK}(J^{2})^{3}\{J_{z}^{2}, J_{xy}^{2}\} + p_{KKJ}J^{2}\{J_{z}^{6}, J_{xy}^{2}\} + p_{K}\{J_{z}^{8}, J_{xy}^{2}\} \\ &+ T_{JJK}(J^{2})^{4}J_{z}^{4} + T_{KKJ}(J^{2})^{2}J_{z}^{8} + T_{KKKJ}J^{2}J_{z}^{10} + T_{K}J_{z}^{12}, \end{aligned}$$

where  $J_{xy}^2 = J_x^2 - J_y^2$ , and  $\{A, B\} = AB + BA$ .

Data obtained by microwave spectroscopy and FT spectroscopy were also included in the best fit analysis. As for  $H_2^{17}O$ , lines lower than 400 GHz were from microwave data by Steenbeckeliers (2). The total number of lines for  $H_2^{17}O$  was 127. As for  $H_2^{18}O$ , lines lower than 550 GHz were from microwave data by De Lucia *et al.* (4), where the three highest frequency lines,  $6_{42} \leftarrow 5_{51}$ ,  $5_{32} \leftarrow 4_{41}$ , and  $2_{11} \leftarrow 2_{02}$ , were remeasured in the present work. Because the experimental errors for these three lines were smaller in our measurement, we used our data. The data from 5.25 to 8.4 THz were from those by Johns (13). The total number of lines for  $H_2^{18}O$ was 165.

The weights in the best fit analysis were set to be proportional to the inverse squares of the experimental uncertainties. The obtained molecular parameters for  $H_2^{17}O$  and  $H_2^{18}O$  are listed in Tables 2 and 4, respectively. The transition frequencies calculated with these parameters are shown in Tables 1 and 3 together with their observed – calculated (O – C) values.

| <b>FABLE 1</b> |
|----------------|
|----------------|

Measured and Calculated Frequencies<sup>a</sup> (in MHz) of Pure Rotational Transitions of H<sub>2</sub><sup>17</sup>O

| Γ Ka' Kc' ← J' Ka'' Kc"                | Obs.                                               | Calc,               | 0-C    | J' Ka' Kc'      | ← J" Ka" Kc" | Obs.                                       | Calc.         | 0-C    |
|----------------------------------------|----------------------------------------------------|---------------------|--------|-----------------|--------------|--------------------------------------------|---------------|--------|
| 6 1 6 5 2 3 13                         | 535.510 *                                          | 13 535.459          | 0.051  | 542             | 533          | 3 147 209.261 ( 36)                        | 3 147 209.405 | -0.144 |
| 3 1 3 2 2 0 194                        | 002.290 <sup>b</sup>                               | 194 002.240         | 0.050  | 625             | 616          | 3 158 746.404 ( 36)                        | 3 158 746.457 | -0.053 |
| 4 2 3 3 3 0 469                        | 809.339 (351) 4                                    | 69 809.928          | -0.589 | 735             | 726          | 3 195 616.643 ( 38)                        | 3 195 616.527 | 0.116  |
| 1 1 0 1 0 1 552                        | 021.075 (38) 5                                     | 552 021.065         | 0.010  | 643             | 634          | 3 196 773.182 ( 36)                        | 3 196 773.249 | -0.067 |
| 5 3 2 4 4 1 658                        | 504.180 (149)                                      | 558 504.540         | -0.360 | 744             | 735          | 3 298 639.736 ( 56)                        | 3 298 639.692 | 0.044  |
| 2 1 1 2 0 2 748                        | 458.779 (42) 7                                     | 748 458.617         | 0.162  | 322             | 2 1 1        | 3 313 043.876 ( 46)                        | 3 313 044.054 | -0.178 |
| 4 2 2 3 3 1 944                        | 853.071 (42) 9                                     | 44 853.091          | -0.020 | 845             | 836          | 3 468 801.961 ( 38)                        | 3 468 801.906 | 0.055  |
| 524431 987                             | 879.876 (39) 9                                     | 987 880.027         | -0.151 | 954             | 945          | 3 451 481.974 (428)                        | 3 451 480.059 | 1.915  |
| 202111 991                             | 519.683 (36) 9                                     | 991 519.679         | 0.004  | 7 1 6           | 707          | 3 535 900.842 (39)                         | 3 535 900.415 | 0.427  |
| 3 1 2 3 0 3 1 096                      | 415.186 (36) 1 (                                   | 096 415.076         | 0.110  | 606             | 515          | 3 592 683.645 ( 39)                        | 3 592 683.914 | -0.269 |
|                                        | 166.987 (36) 1                                     | 107 166.896         | 0.091  | 836             | 827          | 3 601 383.801 (51)                         | 3 601 383.846 | -0.045 |
| 3 2 1 3 1 2 1 148                      | 9/4.962 (36) 1:                                    | 148 9/4.939         | 0.023  | 010             | 505          | 3 644 995.072 ( 39)                        | 3 644 995.009 | 0.063  |
|                                        | 419 971 (38) 1                                     | 106 135.091         | 0.009  | 0 0 0 0         | 044<br>747   | 3 663 663 666 (30)                         | 3 008 047.555 | 0.13/  |
| 4 2 2 4 1 2 1 107                      | 410.0/1 (36) 1                                     | 109 410.027         | 0.044  | 120             | 310          | 3 787 242 695 ( 44)                        | 3 787 242 849 | -0.154 |
| 3 2 4 3 1 1 1 2 1 2                    | 009.027 (30) 1                                     | 137 009.104         | -0.096 | <del>1</del> 23 | 5 2 4        | 3 803 428 532 (77)                         | 3 903 428 606 | -0.074 |
| 744651 1212                            | . 991 983 (51) 1 1                                 | 212 979.404         | 0.218  | 6 5 1           | 642          | 3 876 375 114 ( 85)                        | 3 876 375 039 | 0.075  |
| 8 2 7 7 3 4 1 282                      | 726 792 (42) 1 2                                   | 082 726 776         | 0.016  | 5 5 0           | 541          | 3 904 093 322 (156)                        | 3 904 093.300 | 0.022  |
| 7436521325                             | 632,503 (38) 1.3                                   | 325 632 564         | -0.061 | 652             | 643          | 3 908 469 423 ( 53)                        | 3 908 469.475 | -0.052 |
| 6 2 5 5 3 2 1 332                      | 129,386 (38) 1 3                                   | 332 129,269         | 0.117  | 753             | 744          | 3 909 669,422 ( 80)                        | 3 909 669.931 | -0.509 |
| 5 2 3 5 1 4 1 406                      | 448.955 (38) 1 4                                   | 406 448.808         | 0.147  | 5 5 1           | 542          | 3 911 126.846 ( 60)                        | 3 911 126.647 | 0.199  |
| 6 3 3 5 4 2 1 583                      | 727.403 (38) 1 5                                   | 583 727.371         | 0.032  | 725             | 634          | 4 026 370.245 ( 48)                        | 4 026 370.195 | 0.050  |
| 7 2 6 6 3 3 1 439                      | 891.568 (149) 1 4                                  | 39 891.680          | -0.112 | 10 4 7          | 10 3 8       | 4 036 624.943 (46)                         | 4 036 624.910 | 0.033  |
| 4 1 3 4 0 4 1 604                      | 180.557 (38) 1 6                                   | 504 180.590         | -0.033 | 937             | 928          | 4 063 443.292 ( 56)                        | 4 063 443.407 | -0.115 |
| 2 2 1 2 1 2 1 646                      | 398.143 (39) 1 6                                   | 546 398.129         | 0.014  | 10 5 6          | 10 4 7       | 4 082 007.509 ( 64)                        | 4 082 007.664 | -0.155 |
| 2 1 2 1 0 1 1 662                      | 464.158 (36) 1 6                                   | 662 464.094         | 0.064  | 707             | 6 1 6        | 4 158 000.015 ( 77)                        | 4 158 000.188 | -0.173 |
| 303212 1718                            | 118.736 (38) 17                                    | 18 118.743          | -0.007 | 7 1 7           | 606          | 4 180 385.495 (48)                         | 4 180 385.642 | -0.147 |
| 6336241739                             | 572.000 (36) 17                                    | 739 571.948         | 0.052  | 524             | 413          | 4 197 019.729 ( 42)                        | 4 197 019.549 | 0.180  |
| 7 3 4 7 2 5 1 783                      | 388.025 (36) 1 7                                   | 783 388.077         | -0.052 | 827             | 8 1 8        | 4 231 907.193 ( 39)                        | 4 231 907.270 | -0.077 |
| 532 523 1840                           | 152.668 (36) 1 8                                   | 340 152.647         | 0.021  | 10 2 8          | 10 1 9       | 4 351 161.455 ( 48)                        | 4 351 161.813 | -0.358 |
| 3 2 2 3 1 3 1 906                      | 062.231 (36) 1 9                                   | 906 062. <b>380</b> | -0.149 | 330             | 303          | 4 413 848.064 ( 42)                        | 4 413 847.998 | 0.066  |
| 5 2 3 4 3 2 1 948                      | 277.941 (36) 1 9                                   | 948 277.796         | 0.145  | 331             | 220          | 4 440 837.832 ( 80)                        | 4 440 837.802 | 0.030  |
| 4 3 1 4 2 2 2 011                      | 529.712 (36) 2 (                                   | 011 529.818 ·       | -0.106 | 330             | 221          | 4 485 568.539 (44)                         | 4 485 568.612 | -0.073 |
| 8 3 5 8 2 6 2 013                      | 437.033 (51) 2 (                                   | 013 437.517         | -0.484 | 716             | 625          | 4 535 154.497 ( 56)                        | 4 535 154.145 | 0.352  |
| 4 1 3 3 2 2 2 088                      | 016.649 (36) 2 (                                   | 088 016.569         | 0.080  | 963             | 954          | 4 561 561.243 ( 53)                        | 4 561 560.770 | 0.473  |
| 3 1 3 2 0 2 2 155                      | 440.437 (36) 21                                    | 155 440.291         | 0.146  | 10 3 8          | 10 2 9       | 4 564 109.765 (39)                         | 4 564 109.609 | 0.156  |
| 3 3 0 3 2 1 2 168                      | (457.888 (38) 21                                   | 168 457.982         | -0.094 | 862             | 853          | 4 613 500.984 (680)                        | 4 613 502.610 | -1.626 |
| 514 505 2225                           | 010.637 (39) 2 2                                   | 225 010.742         | -0.105 | 904             | 900          | 4 030 033.514 (810)                        | 4 030 031.424 | 2.090  |
| 4 2 3 4 1 4 2 232                      | (401.120 (30) 2.<br>(002.276 (46) 2.               | 232 401,327         | -0.139 | 7 6 1           | 7 5 9        | 4 575 730.854 ( 00)<br>A 633 697 667 (103) | 4 515 130.124 | 0.003  |
| 0 3 0 7 4 3 2 202<br>0 4 5 0 3 6 2 287 | 034 489 (51) 2 1                                   | 202 333.000         | 0.153  | 863             | 854          | 4 636 270 403 (71)                         | 4 636 271 668 | -1 265 |
| 3 3 1 3 2 2 3 3 40                     | 773 242 (38) 2                                     | 340 773 182         | 0.060  | 6 6 0           | 651          | 4 636 336 821 (224)                        | 4 636 337 375 | -0.554 |
| 7 2 5 7 1 6 2 353                      | 116.027 (38) 2                                     | 353 116.101         | -0.074 | 6 6 1           | 652          | 4 637 408.255 ( 53)                        | 4 637 408.666 | -0.411 |
| 404 313 2389                           | 898.207 (38) 2 3                                   | 389 898.359         | -0.152 | 762             | 753          | 4 639 564.820 (71)                         | 4 639 563.609 | 1.211  |
| 844 835 2406                           | 767.120 (38) 2                                     | 406 766.943         | 0.177  | 808             | 7 1 7        | 4 713 837.243 (214)                        | 4 713 837.049 | 0.194  |
| 936 927 2437                           | 474.985 (59) 2                                     | 437 474.784         | 0.201  | 8 1 8           | 707          | 4 723 224.243 ( 85)                        | 4 723 224.099 | 0.144  |
| 4 3 2 4 2 3 2 4 3 9                    | 319.592 (38) 2                                     | 439 319.607         | -0.015 | 918             | 909          | 4 757 672.856 (46)                         | 4 757 672.966 | -0.110 |
| 5 3 3 5 2 4 2 609                      | 740.484 (36) 2 (                                   | 609 740.514         | -0.030 | 928             | 919          | 4 793 077.382 ( 64)                        | 4 793 077.560 | -0.178 |
| 734 643 2612                           | 2 984.953 (51) 2 (                                 | 512 985.023         | -0.070 | 431             | 404          | 4 813 320.420 ( 69)                        | 4 813 320.112 | 0.308  |
| 7437342621                             | 117.184 (39) 2                                     | 621 117.015         | 0.169  | 936             | 845          | 4 850 055.006 (44)                         | 4 850 054.668 | 0.338  |
| 4 1 4 3 0 3 2 631                      | 176.821 (46) 2                                     | 631 176.598         | 0.223  | 11 2 9          | 11 1 10      | 4 972 521.517 ( 99)                        | 4 972 521.379 | 0.138  |
| 5 2 4 5 1 5 2 675                      | 5 583.371 (39) 2 (                                 | 675 583.526         | -0.155 | 726             | 615          | 4 977 140.283 ( 53)                        | 4 977 140.364 | -0.081 |
| 2 2 1 1 1 0 2 756                      | 3 841.024 (39) 2 1                                 | 756 841.157         | -0.133 | 826             | 735          | 5 003 094.161 ( 59)                        | 5 003 094.128 | 0.033  |
| 6426332842                             | 2 780.905 (42) 2                                   | 842 781.095         | -0.190 | 432             | 321          | 5 077 587.318 ( 90)                        | 5 077 587.517 | -0.199 |
| 6346252861                             | 1900.086 (36) 2                                    | 861 900.052         | 0.034  | 817             | 726          | 5 188 886.526 ( 39)                        | 5 188 886.490 | 0.036  |
| 6 1 5 6 0 6 2886                       | 5 328.247 (36) 2                                   | 886 328.218         | 0.029  | 4 2 2           | 313          | 5 191 688.836 (44)                         | 5 191 688.653 | 0.183  |
| 2 2 0 1 1 1 2 952                      | 2 957.663 (38) 2                                   | 952 957.730         | -0.067 | 909             | 8 1 8        | 5 264 693.665 (42)                         | 5 264 694.082 | -0.417 |
| 5 1 4 4 2 3 2 981                      | 148.445 (36) 2                                     | 981 148.595         | -0.150 | 919             | 808          | 5 268 608.573 (48)                         | 5 268 608.460 | 0.113  |
| 624 533 2991                           | 1 364.726 (36) 2                                   | 991 364.828         | -0.102 | 770             | 761          | 5 294 347.567 (42)                         | 5 294 347.528 | 0.039  |
| 505414 3008                            | 3 619.064 (39) 3                                   | 008 619.180         | -0.116 | 4 3 1           | 322          | 5 297 156.277 ( 56)                        | 5 297 156.091 | 0.186  |
| 8 2 6 8 1 7 3 009                      | 9 824.350 (71) 3                                   | 009 824.165         | 0.185  | 871             | 862          | 5 306 809.792 ( 90)                        | 5 306 810.186 | -0.394 |
| 4 4 0 4 3 1 3 089                      | 9 086.890 (38) 3                                   | 089 686.814         | 0.0/6  | 872             | 863          | 5 307 775.850 ( 51)                        | a JU/ //6.001 | -0.011 |
| 5 1 5 4 0 4 3 125                      | <b>5 6 16</b> . / <b>17</b> ( <b>36</b> ) <b>3</b> | 125 616.612         | 0.105  | 972             | э 6 3        | a 310 (60.945 (156)                        | 0 310 700.318 | 0.62/  |
| 441432 3129                            | a azo. 903 (42) 3                                  | 129 925.903         | 0.000  |                 |              |                                            |               |        |

<sup>*a*</sup> The  $1\sigma$  uncertainties in the last quoted digits are shown in parentheses.

<sup>b</sup> Lines taken from Ref. 2.

TABLE 2Molecular Parameters (in MHz) of H2170

| A                                  | 830283.720 (43)                                              | $l_J$                   | -5.159 (40) $\times 10^{-6}$    |
|------------------------------------|--------------------------------------------------------------|-------------------------|---------------------------------|
| В                                  | 435350.739 (26)                                              | l <sub>JK</sub>         | -7.88 (83) ×10 <sup>-6</sup>    |
| С                                  | 277511.307 (22)                                              | l <sub>KJ</sub>         | 4.61 (15) ×10 <sup>-4</sup>     |
| $\Delta_J$                         | 37.5724 (13)                                                 | l <sub>K</sub>          | $-1.1611$ (50) $\times 10^{-2}$ |
| $\Delta_{J\!K}$                    | -172.3431 (56)                                               | $P_J$                   | 9.0 (23) $\times 10^{-9}$       |
| $\Delta_{K}$                       | 961.8478 (81)                                                | P <sub>JJK</sub>        | $-3.02$ (21) $\times 10^{-7}$   |
| $\delta_J$                         | 15.22729 (35)                                                | P <sub>JK</sub>         | 2.49 (26) $\times 10^{-6}$      |
| $\delta_{\!K}$                     | 38.8045 (43)                                                 | P <sub>KJ</sub>         | 1.268 (90) $\times 10^{-5}$     |
| $H_J$                              | 1.6563 (39) $\times 10^{-2}$                                 | P <sub>KKJ</sub>        | $-6.82$ (20) $\times 10^{-5}$   |
| $H_{J\!K}$                         | -5.705 (28) $\times 10^{-2}$                                 | P <sub>K</sub>          | 1.844 (15) ×10 <sup>-4</sup>    |
| H <sub>KJ</sub>                    | -5.1874 (51) $\times 10^{-1}$                                | <i>Р</i> <sub>JJK</sub> | 0.0 (fixed)                     |
| H <sub>K</sub>                     | 3.78193 (87)                                                 | Р <sub>КК</sub> Ј       | -4.32 (44) $\times 10^{-6}$     |
| $h_J$                              | $8.2289$ (71) $\times 10^{-3}$                               | <i>P</i> <sub>K</sub>   | 7.06 (12) $\times 10^{-5}$      |
| h <sub>JK</sub>                    | $-2.536$ (10) $\times 10^{-2}$                               | T <sub>JJK</sub>        | -5.41 (70) ×10 <sup>-9</sup>    |
| h <sub>K</sub>                     | 9.4430 (85) ×10 <sup>-1</sup>                                | T <sub>KKJ</sub>        | $2.271$ (45) $\times 10^{-7}$   |
| $L_J$                              | $-1.216$ (50) $\times 10^{-5}$                               | T <sub>KKKJ</sub>       | -4.023 (75) $\times 10^{-7}$    |
| L <sub>JJK</sub>                   | $1.194$ (45) $\times 10^{-4}$                                | T <sub>K</sub>          | $-3.484$ (68) $\times 10^{-7}$  |
| L <sub>JK</sub>                    | -2.337 (22) $\times 10^{-3}$                                 |                         |                                 |
| T                                  | _2                                                           |                         |                                 |
| LKKJ                               | 9.143 (52) ×10 <sup>-5</sup>                                 |                         |                                 |
| L <sub>KKJ</sub><br>L <sub>K</sub> | 9.143 (52) $\times 10^{-3}$<br>-2.6793 (51) $\times 10^{-2}$ |                         |                                 |

## 5. DISCUSSION

The uncertainty of the synthesized FIR frequency of the present spectrometer is typically about 10 kHz (*30*). The uncertainties of measured frequencies of line positions, which are several tens of kilohertz in most cases, mainly come from determination of center frequencies of deformed lineshapes. The sample in the absorption cell is optically thick for strong absorption. The optical thickness results in the line deformation. The sample pressure must be kept below 0.1 Pa in most measurements to remove the deformation. Difficulty in maintaining a constant pressure during the measurement caused a slight deformation of the lineshape and brought about some uncertainty in determining the line center.

For some lines, experimental uncertainties exceed 100 kHz. In the neighborhood of a strong absorption line of atmospheric water vapor, not only the signal to noise ratio of a spectral line is degraded but also its baseline is deformed. These effects result in large uncertainties in determining center frequencies of the spectral lines.

In a preliminary experiment using a molecular beam sample (27), we observed hyperfine splitting due to the quadrupole moment of <sup>17</sup>O nucleus in low-*J* lines of  $H_2^{17}O$ . In the Doppler-broadened line profile observed in the present work, the hyperfine components were not resolved. For low-*J* and low frequency rotational lines, the effect of hyperfine structure brings about larger uncertainties in the determination of center frequencies. The large experimental uncertainty of  $4_{23} \leftarrow 3_{30}$  line can be attributed to this effect. In most measurements, however, the effect of hyperfine structure was not considered to be the main source of experimental error.

Molecular parameters in the ground vibrational state of  $H_2^{17}O$  and  $H_2^{18}O$  have been also obtained through the measurements of vibration–rotation transitions in the infrared region (28, 29). Measurements of pure rotational transitions with FT spectrometers (11, 13) improved the accuracy of the parameters obtained from infrared spectroscopy. However, calculated values using those parameters scattered

220

| TABLE 3                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------|
| Measured and Calculated Frequencies <sup>a</sup> (in MHz) of Pure Rotational Transitions of H <sub>2</sub> <sup>18</sup> O |

| J' Ka' Kc' ← J' Ka'' Kc'' | Obs.                                    | Calc.                      | 0-C    | <b>Г Ка' н</b> | (c' ← J" Ka" Kc"  | Obs.                | Cak.          | 0-C    |
|---------------------------|-----------------------------------------|----------------------------|--------|----------------|-------------------|---------------------|---------------|--------|
| 616 523                   | 5 625,147 b                             | 5 625,138                  | 0.009  | 6 2            | 4 5 3 3           | 3 017 158.833 ( 36) | 3 017 158.904 | -0.071 |
| 3 1 3 2 2 0               | 203 407.520 *                           | 203 407.267                | 0.253  | 82             | 6 8 1 7           | 3 019 734.029 ( 38) | 3 019 734.269 | -0.240 |
| 515422                    | 322 465.170                             | 322 465.146                | 0.024  | 44             | 0 4 3 1           | 3 056 987.150 (42)  | 3 056 986.787 | 0.363  |
| 414 321                   | 390 607.760 <sup>b</sup>                | 390 607.752                | 0.008  | 44             | 1 4 3 2           | 3 098 412.349 (38)  | 3 098 412.270 | 0.079  |
| 423 330                   | 489 054.260 °                           | 489 054.201                | 0.059  | 54.            | 2 5 3 3 5 5 4 0 4 | 3 116 280.344 (38)  | 3 116 200.004 | -0.340 |
| 624 / 1 /                 | 517 181.900<br>520 137 320 <sup>b</sup> | 520 136.948                | 0.372  | 6 2            | 5 6 1 6           | 3 150 956.912 (38)  | 3 150 956.843 | 0.069  |
| 533440                    | 537 337.570 b                           | 537 337.654                | -0.084 | 64             | 3 6 3 4           | 3 167 316.921 ( 46) | 3 167 317.132 | -0.211 |
| 1 1 0 1 0 1               | 547 676.440 <sup>b</sup>                | 547 676.548                | -0.108 | 73             | 5726              | 3 182 712.688 ( 36) | 3 182 712.463 | 0.225  |
| 642 551                   | 554 859.748 ( 60)                       | 554 859.647                | 0.101  | 74             | 4 7 3 5           | 3 271 757.942 (38)  | 3 271 757.831 | 0.111  |
| 532441                    | 692 079.347 (36)                        | 692 079.888                | -0.541 | 32             | 2 2 1 1           | 3 296 734.387 (39)  | 3 296 734.421 | -0.034 |
| 211 202                   | 745 320.142 (36)<br>970 276 659 (36)    | 745 320.014<br>970 276 789 | -0.130 | 84             | 4 943<br>5 836    | 3 445 526,204 (36)  | 3 445 525.384 | 0.820  |
| 202 111                   | 994 674.431 ( 36)                       | 994 674.261                | 0.170  | 71             | 6 7 0 7           | 3 535 045.216 ( 38) | 3 535 045.258 | -0.042 |
| 3 1 2 3 0 3               | 1 095 628.955 ( 36)                     | 1 095 628.647              | 0.308  | 60             | 6 5 1 5           | 3 586 431.043 ( 44) | 3 586 431.398 | -0.355 |
| 111 000                   | 1 101 697.036 ( 36)                     | 1 101 697.194              | -0.158 | 83             | 6 8 2 7           | 3 591 263.266 ( 56) | 3 591 263.190 | 0.076  |
| 321 312                   | 1 136 703.041 ( 36)                     | 1 136 703.059              | -0.018 | 8 5            | 3 8 4 4           | 3 620 500.441 (42)  | 3 620 500.736 | -0.295 |
| 3 1 2 2 2 1               | 1 181 396.004 ( 36)                     | 1 181 395.675              | 0.329  | 6 1<br>7 0     | 6 5 0 5           | 3 535 465.380 (44)  | 3 636 400.000 | -0.164 |
| 422 413                   | 1 188 864.647 (36)                      | 1 188 804.048              | ~0.291 | 94             | 6 9 3 7           | 3 696 249.232 (38)  | 3 696 248.898 | 0.334  |
| 634 541                   | 1 216 849.584 (36)                      | 1 216 849.113              | 0.471  | 92             | 7 9 1 8           | 3 700 536.122 ( 93) | 3 700 536.622 | -0.500 |
| 744 651                   | 1 252 570.303 ( 39)                     | 1 252 570.535              | -0.232 | 83             | 5 7 4 4           | 3 760 381.332 ( 39) | 3 760 381.456 | -0.124 |
| 8 2 7 7 3 4               | 1 270 059.914 ( 36)                     | 1 270 060.559              | -0.645 | 75             | 2 7 4 3           | 3 762 496.201 ( 64) | 3 762 495.162 | 1.039  |
| 6 2 5 5 3 2               | 1 340 733.590 ( 36)                     | 1 340 733.173              | 0.417  | 42             | 3 3 1 2           | 3 769 506.447 (46)  | 3 769 506.419 | 0.028  |
| 743652                    | 1 367 758.352 ( 36)                     | 1 367 758.686              | -0.334 | 6 1            | 5 5 2 4           | 3 807 723.582 (277) | 3 807 723.996 | -0.414 |
| 523 514                   | 1 402 970.791 (36)                      | 1 402 970.688              | 0.103  | 55             | 0 541             | 3 864 028.946 (36)  | 3 868 620.715 | 0.497  |
| 413 404                   | 1 408 633.938 (38)                      | 1 605 963.435              | 0.217  | 75             | 3 7 4 4           | 3 870 153.180 (39)  | 3 870 152.834 | 0.346  |
| 633 542                   | 1 620 855.257 (42)                      | 1 620 855.427              | -0.170 | 55             | 1 5 4 2           | 3 871 373.851 (46)  | 3 871 374.306 | ~0.455 |
| 221 212                   | 1 633 482.650 ( 36)                     | 1 633 482.830              | -0.180 | 85             | 4 8 4 5           | 3 889 278.593 (38)  | 3 889 279.534 | -0.941 |
| 212101                    | 1 655 865.959 (36)                      | 1 655 866.129              | -0.170 | 10 4           | 7 10 3 8          | 4 022 058.648 (277) | 4 022 059.761 | -1.113 |
| 432 505                   | 1 656 197.895 (42)                      | 1 656 197.598              | 0.297  | 72             | 5 6 3 4           | 4 049 304.037 (103) | 4 049 304.049 | -0.012 |
| 3 0 3 2 1 2               | 1 719 249.729 ( 36)                     | 1 719 249.859              | -0.130 | 93             | 7 9 2 8           | 4 055 475.586 (39)  | 4 150 075.594 | -0.134 |
| 633624                    | 1 719 976.985 (36)                      | 1 719 977.406              | -0.421 | 8 1            | 7 8 0 8           | 4 154 598.933 (77)  | 4 154 598.840 | 0.093  |
| 624 615                   | 1 800 483 386 (36)                      | 1 800 483.271              | 0.115  | 7 1            | 7606              | 4 171 320.223 ( 64) | 4 171 320.123 | 0.100  |
| 532 523                   | 1 815 848.526 (36)                      | 1 815 848.809              | -0.283 | 52             | 4 4 1 3           | 4 178 056.034 ( 51) | 4 178 055.859 | 0.175  |
| 322 313                   | 1 894 322.824 ( 36)                     | 1 894 322.823              | 0.001  | 82             | 7 8 1 8           | 4 224 538.935 (103) | 4 224 539.912 | -0.977 |
| 7 3 5 6 4 2               | 1 815 970.280 ( 36)                     | 1 815 969.806              | 0.474  | 33             | 0 3 0 3           | 4 376 081.039 (46)  | 4 376 080.864 | 0.175  |
| 523432                    | 1 974 643.232 ( 36)                     | 1 974 643.349              | -0.117 | 33             | 1 2 2 0           | 4 410 284.094 (44)  | 4 415 203.010 | 0.2/8  |
| 431422                    | 1 985 915.025 (35)                      | 1 985 915.233              | -0.208 | 96             | 3 9 5 4           | 4 510 186.958 ( 64) | 4 510 186.819 | 0.139  |
| 413 322                   | 2 099 900.044 (30)                      | 2 143 749.158              | 0.068  | 7 1            | 6 6 2 5           | 4 534 163.808 (75)  | 4 534 164.009 | -0.201 |
| 3 1 3 2 0 2               | 2 147 731.770 ( 36)                     | 2 147 731.611              | 0.159  | 10 3           | 8 10 2 9          | 4 557 466.890 ( 51) | 4 557 466.399 | 0.491  |
| 514 505                   | 2 227 870.337 (36)                      | 2 227 870.260              | 0.077  | 62             | 5 5 1 4           | 4 559 552.927 ( 65) | 4 559 552.670 | 0.257  |
| 423414                    | 2 242 195.713 ( 39)                     | 2 242 195.608              | 0.105  | 86             | 2 8 5 3           | 4 564 558.314 ( 99) | 4 564 558.606 | -0.292 |
| 331 322                   | 2 318 553.879 ( 36)                     | 2 318 553.726              | 0.153  | 66             | 1 6 5 2           | 4 590 355.444 (680) | 4 590 354.641 | -1 692 |
| 725716                    | 2 361 122.444 ( 36)                     | 2 361 122.232              | 0.212  | 86             | 3 8 5 4           | 4 588 605.610 (149) | 4 588 604.346 | 1.264  |
| 404 313                   | 2 388 325.067 (36)                      | 2 308 323.303              | -0.213 | 6 6            | 0 6 5 1           | 4 589 221.268 ( 99) | 4 589 220.286 | 0.982  |
| 936 927                   | 2 446 246.202 (38)                      | 2 446 246.312              | -0.110 | 76             | 2 7 5 3           | 4 592 194.400 (625) | 4 592 194.988 | -0.588 |
| 743734                    | 2 582 720.292 ( 36)                     | 2 582 720.178              | 0.114  | 8 0            | 8 7 1 7           | 4 704 517.673 ( 39) | 4 704 517.602 | 0.071  |
| 533 524                   | 2 591 048.043 ( 36)                     | 2 591 048.362              | -0.319 | 8 1            | 8 7 0 7           | 4 713 360.504 (133) | 4 713 360.444 | 0.060  |
| 414 303                   | 2 622 939.667 (42)                      | 2 622 939.458              | 0.209  | 91             | 8 9 0 9           | 4 751 869.061 (194) | 4 751 867.523 | -0.057 |
| 734 643                   | 2 653 659.320 (44)                      | 2 653 659.224              | 0.096  | 4 J<br>G 9     | 8 9 1 9           | 4 785 166.445 (44)  | 4 785 166.422 | 0.023  |
| 524 515                   | 2 666 726.307 ( 59)                     | 2 000 720.103              | -0.126 | 93             | 6 8 4 5           | 4 891 457.231 (107) | 4 891 456.955 | 0.276  |
| 642633                    | 2 805 378.378 (36)                      | 2 805 378.526              | -0.148 | 72             | 6 6 1 5           | 4 959 096.406 ( 80) | 4 959 096.546 | -0.140 |
| 634 625                   | 2 845 982.199 ( 36)                     | 2 845 982.192              | 0.007  | 82             | 6735              | 5 020 343.166 (123) | 5 020 343.062 | 0.104  |
| 615606                    | 2 888 018.719 ( 77)                     | 2 888 018.763              | -0.044 | 43             | 2 3 2 1           | 5 051 272.514 ( 80) | 5 051 272.609 | -0.095 |
| 220 111                   | 2 938 998.549 (36)                      | 2 938 998.605              | -0.056 | 42             | 2 3 1 3           | 5 183 153.399 (110) | 5 183 153.338 | 0.061  |
| 541532                    | 2 969 866.143 (38)                      | 2 969 866.252              | -0.109 | 81             | 7 7 2 6           | 5 183 321.763 (48)  | 5 183 321.255 | 0.508  |
| 514 423                   | 2 990 141.426 (44)                      | 2 950 141.910              | -0.426 | 77             | v 761             | 0 240 (14.940 (02)  | 0 240 114.304 | 0.019  |
| 505414                    | J 001 100.003 ( 00)                     |                            |        |                |                   |                     |               |        |

 $^a$  The  $1\sigma$  uncertainties in the last quoted digits are shown in parentheses.

<sup>b</sup> Lines taken from Ref. 4.

TABLE 4Molecular Parameters (in MHz) of H2180

| A                | 825367.428 (67)                 | $l_J$             | -4.929 (72) $\times 10^{-6}$    |
|------------------|---------------------------------|-------------------|---------------------------------|
| В                | 435353.585 (38)                 | l <sub>JK</sub>   | $1.6 \times 10^{-5}$ (fixed)    |
| С                | 276950.565 (29)                 | l <sub>KJ</sub>   | 2.95 (19) $\times 10^{-4}$      |
| $arDelta_J$      | 37.5492 (13)                    | l <sub>K</sub>    | -9.773 (92) $\times 10^{-3}$    |
| $\Delta_{J\!K}$  | -171.4038 (49)                  | $P_J$             | $3.29 \times 10^{-9}$ (fixed)   |
| $\Delta_{K}$     | 950.788 (13)                    | P <sub>JJK</sub>  | $-1.07$ (32) $\times 10^{-7}$   |
| $\delta_J$       | 15.22848 (54)                   | P <sub>JK</sub>   | -1.34 ×10 <sup>-6</sup> (fixed) |
| $\delta_{K}$     | 37.8207 (59)                    | P <sub>KJ</sub>   | 1.21 (16) $\times 10^{-5}$      |
| $H_J$            | $1.6420$ (24) $\times 10^{-2}$  | P <sub>KKJ</sub>  | -3.23 (36) ×10 <sup>-5</sup>    |
| H <sub>JK</sub>  | -5.492 (31) $\times 10^{-2}$    | P <sub>K</sub>    | $1.463$ (22) $\times 10^{-4}$   |
| H <sub>KJ</sub>  | -5.0975 (95) ×10 <sup>-1</sup>  | Р <sub>ЈЈК</sub>  | -1.5 ×10 <sup>-7</sup> (fixed)  |
| H <sub>K</sub>   | 3.7125 (15)                     | р <sub>ККЈ</sub>  | -5.85 (34) ×10 <sup>-6</sup>    |
| $h_J$            | 8.171 (11) $\times 10^{-3}$     | p <sub>K</sub>    | $3.84(22) \times 10^{-5}$       |
| $h_{JK}$         | $-2.577$ (13) $\times 10^{-2}$  | T <sub>JJK</sub>  | 0.0 (fixed)                     |
| h <sub>K</sub>   | 9.101 (12) ×10 <sup>-1</sup>    | T <sub>KKJ</sub>  | 0.0 (fixed)                     |
| $L_J$            | -1.076 (13) ×10 <sup>-5</sup>   | T <sub>KKKJ</sub> | 0.0 (fixed)                     |
| L <sub>JJK</sub> | 6.93 (63) ×10 <sup>-5</sup>     | T <sub>K</sub>    | $-4.85$ (10) $\times 10^{-7}$   |
| L <sub>JK</sub>  | -1.976 (22) ×10 <sup>-3</sup>   |                   |                                 |
| L <sub>KKJ</sub> | 7.989 (36) ×10 <sup>-3</sup>    |                   |                                 |
| L <sub>K</sub>   | $-2.5496$ (71) $\times 10^{-2}$ |                   |                                 |
|                  |                                 |                   |                                 |

typically by several megahertz from frequencies observed in the present work. This large deviation reflects the accuracy of the FT spectroscopic measurements. As shown in Tables 1 and 3, the new sets of molecular parameters obtained in the present work reproduce most of the measured frequencies within 1 MHz.

For diatomic species studied so far using TuFIR spectrometers, the calculation using fitted parameters yielded frequencies three to four times more accurate than the measured values (*30*). However, the theory for the water molecule is not nearly accurate, and the experimental values are more accurate.

## ACKNOWLEDGMENTS

The authors thank Y. Ohtaki and T. Nagai for their help in the experiment. This work was partly supported by a grant-in-Aid from the Ministry of Education, Science, and Culture of Japan.

#### REFERENCES

- F. Matsushima, H. Odashima, T. Iwasaki, S. Tsunekawa, and K. Takagi, J. Mol. Struct. 352/353, 371–378 (1995).
- 2. G. Steenbeckeliers and J. Bellet, *Compt. Rend.* **273B**, 471–474 (1971).
- 3. F. X. Powell and D. R. Johnson, Phys. Rev. Lett. 24, 637 (1970).
- F. C. De Lucia, P. Helminger, R. L. Cook, and W. Gordy, *Phys. Rev.* A6, 1324–1326 (1972).
- 5. P. Helminger and F. C. De Lucia, J. Mol. Spectrosc. 70, 263–269 (1978).
- F. C. De Lucia, P. Helminger, and W. H. Kirchhoff, J. Phys. Chem. Ref. Data 3, 211–219 (1974).
- 7. J. W. Fleming and M. J. Gibson, J. Mol. Spectrosc. 62, 326-337 (1976).
- 8. F. Winter, J. Mol. Spectrosc. 65, 405-419 (1977).
- J. Kauppinen, T. Kärkkäinen, and E. Kyrö, J. Mol. Spectrosc. 71, 15–45 (1978).
- 10. J. Kauppinen and E. Kyrö, J. Mol. Spectrosc. 84, 405-423 (1980).
- 11. E. Kyrö, J. Mol. Spectrosc. 88, 167-174 (1981).
- 12. R. H. Partridge, J. Mol. Spectrosc. 87, 429-437 (1981).
- 13. J. W. C. Johns, J. Opt. Soc. Am. B 2, 1340-1354 (1985).

- 14. K. M. Evenson, D. A. Jennings, and F. R. Petersen, Appl. Phys. Lett. 44, 576–578 (1984).
- F. Matsushima, H. Odashima, D. Wang, S. Tsunekawa, and K. Takagi, Jpn. J. Appl. Phys. 33, 315–318 (1994).
- 16. F. Matsushima, T. Oka, and K. Takagi, Phys. Rev. Lett. 78, 1664–1666 (1997).
- K. V. Chance, D. A. Jennings, K. M. Evenson, M. D. Vanek, I. G. Nolt, J. V. Radostitz, and K. Park, *J. Mol. Spectrosc.* **146**, 375–380 (1991).
- J. K. G. Watson, in "Vibrational Spectra and Structure" (J. R. Durig, Ed.), Vol. 6, Elsevier, Amsterdam, 1997.
- A. V. Burenin, T. M. Fevral'skikh, E. N. Karyakin, O. L. Polyansky, and S. M. Shapin, J. Mol. Spectrosc. 100, 182–192 (1993).
- 20. A. V. Burenin and VI. G. Tyuterev, J. Mol. Spectrosc. 108, 153-154 (1984).
- 21. O. L. Polyansky, J. Mol. Spectrosc. 112, 79-87 (1985).

- S. P. Belov, I. N. Kozin, O. L. Polyansky, M. Yu. Tret'yakov, and N. F. Zobov, *J. Mol. Spectrosc.* **126**, 113–117 (1987).
- 23. V. I. Starikov, S. A. Tashkun, and Vl. G. Tyuterev, J. Mol. Spectrosc. 151, 130–147 (1992).
- 24. P. Jensen, J. Mol. Spectrosc. 133, 438-460 (1989).
- 25. Vl. G. Tyuterev, J. Mol. Spectrosc. 151, 97-129 (1992).
- 26. L. H. Coudert, J. Mol. Spectrosc., J. Mol. Spectrosc. 154, 427-442 (1992).
- F. Matsushima, H. Odashima, S. Tsunekawa, and K. Takagi, *in* "Laser Spectroscopy" (M. Inguscio *et al.*, Eds.), pp. 259–260, World Scientific Publishing Co., Singapore, 1996.
- J.-M. Flaud, C. Camy-Peyret, and R. A. Toth, J. Mol. Spectrosc. 68, 280–287 (1977).
- 29. R. Toth, J. Opt. Soc. Am. B 9, 462–482 (1992).
- 30. T. Varberg and K. M. Evenson, Astrophys. J. 385, 763-765 (1992).