The Absorption Spectrum of HDO in the 16 300–16 670 and 18 000–18 350 cm⁻¹ Spectral Regions

Alain Campargue, Elena Bertseva, and Olga Naumenko¹

Laboratoire de Spectrométrie Physique (associated with CNRS UMR C5588), Université Joseph Fourier de Grenoble, B.P. 87, 38402 Saint-Martin-d'Hères Cedex, France

E-mail: Alain.Campargue@ujf-grenoble.fr

Received May 10, 2000

The absorption spectrum of HDO has been recorded by Intracavity Laser Absorption Spectroscopy in the 16 300–16 670 and 18 000–18 350 cm⁻¹ spectral regions corresponding to the weak $2\nu_2 + 4\nu_3$ and $\nu_2 + 5\nu_3$ bands, respectively. The $\nu_2 + 5\nu_3$ band centered at 18 208.434 cm⁻¹ was found almost isolated and has been satisfactorily reproduced in the frame of the effective Hamiltonian model. On the other hand, the $2\nu_2 + 4\nu_3$ band at 16 456.201 cm⁻¹ is strongly perturbed as the (0 2 4) bright state is involved in a complex interaction scheme including the (1 0 4), (5 0 1), (1 5 2), and (1 11 0) states. The rovibrational assignment of these interacting states was greatly helped by the high-accuracy *ab initio* predictions performed by D. Schwenke and H. Partridge [*J. Chem. Phys.* 000–000 (2000)]. They could be partly modeled by an effective Hamiltonian which has allowed the assignment and reproduction of most of the observed transitions. © 2000 Academic Press

INTRODUCTION

The present study completes our previous investigations of the HDO absorption spectrum in the near-infrared and visible spectral range (1-4), by the analysis of two spectral regions, 16 300–16 670 and 18 000–18 350 cm⁻¹, corresponding to the weak $2\nu_2 + 4\nu_3$, $\nu_1 + 4\nu_3$, and the $\nu_2 + 5\nu_3$ absorption bands, respectively, in the vicinity of the much more intense $5\nu_3$ band centered at 16 920.02 cm⁻¹ (4). Effective Hamiltonian approach together with the recent high-accuracy *ab initio* calculations by Schwenke and Partridge (5) were used in the theoretical treatment of the spectra. Both positions and intensities of the HDO absorption lines were considered in the analysis. All the investigated vibrational states were found to be more or less perturbed by the nearby states, yielding considerable intensity transfer in some cases.

In contrast with H₂O, no definite resonance polyad structure has been evidenced in HDO, even for low-lying vibrational states. Resonance interactions do not show regular behavior since in addition to the strong and well-traced Fermi-type interaction (6–10), high-order anharmonic and rovibrational couplings between states with large difference of bending quantum numbers have been observed (2, 3, 9). These latter interactions seem to be even stronger in HDO compared to H₂O molecule and its symmetric isotope species (11) since the ω_1 (2824 cm⁻¹) harmonic frequency of HDO is nearly equal to $2\omega_2$ (2888 cm⁻¹), while in H₂O, these values differ by about 550 cm⁻¹.

The analysis of the HDO absorption spectrum has also proved that high-order anharmonic couplings are rather sensitive to the excitation of the bending mode. For instance, the sequences of the $(V_1 \ 0 \ 0)$ and $(0 \ 0 \ V_3)$ stretching levels have been found to be well-isolated (1, 4), though in some cases, highly excited bending states could be found in the vicinity of them. In contrast, combination states involving one bending excitation such as $(V_1 \ 1 \ 0)$ and $(0 \ 1 \ V_3)$ appear to be more subject to interactions: the (2 0 0) vibrational state, for example, is slightly perturbed by the other nearby states (10), while the $K_a \leq 2$ levels of the (2 1 0) state are half-mixed with those of the $(0\ 5\ 0)$ state (9). Another case concerns the $(0\ 0\ 4)$ state which can be considered as isolated at least up to J = 9 (1), while the $(0 \ 1 \ 4)$ state is dramatically perturbed through a complex interaction scheme involving the two highly excited bending states, (1 4 2) and (0 12 0) (2). In the present paper, we will report the analysis of the rotational structure of the $(0\ 1\ 5)$ state which corresponds to one additional bending excitation compared to the well-isolated (0 0 5) state (4). In fact, our analysis will show that the $(0 \ 1 \ 5)$ state is only slightly perturbed by the nearby (0 6 3) and (2 7 1) vibrational states in contrast with the situation found for the $(0\ 1\ 4)$ state.

The study of the highly excited HDO states above 13 200 cm⁻¹ (1-4) together with data presented in this paper show that accidental resonances more than a general polyad structure seem to rule the HDO absorption spectrum in the near-infrared and visible ranges. In this context, the high accurate calculations of the HDO absorption spectrum performed by Schwenke and Partridge (5) have proven to be highly valuable to identify these casual interactions. The present analysis of the 16 300–

¹ On leave from the Institute of Atmospheric Optics, Russian Academy of Sciences, Tomsk, 634055, Russia.

16 670 cm⁻¹ spectral region, corresponding to the $2\nu_2 + 4\nu_3$ and $\nu_1 + 4\nu_3$ perturbed bands, will give more opportunity to prove the importance and the quality of these predictions.

EXPERIMENTAL

Intracavity laser absorption spectroscopy (ICLAS) is an experimental method particularly well suited to explore large spectral regions with a routine sensitivity better than 10^{-8} cm⁻¹ (12). The cell filled with a 1:1 mixture of H₂O:D₂O was inserted in the laser cavity. In the present experiments, we used our standard standing-wave dve laser (12, 13). Dve solutions of Rhodamine 590 and Rhodamine 560 were used to record the spectra in the 16 300-16 670 and 18 000-18 350 cm⁻¹ regions, respectively. The data acquisition system and the procedure used for wavenumber calibration have been previously described (1-4). The spectral calibration uses as reference absorption lines provided by an iodine cell inserted between the laser and the spectrograph (14). We estimate the measured wavenumbers to be precise to within 0.01 cm⁻¹ as confirmed by the ground state combination differences provided by the following rotational analysis and by the agreement observed for the H_2O lines with the values given in Refs. (15) and (16). The relative intensities of the lines were roughly estimated from the peak depth of each line. Despite its limited accuracy, this information will prove to be highly valuable in the spectral assignment process.

RESULTS AND DISCUSSION

A. The $2\nu_2 + 4\nu_3$ and $\nu_1 + 4\nu_3$ Bands

One hundred ninety-nine lines observed in the 16300-16 670 cm⁻¹ spectral region were assigned to HDO and are listed in Table 1. They belong mainly to the $2\nu_2 + 4\nu_3$ and $\nu_1 + 4\nu_3$ bands centered at 16 456.201 and 16 539.04 cm⁻¹, respectively. The rovibrational assignment was performed on the basis of the predictions performed by Schwenke and Partridge (5), which are particularly accurate (average deviation of -0.06 cm^{-1}) in this specific region. A comparison of the stick spectrum retrieved from the experiment with the predicted spectrum of Ref. (5) is shown in Fig. 1. The weakness of the spectrum under study, with the strongest lines not exceeding 2.8×10^{-6} cm⁻²/atm, hindered unambiguous assignment of the weakest lines not included into combination differences. Finally, 135 observed lines were attributed to the stronger $2\nu_2$ + $4\nu_3$ band, while 42 lines were assigned to the weaker $\nu_1 + 4\nu_3$ band. Nine more transitions borrowing their intensities through resonance intensity transfer could be assigned to the (5 0 1) and (1 11 0) states (vibrational labeling of Ref. (5)). Thirteen weak lines (7%) remain unassigned.

Similarly to our previous studies, the experimental relative intensities were normalized to the absolute intensity predicted in Ref. (5) by considering the sum of the intensities of the

assigned lines. As a result of this normalization procedure, 71% of the measured line intensities could be compared within 20% with their predicted values. The total experimental intensity of the $2\nu_2 + 4\nu_3$ band was calculated to be 1.07×10^{-4} cm^{-2}/atm in close agreement with its predicted (5) value of 1.18×10^{-4} cm⁻²/atm, while the total measured absorption for the $\nu_1 + 4\nu_3$ band (1.27 × 10⁻⁵ cm⁻²/atm) is considerably less than predicted $(3.35 \times 10^{-5} \text{ cm}^{-2}/\text{atm})$, indicating that many transitions of this weak band were not detected. The $2\nu_2 + 4\nu_3$ band has exclusively *a*-type character, while the $\nu_1 + 4\nu_3$ band has a hybrid character with a predicted *a*:*b* intensity ratio of 1:1.7. The observed line centers, experimental and predicted (5) intensities, and rovibrational assignments are included in Table 1. The 104 experimental energy levels obtained from the observed transitions by adding the corresponding experimental levels of the ground state (17) appear in Table 2, with the experimental uncertainty and the deviation from their predicted (5) values.

Energy considerations indicate that the $(0\ 2\ 4)$ vibrational state under study ($E_{\nu} = 16\ 456\ \mathrm{cm}^{-1}$) may strongly interact with three other nearby states: $(1 \ 0 \ 4)$ at 16 539 cm⁻¹, (5 0 1) at 16 482 cm⁻¹, and (1 5 2) at 16 450 cm⁻¹. According to Ref. (5), one more state, (1 11 0), predicted more than 400 cm^{-1} below the above states ($E_v = 16\ 049\ \mathrm{cm}^{-1}$), may also perturb the (0 2 4) state since many lines involving its rotational sublevels are predicted with noticeable intensity in the analyzed spectral region. To confirm and extend our rovibrational assignments, we tried to fit the observed energy levels of the five above states, in the frame of the effective Hamiltonian (EH) model in the Padé-Borel representation (18, 19). It appeared to be rather easy to account for the (0 2 4)-(1 0 4)-(5 0 1) interactions: the rotational levels of the (0 2 4) and (1 0 4)states with $K_a \ge 3$ strongly interact via Fermi resonance, while a high-order anharmonic interaction strongly connects some of the $K_a = 1$, 2 levels of the (0 2 4) and (5 0 1) states. Sixty-eight of the 104 observed levels, including two energy levels of the (5 0 1) dark state, could be fitted using this interaction scheme with an rms deviation of 0.030 cm⁻¹. The fitted values of the rovibrational parameters obtained for the (0 2 4), (1 0 4), and (5 0 1) states are presented in Table 3. One important result of the fitting is that the center of the $\nu_1 + 4\nu_3$ band could be retrieved at 16 539.042(16) cm^{-1} despite the fact that the energy of the (1 0 4) [000] level could not be experimentally determined. Note that all the $K_a = 0$, 1 energy levels of the (0 2 4) state were excluded from the fit (see Table 2). They are indeed affected by an extra interaction (see below) which makes them deviate significantly (up to 1.6 cm^{-1}) from their EH predicted values. The mixing coefficients calculated in the EH approach for the high K_a levels indicate that the vibrational assignment given in Ref. (5) for some of these levels should be interchanged between the $(1 \ 0 \ 4)$ and $(0 \ 2 \ 4)$ states. This reassignment is confirmed by the fact that the stronger lines correspond now to the $2\nu_2 + 4\nu_3$ band, while weaker lines belong to the $\nu_1 + 4\nu_3$ band.

TABLE 1

Wavenumbers, Intensities, and Rovibrational Assignments of the HDO Absorption Lines between 16 300 and 16 670 cm⁻¹

Observed	Intensity		Intensity Upper Lower Vib.		Observed	Inter	neity	Linner	Lower	Vib	
Wavenumber	(cm ⁻²	/atm)	$JK_{a}K_{c}$	JK	state	Wavenumber	(cm ⁻²	/atm)	JK.K.	JK.K.	State
(cm ⁻¹)	Obs.	Ref. (5)	0 4 2			(cm ⁻¹)	Obs.	Ref. (5)		0 mane	State
16304 373	4 0E-07	2 0E-07	827	0.28	024	16403 642	7 9E 07	75007	220	2.2.1	0.2.4
16305.053	2.9E-07	2.0E=07	818	919	024	16404 745	7.0E-07	7.5E-07	220	321	024
16306.060	2.9E-07	2.5E=07	817	918	024	16405 196	1.4E-06	1.4E-06	211	312	024
16306.448	3 3E-07	3.4E-07	808	909	024	16406 552	·2 3E-07	0.7E-08	514	625	104
16306 718	2.7E-07	1.2E-07	744	845	024	16400.332	1.85-07	9.7L-08	212	423	104
16306 718	2.7E-07	1.2E-07	7/3	811	024	16409.403	1.45.06	1.4E 06	202	202	0.2.4
16316 734	49E-07	2 0E-07	735	836	024	16411.061	1.42-00	1.4E-06	202	212	024
16317.028	2 8E-07	2.0E 07	734	835	024	16411.001	3.5E-07	1.4E-00	753	752	024
16321 487	3.9E-07	3.0E-07	725	826	024	16411.468	3.5E-07	1.1E-07	750	752	024
16322 398	4 4E-07	3 3E-07	726	827	024	16413 472	1.8E-07	1.112-07	152	155	024
16323 744	4 0E-07	1.8E-07	643	744	024	16413 830	3.5E-07	2 1E-07	651	652	0.2.4
16323 744	4 0E-07	1.8E-07	642	743	024	16413 830	3.5E-07	2.1E-07	652	651	024
16323 994	3 5E-07	3.8E-07	716	817	024	16415 843	84F-07	4 2E-07	551	550	024
16325 956	7 2E-07	5.7E-07	707	808	024	16415 843	8.4E-07	4.2E-07	550	551	024
16325.956	7.2E-07	5.1E-07	717	818	024	16421 506	1 1E-06	9.9E-07	110	211	024
16333.389	3.5E-07	3.5E-07	633	734	024	16421 835	1.1E 00	1.5E-07	606	717	104
16333 614	5 0E-07	2.7E-07	634	735	$0 \overline{2} 4$	16425 188	1 3E-06	1.3E-06	101	202	0 2 4
T 16333.614	5.0E-07	9.8E-08	331	440	104	16426 146	1.0E-06	1.0E-06	111	212	024
16337 605	5 7E-07	4 7E-07	624	725	024	16428 112	2.2E-07	84E-08	661	660	024
16338 464	3 2E-07	2.3E-07	625	726	501	16428 112	2.2E-07	8.4E-08	660	661	024
16340.196	3.9E-07	3.2E-07	625	726	024	16431 652	2.2E 07	1.4E-07	744	743	024
16340.613	4.5E-07	2.2E-07	542	643	024	16431 652	2.9E-07	1.4E-07	312	423	104
16340.613	4.5E-07	2.2E-07	541	642	024	16432 760	19E-07	1.4E-07	743	744	024
16341.042	6.6E-07	6.2E-07	615	716	024	16433 087	2.8E-07	3 1E-07	643	642	024
16344.230	8.0E-07	7.9E-07	616	717	0 2 4	16433 404	3 3E-07	3 1E-07	642	643	024
16344.524	7.5E-07	8.1E-07	606	707	024	16434 265	6 7E-07	5 8E-07	542	541	024
16349.926	5.5E-07	5.0E-07	532	633	024	16434.314	6.7E-07	5.8E-07	541	542	024
16350.035	4.4E-07	3.8E-07	533	634	024	16434.706	1.9E-07	1.1E-07	524	533	104
16354.245	4.3E-07	5.5E-07	523	624	024	16435,197	2.1E-06	1.0E-06	441	440	024
16356.309	5.9E-07	7.7E-07	524	625	024	16435,197	2.1E-06	1.0E-06	440	441	024
16357.264	1.2E-06	9.3E-07	514	615	024	16435,429	3.4E-07	3.1E-07	313	312	024
16357.264	1.2E-06	1.8E-07	441	542	024	16436.388	1.9E-07	1.5E-07	735	734	024
16357.264	1.2E-06	1.8E-07	440	541	024	16437.209	3.2E-07	3.0E-07	524	523	024
16361.626	1.1E-06	9.8E-07	515	616	024	16439.141	1.8E-07	2.0E-07	505	616	104
16362.128	1.1E-06	1.1E-06	505	606	024	16440.693	7.1E-07	7.7E-07	000	101	024
16366.371	3.5E-07	3.1E-07	432	533	024	16440.850	2.7E-07	2.8E-07	634	633	024
16366.591	5.7E-07	5.8E-07	431	532	024	16443.013	4.4E-07	2.8E-07	322	331	104
16368.972	3.1E-07	3.0E-07	422	533	1 0 4	16443.013	4.4E-07	1.9E-07	515	606	104
16369.904	1.0E-06	9.2E-07	422	523	024	16443.156	5.6E-07	5.8E-07	533	532	024
16372.725	1.1E-06	9.5E-07	423	524	024	16444.367	8.5E-07	1.0E-06	432	431	024
16372.936	1.2E-06	1.2E-06	413	514	024	16444.534	4.9E-07	5.7E-07	423	422	024
16376.638	3.5E-07	2.4e-07	414	515	1 11 0	16444.968	1.2E-06	1.3E-06	331	330	024
16378.643	1.3E-06	1.3E-06	404	505	024	16445.262	6.2E-07	5.5E-07	212	211	024
16379.718	1.1E-06	1.1E-06	414	515	024	16445.522	8.1E-07	8.4E-07	431	432	024
16380.560	2.2E-07	1.7E-07	414	505	1110	16445.752	1.4E-06	1.4E-06	330	331	024
16383.108	4.9E-07	5.0E-07	330	431	024	16445.918	5.0E-07	4.8E-07	532	533	024
16383.780	4.9E-07	4.6E-07	321	432	104	16446.204	4.9E-07	4.3E-07	321	330	104
16386.790	9.7E-07	9.9E-07	321	422	024	16447.844	3.6E-07	2.4E-07	633	634	024
16388.839	9.7E-07	9.9E-07	322	423	024	16448.810	1.1E-06	1.0E-06	322	321	024
10389.029	1.3E-07	3.9E-08	303	522	024	16449.125	1.8E-07	4.3E-08	652	651	104
16389.246	1.3E-06	1.4E-06	312	413	024	16449.125	1.8E-07	4.3E-08	651	652	104
10394.209	1.5E-06	1.2E-06	303	404	024	16450.864	1.8E-06	1.9E-06	221	220	024
16393.308	1.5E-00	1.5E-06	515	414	024	16451.780	2.8E-06	1.2E-06	111	110	024
16200 167	J.JE-07	4.20-07	213	404	1 1 0 4	10451.780	2.8E-06	1.8E-06	220	221	024
16300 007	1.0E-U/ 1.4E-07	1.52-07	221	221	104	10453.220	1.0E-06	1.0E-06	321	322	024
16400 660	1.40-07	1.515-07	220	121	104	10433.090	4.0E-07	1.4E-07	111	220	104
10400.009	1.00-07					10455.090	4.0E-07	2.2E-07	404	515	104

Note. The experimental and predicted (5) intensities are given in cm⁻²/atm at 296 K and correspond to pure HDO. The total experimental absorption of HDO is normalized to that predicted in Ref. (5) (see text). T means tentative assignment. Lines blended by $H_2^{16}O$ lines are marked (*b*). In the case of unresolved multiplets, the same experimental intensity is given for the different components, while the intensities from Ref. (5) correspond to each component. Some lines in the high-frequency edge of the observed spectrum belonging to the $5\nu_3$ band were excluded from the list.

Observed	Intensity		Upper	Lower	Vib.	Observed	Intensity		Upper	Lower	Vib.
Wavenumber	(cm ⁻¹	²/atm)	$J K_a K_c$	$\int K_a K_c$	State	Wavenumber	(cm ⁻²	/atm)	$J K_a K_c$	$J K_a K_c$	state
(cm ⁻¹)	Obs.	Ref. (5)				(cm ⁻¹)	Obs.	Ref. (5)			
16455.665	1.8E-07	1.0E-07	515	524	104	16535.436	4.4E-07	5.0E-07	818	717	024
16456.860	5.6E-07	5.5E-07	422	423	024	16535.974	8.6E-07	8.7E-07	523	422	024
16457.879	1.1E-06	1.2E-06	110	111	024	16536,795	1.9E-06	1.6E-06	514	413	024
16458.391	1.9E-07	1.6E-07	110	221	104	16536.795	1.9E-06	6.2E-07	634	533	024
16459 002	1 8E-07	5 0E-08	322	423	104	16536 987	7.9E-07	7.0E-07	625	524	024
16459.002	1.8E-07	1 1E-07	404	505	104	16537 715	97E-07	8 3E-07	808	707	024
16462 104	1.8E-07	1.9E-07	414	505	104	16540 943	69E-07	61E-07	633	532	024
16463 534	6.2E-07	5.5E-07	211	212	024	h 16541 386	4.6E-07	2.5E-07	744	643	024
16464 152	1.8E-07	1.7E-07	523	524	024	16542 166	6.8E-07	2.5E-07	743	642	024
16465 705	1.8E-07	9.2E-08	312	413	104	16542 166	6.8E-07	5 3E-07	909	808	024
16469 479	2 7E-07	2 4E-07	303	414	104	16547 444	5 1E-07	7.9E-07	726	625	024
16471 358	8 0E-07	8 3E-07	101	000	024	16549 029	2.6E-07	1.76-01	120	025	024
16471.832	2 7E-07	3.0E-07	312	313	024	16549 714	2.0L-07	1 3E-06	615	514	024
16481 636	9.7E-07	1.1E-06	212	111	024	16550 823	6.0E-07	5 2E 07	725	621	024
16482 810	3 1E-07	2 3E-07	202	313	101	16552 006	2.2E-07	5.2107	155	034	024
16483 500	2 1E-07	9.7E-08	202	312	104	16553 726	8 2E-07	0 4E-07	621	522	0 2 4
16485 564	135-06	1.4E-06	202	101	024	16557.041	3.2E-07	5.4L-07	024 027	725	024
16480 165	1.5E-00	1.42-00	211	110	024	16557 340	7.1E-07	3.3E-07	212	120	104
16400.013	2 3E 07	1.1E-00	412	110	104	16557.001	2.5E-07	2.06-07	512	503	104
16401 628	2.3E-07	1.5E 07	212	422	104	16557.901	4.0E-07	1.96-07	525	514	104
16491.028	2.4E-07	1.36-07	212	212	104	16550,162	4.0E-07	1.4E-07	024	615	104
10493.703	1.4E-00	1.7E-00	212	212	024	16559.163	5.3E-07	4.8E-07	/ 3 4	633	024
10490.948	9.7E-07	9.0E-07	322	221	024	16559.652	2.1E-07	2.0E-07	422	413	104
16498.202	1.5E-06	1.5E-06	303	202	024	16560.062	7.7E-07	8.5E-07	716	615	024
16499.357	9.9E-07	8.9E-07	321	220	024	16563.976	5.3E-07	3.6E-07	836	735	024
16499.643	5.6E-07	4.6E-07	313	202	1110	16565.416	3.5E-07	3.3E-07	928	827	024
16502.111	4.3E-07	3.7E-07	414	313	1110	16567.714	3.5E-07	1.5E-07	202	101	104
16505.207	1.3E-06	1.5E-06	414	313	024	16567.714	3.5E-07	1.7E-07	303	212	104
16506.055	1.3E-06	1.6E-06	312	211	024	16567.867	5.3E-07	5.7E-07	817	716	024
16507.030	8.0E-07	5.0E-07	432	331	024	16569.490	2.7E-07	1.4E-07	514	505	104
16507.030	8.0E-07	7.5E-08	651	550	024	16571.034	6.2E-07	7.2E-07	725	624	024
16507.030	8.0E-07	7.5E-08	652	551	024	16571.314	1.3E-07	1.2E-07	1029	928	024
16507.964	5.9E-07	5.0E-07	431	330	024	16573.931	5.9E-07	3.0E-07	918	817	024
16509.275	1./E-06	1.9E-06	404	303	024	16573.931	5.9E-07	1.1E-07	945	844	024
16510.980	1.2E-06	1.3E-06	423	322	024	16575.952	3.7E-07	2.2E-07	937	836	024
16511.169	2.7E-07	1.8E-07	414	303	1 11 0	16576.897	2.7E-07	1.6E-07	1019	918	024
16512.226	3.5E-07	2.4E-07	542	441	024	16579.704	2.9E-07	1.9E-07	303	202	104
16512.226	3.5E-07	2.4E-07	541	440	024	16582.499	2.7E-07	1.3E-07	312	211	104
16513.850	1.4E-06	1.7E-06	515	414	024	16582.499	2.7E-07	7.8E-08	524	515	104
16516.833	1.1E-06	1.2E-06	422	321	024	16586.330	4.9E-07	4.4E-07	826	725	024
16516.998	3.5E-07	2.5E-07	202	211	104	16591.360	2.7E-07	2.1E-07	505	414	104
16518.277	1.8E-06	1.9E-06	505	404	024	16592.717	3.7E-07	2.5E-07	414	303	104
16521.714	1.3E-06	1.7E-06	413	312	024	16599.016	2.2E-07	1.7E-07	221	110	104
16522.071	7.6E-07	7.1E-07	533	432	024	b 16599.392	3.7E-07	2.8E-07	927	826	024
16522.808	1.5E-06	1.6E-06	616	515	024	16600.418	3.5E-07	1.8E-07	606	515	104
16523.914	6.2E-07	6.7E-07	532	431	024	16604.328	3.1E-07	1.8E-07	606	505	104
16524.148	1.2E-06	1.3E-06	524	423	024	16609.864	2.0E-07	1.4E-07	322	211	104
16525.742	1.4E-06	1.6E-06	606	505	024	16632.554	2.3E-07				
16526.834	3.2E-07	3.0E-07	643	542	024	16642.255	1.7E-07	7.8E-08	422	313	104
16527.044	4.2E-07	3.0E-07	642	541	024	16644.042	3.8E-07				
16529.401	2.6E-07					16645.386	1.6E-07				
16530.573	1.3E-06	1.2E-06	717	616	024	16656.583	6.6E-07	1.0E-07	532	423	104
16531.695	3.2E-07					16658.758	2.6E-07	8.0E-08	634	523	104
16531.850	1.8E-07	8.8E-08	111	110	104	16665.545	2.8E-07				
16532.129	1.3E-06	1.3E-06	707	606	024	16666.050	3.0E-07				
16533.784	1.9E-07	1.8E-07	523	422	501	16670.453	2.6E-07				
b 16535.266	8.8E-07	4.0E-07	625	524	501	16671.110	1.4E-07				
										_	

At the second step, we tried to fit all the observed energy levels using an interacting scheme involving the five vibrational states. As a result, we found that the $K_a = 0$, 1 energy levels of the (0 2 4) state strongly interact both through

anharmonic and rovibrational resonances with the (1 5 2) and (1 11 0) highly excited bending states. This resonance scheme is very similar to that affecting the (0 1 4) state for which the $K_a = 0$, 1 levels were found to be perturbed by the (1 4 2) and

FIG. 1. Comparison of the overview of the HDO absorption spectrum between 16 300 and 16 670 cm⁻¹. (a) Stick spectrum retrieved from the ICLAS spectrum. The absolute intensities were obtained after normalization of the experimental data against the corresponding absorption intensity predicted (5) in the analyzed region (see text). (b) Calculated spectrum predicted by the *ab initio* calculations of Ref. (5). Some lines in the high-frequency edge of the spectrum belonging to the $5\nu_3$ band were excluded both from the observed spectrum and from the predicted spectrum (5).

(0 12 0) states (2). The occurrence of such high-order resonance interactions in HDO molecule has been already discussed in Ref. (2). Though the perturbations observed for the $K_a = 0, 1$ sublevels of the (0 2 4) are large, we could identify only two additional levels, at 16 545.814 and 16 602.502 cm^{-1} , observed through six additional lines, which borrow their intensity from the corresponding line partners of the $2\nu_2 + 4\nu_3$ band. Considering the limited experimental information relative to the (1 5 2) and (1 11 0) dark states, the difficulty to estimate reasonably the unperturbed rotational constants of these states, our attempts to perform a complete fit of all the observed energy levels were not satisfactory enough to be presented here. However, the EH calculations suggest that the two above additional energy levels, assigned in Ref. (5) as (0 2 4) [303] and (0 2 4) [414] levels, respectively, should be, in fact, reassigned to (1 11 0) [313] and (1 11 0) [414], respectively.

Figure 2 shows the excellent agreement between the observed and predicted (5) spectra between 16 498 and 16 536 cm⁻¹. Five lines of the $5\nu_1 + \nu_3$ and $\nu_1 + 11\nu_2$ bands borrowing their intensities through resonance transfer are indicated.

B. The $v_2 + 5v_3$ Band

The $\nu_2 + 5\nu_3$ band centered at 18 208.434 cm⁻¹ is the most excited overtone transition of HDO analyzed so far. It is a rather weak band of exclusively *a* type with line intensities not exceeding 2.2×10^{-6} cm⁻²/atm. Overall, 173 absorption lines were attributed to the HDO species in the 18 000–18 350 cm⁻¹ spectral region. Most of the observed transitions belong to the

 $\nu_2 + 5\nu_3$ band, while seven transitions borrowing their intensities through resonance interaction with the main band involve rotational sublevels of the (1 1 4) state and the (0 6 3) and (2 7 1) highly excited bending states. As in the above analysis, line positions and intensity calculations within the effective Hamiltonian (EH) approach, together with the high-accuracy *ab initio* predictions of Ref. (5), were systematically used in the identification process.

The experimental intensities were normalized against the absolute values predicted in Ref. (5), as described above. In the determination of the normalizing factor, 64% of the measured line intensities were compared with their predicted (5) values yielding an average agreement of 16%. Figure 3 shows the overview of the observed, simulated (EH), and predicted (5) spectrum of the $\nu_2 + 5\nu_3$ band. The list of the 173 measured line positions, the corresponding experimental, calculated (see below), and predicted (5) intensities followed by the rotational assignment is presented in Table 4. Except for seven weak lines (4%), all the transitions could be rovibrationally assigned.

The experimental energy levels of the (0 1 5) vibrational state are gathered in Table 5. The theoretical treatment of the observed line positions and intensities show that the resonance interactions of the $(0\ 1\ 5)$ state with the nearby states are surprisingly weak compared to the (0 1 4) situation. It allows in a good approximation, the $(0\ 1\ 5)$ state to be treated as an isolated vibrational state. Finally, 74 of the 80 experimental energy levels could be reproduced within 0.024 cm⁻¹ by the EH. This rms deviation is significantly larger than the experimental accuracy on the energy levels $(0.004 \text{ cm}^{-1} \text{ for the levels})$ obtained from combination differences of two or more lines). The deviations of the observed energy levels from their calculated (EH) and predicted (5) values are also given in Table 5 for comparison. It is interesting to note that Ref. (5) predicts the energy levels of the (0 1 5) state with a nearly constant shift of 0.7 cm⁻¹ up to J = 8, while the deviations increase up to 1.8 cm^{-1} for J = 11. The fitted values of the rotational and centrifugal distortion parameters are listed in Table 6.

The rovibrational wavefunctions obtained from the energy level fittings were then used to derive two transition moment parameters ($\mu_1 = 2.455(40) \times 10^{-5}$ D and $\mu_2 = 5.48(60) \times 10^{-8}$ D) from the fitting to the normalized experimental intensities of 74 unblended lines. These parameters provide an average accuracy of 11% in the reproduction of the input data. The line intensities calculated with these transition moment parameters are included in Table 4. The total calculated band intensity is 1.47×10^{-4} cm⁻²/atm in agreement with a predicted (5) value of 1.56×10^{-4} cm⁻²/atm. Figures 3 and 4 show a comparison of the observed, calculated, and predicted (5) spectra for the whole and an expanded regions, respectively.

Among the six perturbed energy levels excluded from the fit, five deviate from their unperturbed positions by less than 0.17 cm⁻¹, while the [4 1 4] level is shifted by +0.38 cm⁻¹. This last level is the only one for which the assignment of the perturbers

99

TABLE 2										
Rotational Energy Levels (cm $^{-1}$) of the (0 2 4), (1 0 4), (1 11 0), and (5 0 1) Vibrational States of HDO										

		(0 2 4)			(104)				(1 11 0)				(5 0 1)			
$J K_a K_c$	E_{obs}	σ	N	Δ	Eobs	σ	N	Δ	Eobs	σ	N	Δ	Eobs	σ	N	Δ
0.0.0	*16456 201		1	0.00												
101	*16471.359	0.001	2	-0.03												
111	*16484.274	0.002	2	-0.04	*16564.352	0.006	2	-0.12								
110	*16487.689	0.001	2	-0.03	16567.316	0.016	1	-0.12								
202	*16501.072	0.001	2	-0.04	16585.201	0.010	3	-0.11								
212	*16521.659	0.002	3	-0.02	16600.060		1	-0.09								
221	16560.133	0.001	2	-0.05	16631.514	0.002	2	-0.11								
220	16560,706	0.001	2	-0.04	16632.030		1	-0.13								
303	*16544.425	0.007	3	-0.03	16625.868	0.008	2	-0.10			•					
313	*16551.891	0.001	3	-0.02	16631.244	0.005	5	-0.12	*16545.814	0.002	2	0.04				
372	16605 876	0.007	3	-0.01	16676.043	0.005	3	-0.12								
321	16608.622	0.005	3	-0.04	16679.260	0.006	2	-0.07								
331	16678.018		1	-0.06												
330	16678.780	0.005	2	-0.03												
404	*16600.597	0.008	2	-0.02	16680.954	0.005	3	-0.10	*1.((02.502			0.00				
414	*16605.590	0.007	2	0.00	16084.048	0.002	2	-0.13	*16602,502	0.003	4	0.02				
413	16666 366	0.002	3	-0.03	10/12./49		1	-0.15								
422	16673.899	0.002	3	-0.04	16742.639	0.004	3	-0.10								
432	16740.045	0.007	3	-0.03												
431	16741.008	0.006	3	-0.03												
441	16837.517	0.010	2	-0.03												
440	16837.524	0.001	2	-0.04	*16747 740	0.007	2	0.11								
515	*16670 237	0.005	2	-0.02	16749 314	0.007	$\frac{2}{2}$	-0.11								
514	*16719.774	0.003	2	-0.01	16791.431	0.004	2	-0.11								
524	16741.192	0.008	3	-0.02	16808.367	0.004	2	-0.06								
523	16757.797	0.009	3	-0.09	16823.137		1	-0.10					16755.620		1	0.06
533	16817.557	0.007	3	-0.02												
532	16819.588	0.004	3	-0.02	*16873.624		I	-0.12								
542	16914.527	0.021	2	-0.02												
551	17031.811	0.015	ĩ	-0.03												
550	17031.811		1	-0.04												
606	*16747.686	0.001	2	-0.03	*16826.279	0.004	3	-0.09								
616	*16748.674	0.002	2	-0.05												
615	16814.954	0.005	2	-0.03									16939 907	0.006	2	0.10
623	16857 724	0.001	2	-0.07	16920 408		1	-0.10					10828.897	0,006	2	0.18
634	16910.516	0.002	2	-0.02	*16962.752		î	-0.09								
633	16915.354	0.003	3	0.00												
643	17007.067	0.008	3	-0.03												
642	17007.298	0.004	2	-0.04	17150 202			0.00								
652	17122.998	0,001	2	-0.05	17158,292		1	-0.08								
661	17300 902	0.001	ĩ	-0.03	17150.291			-0.00								
660	17300.902		1	-0.03												
707	*16838.457	0.014	2	-0.04												
717	*16839.188	0.027	1	-0.06												
716	*16922.563	0.006	2	-0.03												
725	16974 579	0.013	2	-0.04												
735	17018.347	0.007	3	-0.05												
734	17028.825	0.002	2	-0.02												
744	17115.273	0.008	3	-0.04												
743	17116.123	0.013	2	-0.07												
133	17229,481		1	-0.08												
808	*16940.876	0.001	2	-0.17												
818	*16939.844		1	-0.07												
817	*17041.789	0.005	2	-0.04												
827	17047.469	0.001	2	-0.04												
826 836	*1/106.453 17140 991		1	-0.10												
909	17054.681		1	-0.21												
918	*17172.494		i	-0.04												
928	*17175,363		1	-0.12												
927	17252.480		1	-0.15												
937	17277.572		1	-0.18												
945 1019	*17312 632		1	-0.08												
10 2 9	*17314.411		î	-0.14												

Note. Asterisks denote the energy levels excluded from the fitting. σ denotes the experimental uncertainty of the level in cm⁻¹. N is the number of lines sharing the same upper level. Δ is the difference between the experimental and predicted (5) values of the energy.

TABLE 3

Spectroscopic Constants of the (0 2 4), (1 0 4), and (5 0 1) Vibrational States of HDO (in cm⁻¹)

	(0 2 4)	(1 0 4)	(501)	
E_{v}	16454.9930(370)	16539.0421(160)	16481.89	
A	22.66089(770)	19.40705(630)	19.9396(340)	
В	9.34937(310)	8.91221(110)	8.38238(670)	
С	5.91155(350)	5.97623(120)	5.9	
Δ_k	$4.5517(200) \times 10^{-2}$	$8.586(300) \times 10^{-3}$	9.1×10^{-3}	
Δ_{jk}	$-1.902(160) \times 10^{-3}$	3.0×10^{-4}	3.0×10^{-4}	
Δ_i	$4.656(210) \times 10^{-4}$	4.2×10^{-4}	4.2×10^{-4}	
δ_k	$5.238(180) \times 10^{-3}$	1.6×10^{-3}	1.6×10^{-3}	
δ_i	$3.258(180) \times 10^{-4}$	1.5×10^{-4}	1.5×10^{-4}	
\dot{H}_k	9.7×10^{-4}	3.3×10^{-5}	3.3×10^{-5}	

Coupling Constants

	F_k	F_i	F _{xy}	C_{xz}
(104)- $(024)(104)$ - (024)	-0.52724(370)	$-8.381(270) \times 10^{-2}$		-0.5351(100)
(501)-(024)	$-6.16(120) \times 10^{-2}$	$2.802(130) \times 10^{-2}$	$2.283(170) \times 10^{-2}$	0.5551(100)

Note. All the energy levels of the $(0\ 2\ 4)$ state with $K_a = 0, 1$, greatly perturbed by interaction with the $(1\ 5\ 2)$ and $(1\ 11\ 0)$ states, were excluded from the fit. Parameters presented without confidence interval were fixed to the correspondent values of the $(1\ 2\ 0)$ state (10) for the $(0\ 2\ 4)$ and the values of the $(0\ 0\ 4)$ state (1) for the $(1\ 0\ 4)$ and $(5\ 0\ 1)$ states.

could be supported by the observation of extra lines. According to the predictions of Ref. (5), this energy level is perturbed by two states leading to a considerable intensity transfer to several resonance line partners. This intensity transfer seems to be confirmed both by the observation of three resonance line partners and by the overestimation of the EH calculated intensities of the transitions involving the [414] (0 1 5) level (see Fig. 4). The vibrational assignment of the perturbers is difficult, as Ref. (5) gives the same rovibrational assignment, [414] $(0\ 1\ 5)$, for the three interacting levels. Additional calculations in the frame of the EH method were needed to identify the possible resonance partners of the $(0\ 1\ 5)$ bright state. According to Ref. (5), two highly excited bending states $(0\ 6\ 3)$ at

FIG. 2. Comparison of the HDO stick absorption spectrum in the 16 498–16 536 cm⁻¹ spectral region. (a) Stick spectrum extracted from the ICLAS spectrum. (b) Calculated spectrum provided by Ref. (5). In this region, most of the transitions belong to the $2\nu_2 + 4\nu_3$ band except six lines, labeled in bold character, for which the vibrational assignment is indicated. Two unassigned lines are marked by "U."

FIG. 3. Comparison of the overview of the $\nu_2 + 5\nu_3$ band of HDO absorption spectrum. (a) Synthetic spectrum obtained in the effective Hamiltonian (EH) approach. (b) Calculated spectrum predicted by the *ab initio* calculations of Ref. (5). (c) Stick spectrum retrieved from the ICLAS data. The absolute intensities were obtained after normalization of the experimental data against the corresponding absorption intensity predicted (5) in the analyzed region (see text).

TABLE 4 Wavenumbers, Intensities, and Rovibrational Assignments of the Transitions of the ν_2 + 5 ν_3 Band of HDO between 18 000 and 18 350 cm⁻¹

Observed	<u></u>	Intensity		Upper	Lower	Observed		Intensity		Upper	Lower
Wavenumber	Oha	(cm ⁻² /atm)	$\mathbf{D} \circ \mathbf{f}(5)$	$J K_a K_c$	$J K_a K_c$	Wavenumber	Ohe	$(\text{cm}^{-2}/\text{atm})$	Def(5)	$J K_a K_c$	$J K_a K_c$
(cm ⁻)	2 9E 07		0 712 00	<u> </u>	04.5	18120.021	1 2E 06	1 3E-06	1.6E-06	413	514
18006.201	-4.2E-07	2.3E-07	8.7E-08 1.6E-07	10010	11011	18120.951	2.6E-07	1.512-00	1.0100	415	514
18009.903	4.2E-07	2.3E-07	1.6E-07	10110	11 1 11	**18127.310	6.5E-07		6.6E-07	404	515
18022.381	4.8E-07	1.4E-07	1.1E-07	927	1028	18128.624	9.1E-07	1.5E-06	6.8E-07	41,4	515
18022.381	4.8E-07	1.5E-07	1.4E-07	743	844	18128.624	9.1E-07 2.0E-06	0 3E-07	6.1E-07 1.2E-06	414	213
18023.411	2.0E-07 2.3E-07	6 1E-07	6.7E-07	550	651	18129.167	2.0E-06	1.6E-06	1.9E-06	404	505
18024.898	2.3E-07	6.1E-08	6.7E-08	551	652	18130.841	8.5E-07	9.4E-07	1.2E-06	322	423
18031.592	2.3E-07	1.8E-07	1.5E-07	835	936	18137.753	1.4E-06	1.4E-06	1.8E-06	312	413
18031.871	2.3E-07	3.8E-07	3.2E-07	919	10 1 10	18144.862	1.5E-06	1.6E-06	2.1E-06	313	414
18031.980	2.3E-07	3.8E-07	3.2E-07	909	742	18146.073	2.2E-06	1.7E-06 6.7E-07	2.2E-06 0.1E-07	303	404
18038.955	5.3E-07	2.0E-07	2.0E-07	643	744	18146.930	4.8E-07	1.8E-07	1.6E-07	744	743
18041.209	5.3E-07	3.3E-07	2.9E-07	827	928	18147.096	9.5E-07	6.6E-07	9.1E-07	221	322
18042.613	3.9E-07	2.5E-07	2.2E-07	826	927	18148.260	7.4E-07	3.3E-07	3.3E-07	643	642
18044.945	5.3E-07	2.9E-07	2.8E-07	735	836	18148.713	4.7E-07	3.3E-07	3.2E-07	642	643
18045.158	4.3E-07	3.4E-07	3.1E-07	817	918	18149.365	6.9E-07	5.7E-07	6.1E-07	542	541
18046.534	3.1E-07	2 8E-07	2 6E-07	734	835	18149.434	5.8E-07 1.7E-06	5.7E-07 94E-07	0.1E-07 1.1E-06	54 I 44 0	542 441
18047.710	2.9E-07	2.01-07	2.01-07	754	055	18150.339	1.7E-06	9.4E-07	1.1E-06	441	44 0
18053.027	5.3E-07	5.8E-07	5.4E-07	818	919	18154.421	1.4E-06	1.3E-06	1.8E-06	211	312
18053.239	5.7E-07	5.8E-07	5.4E-07	808	909	18160.690	1.5E-06	1.4E-06	1.9E-06	212	313
18055.741	6.1E-07	2.2E-07	2.4E-07	541	642	18161.897	1.6E-06	1.6E-06	2.2E-06	202	303
18055.741	6.1E-07	2.2E-07	2.4E-07	542	643 827	18164.592	3.1E-07 2.3E-07	1.6E-07	1.4E-07	625	734
18060.733	3.7E-07 4 9E-07	4.9E-07 4 1E-07	4.8E-07	72.5	82.6	18169.758	2.3E-07 3.4E-07	2.9E-07	3.0E-07	634	633
18062.524	4.8E-07	4.0E-07	4.2E-07	634	735	18171.149	9.1E-07	8.8E-07	1.2E-06	110	211
18063.206	4.3E-07	4.0E-07	4.1E-07	633	734	18172.766	4.7E-07	5.2E-07	5.7E-07	533	532
18065.914	5.3E-07	5.3E-07	5.2E-07	716	817	18174.460	7.4E-07	8.8E-07	1.0E-06	432	431
18070.432	3.3E-07	1 75 07	2 05 07	4 4 1	512	18175.212	7.4E-07	8.8E-07	1.0E-06	431	432
18072.443	5.8E-07	1.7E-07	2.0E-07 2.0E-07	441	542	18175.527	1.5E-00 1.7E-06	1.3E-00 5.1E-07	1.9E-00 5.6E-07	537	530
18073.226	9.8E-07	8.3E-07	8.4E-07	717	818	18175.621	1.7E-06	1.5E-06	1.9E-06	330	331
18073.612	9.8E-07	8.3E-07	8.5E-07	707	808	18175.935	8.0E-07	9.2E-07	1.3E-06	111	212
18078.024	4.9E-07	1.0E-07	8.5E-08	762	761	18177.424	1.1E-06	1.3E-06	1.8E-06	101	202
18078.024	4.9E-07	1.0E-07	8.5E-08	761	762	18177.667	2.3E-07	2.8E-07	2.8E-07	633	634
18078.628	8.0E-07	6.0E-07	0.3E-07	624 661	125	181//.99/	3.7E-07	3.0E-07	3.3E-07	524 734	523 735
18079.016	6.4E-07	1.8E-07	1.7E-07	66.0	661	18184.770	2.6E-07	2.9E-07	3.7E-07	313	312
18079.366	9.8E-07	6.8E-07	7.3E-07	625	726	18186.003	6.4E-07	5.3E-07	6.4E-07	423	422
18079.649	1.2E-06	4.9E-07	5.5E-07	532	633	18190.797	9.8E-07	9.2E-07	1.2E-06	322	321
18079.649	1.2E-06	4.9E-07	5.5E-07	533	634	18192.926	9.1E-07	7.3E-07	1.0E-06	000	101
18085.423	8.5E-07	7.7E-07	7.8E-07	615	716	18193.190	1.6E-06	1.6E-06	2.2E-06	221	220
18092.493	1.3E-06	1.1E-06	1.2E-00	60.6	707	18195 582	9.8E-07	9.0E-07	1.2E-06	321	322
*18093.439	3.7E-07		1.5E-07	652	707	18198.956	2.0E-07	4.2E-08	3.1E-08	817	734
18095.515	1.1E-06	8.0E-07	9.1E-07	523	624	18199.209	6.9E-07	5.1E-07	6.2E-07	422	423
18096.291	6.4E-07	5.1E-07	6.1E-07	431	532	18201.573	1.4E-06	1.0E-06	1.4E-06	111	110
18096.479	6.9E-07	5.0E-07	6.1E-07	432	533	18205.447	3.6E-07	2.9E-07	3.2E-07	523	524
18097.131	2.6E-07	0.0C-07	1.0E-00	324	025	18207.337	3.2E-00	9.7E-08	8.9E-08	652	551
18103.647	9.5E-07	1.0E-06	1.2E-06	514	615	18210.285	3.2E-07	9.7E-08	8.7E-08	651	550
18110.755	1.2E-06	1.4E-06	1.6E-06	515	616	18212.772	9.1E-07	5.2E-07	7.1E-07	211	212
18111.321	1.9E-07	6.1E-08	5.1E-08	606	625	18213.864	2.8E-07	1.6E-07	1.7E-07	624	625
18111.659	1.2E-06	1.4E-06	1.7E-06	505	606	18220.340	5.3E-07	3.2E-07	4.2E-07	312	313
18112.272	9.5E-07 5.0F-07	9.4E-07 3 8E-07	1.2E-06 4 8E-07	422	523 431	18223.588	1.5E-06 4 1E-07	7.9E-07 13E-07	1.1E-06 1.0E-07	753	652
18113.089	4.9E-07	3.7E-07	4.8E-07	331	432	18224.736	4.1E-07	1.3E-07	1.0E-07	752	651
18114.235	8.5E-07	9.7E-07	1.2E-06	423	524	18227.337	4.9E-07	2.5E-07	2.6E-07	542	441
18115.927	3.3E-07	1.5E-07	1.3E-07	753	752	18227.337	4.9E-07	2.5E-07	2.6E-07	541	440
18116.042	3.3E-07	1.5E-07	1.3E-07	752	753	18229.779	3.1E-07	2.0E-07	2.6E-07	413	414
18117.072	4.5E-07 4.5E-07	2.7E-07 2.7E-07	2.0E-07	0 3 2 6 5 1	031	18231.2/2	1.2E-06 8.0E-07	1.1E-00 5.1E-07	1.4E-06 5.8E-07	212	111
18117.072	8.5E-07	4.6E-07	4.9E-07	550	551	18237.720	1.9E-06	5.1E-07	5.8E-07	431	330
18118.099	8.5E-07	4.6E-07	4.9E-07	551	550	18237.720	1.9E-06	1.5E-06	2.0E-06	202	101

Note. The experimental, calculated (EH), and predicted (5) intensities are given in cm⁻²/atm at 296 K and correspond to pure HDO. The total calculated and experimental line intensities were normalized to the total HDO intensity predicted in Ref. (5) (see text). T means tentative assignment. The asterisks (*), (**), and (***) mark extra lines of the $\nu_1 + \nu_2 + 4\nu_3$, $6\nu_2 + 3\nu_3$, and $2\nu_1 + 7\nu_2 + \nu_3$ bands, respectively (see text). In the case of unresolved multiplets, the same experimental intensity is given for the different components, while the intensities calculated from the EH or from Ref. (5) correspond to each component.

TABLE 4—Continued

Observed	Intensity			Upper	Lower	Observed		Intensity		Upper	Lower
Wavenumber		(cm ⁻² /atm)		JK_aK_c	$J K_a K_c$	Wavenumber		(cm ^{-/} atm)	D (())	$J K_a K_c$	$J K_a K_c$
(cm ⁻¹)	Obs.	Calc.	Ref.(5)			(cm ⁻⁺)	Obs.	Calc.	Ref.(3)		
18238.394	1.3E-06	1.0E-06	1.4E-06	211	110	18277.810	1.8E-06	1.8E-06	1.5E-06	717	616
18240.291	2.0E-07	1.4E-07	1.6E-07	514	515	18279.042	1.1E-06	6.8E-07	5.7E-07	735	634
18241.711	1.3E-06	8.2E-07	1.0E-06	321	220	18279.801	1.9E-06	1.8E-06	1.5E-06	707	606
18242.330	4.0E-07	3.4E-07	3.2E-07	642	541	18283.172	2.1E-06	1.9E-06	2.0E-06	514	413
18243.121	1.8E-06	1.7E-06	2.1E-06	313	212	18283.349	9.8E-07	1.4E-06	1.1E-06	818	717
18250.064	1.9E-06	2.0E-06	2.4E-06	303	202	18284.506	1.4E-06	1.4E-06	1.1E-06	808	707
18251.678	8.0E-07	7.4E-07	7.7E-07	533	432	18285.828	1.1E-06	1.1E-06	9.7E-07	726	625
18252.476	1.3E-06	1.3E-06	1.5E-06	423	322	18287.776	9.5E-07	1.1E-06	7.6E-07	919	818
**18252.776	7.5E-07		6.8E-07	404	313	18288.383	1.1E-06	1.0E-06	7.5E-07	909	808
18253.595	8.0E-07	7.2E-07	7.6E-07	532	431	18289.529	9.1E-07	6.4E - 07	5.3E-07	734	633
***18254.087	1.5E-06		7.9E-07	414	313	18291.127	6.9E-07	7.3E-07	4.6E-07	10110	919
18254.087	1.5E-06	2.1E-06	9.1E-07	414	313	18291.239	8.0E-07	5.3E-07	3.9E-07	836	735
18254.545	1.8E-06	1.6E-06	2.1E-06	312	211	18291.488	7.4E-07	7.3E-07	4.6E-07	10 0 10	909
18254.794	1.4E-07					18293.711	5.0E-07	4.8E-07	2.5E-07	11011	10 0 10
18256.627	4.4E-07	3.3E-07	2.8E-07	744	643	18293.878	8.5E-07	8.7E-07	6.6E-07	827	726
18257.789	4.5E-07	3.3E-07	2.8E-07	743	642	18294.088	1.3E-06	1.6E-06	1.5E-06	615	514
18259.192	1.4E-06	1.2E-06	1.4E-06	422	321	18294.742	1.1E-06	1.2E-06	1.2E-06	624	523
18259.784	2.0E-06	2.2E-06	2.5E-06	404	303	18301.943	1.1E-06	1.2E-06	1.1E-06	716	615
**18261.832	3.8E-07		1.4E-07	404	303	T18305.227	2.7E-07	4.1E-07	2.4E-07	1029	928
18262.982	1.9E-06	2.2E-06	2.3E-06	515	414	18306.978	6.4E-07	9.1E-07	6.9E-07	817	716
18264.967	1.5E-06	1.4E-06	1.5E-06	524	423	18309.009	5.8E-07	4.8E-07	3.6E-07	835	734
18265.765	9.5E-07	7.7E-07	7.3E-07	634	533	18309.898	5.8E-07	6.2E-07	4.2E-07	918	817
18267.810	2.0E-06	2.2E-06	2.3E-06	505	404	18310.692	1.0E-06	1.0E-06	8.7E-07	725	624
18269.709	1.9E-06	1.9E-06	2.2E-06	413	312	18311.620	2.5E-07	4.1E-07	2.4E-07	1019	918
18270.766	8.5E-07	7.4E-07	6.9E-07	633	532	18312.644	2.8E-07	2.5E-07	1.3E-07	11110	1019
18271.067	1.8E-06	2.0E-06	1.9E-06	616	515	18324.147	6.0E-07	7.3E-07	5.6E-07	826	725
18273.354	5.4E-07					18324.931	2.4E-07	1.2E-07	1.5E-07	422	303
18274.243	1.8E-06	2.0E-06	1.7E-06	606	505	T18328.119	4.4E-07	3.3E-07	2.2E-07	936	835
*18274.643	4.9E-07		2.6E-07	652	505	18334.210	5.3E-07	4.7E-07	3.1E-07	927	826
18274.984	4.9E-07		1.2E-07	616	505	18340.380	4.5E-07	2.8E-07	1.6E-07	1028	927
18276.153	1.3E-06	1.3E-06	1.3E-06	625	524	18348.902	4.5E-07	1.3E-07	1.5E-07	523	404
18277.228	1.8E-06	1.3E-06	1.4E-06	523	422						

18 202 cm⁻¹ and (2 7 1) at 18 163 cm⁻¹ could perturb the $K_a =$ 0, 1 energy levels of the (0 1 5) state. This resonance is a consequence of the relative values of the vibrational energy and rotational constants of the three interacting states. After considering the predicted energy levels of the (0 6 3) and (1 7 2) states (5), we conclude that the rovibrational states perturbing the [4 1 4] (0 1 5) level should, in fact, be labeled as [404] (0 6 3) and [414] (2 7 1) states. Indeed, we found three extra lines reaching the [404] (0 6 3) level in the recorded spectrum (see Table 5 and Fig. 4). However, two more extra lines reaching the [414] (2 7 1) level and predicted (5) with significant intensity were not observed in the ICLAS spectrum. These lines correspond to the 4_{14} - 3_{13} (7.9 \times 10⁻⁷ cm⁻²/atm) and $4_{14}-5_{15}$ (6.1 × 10⁻⁷ cm⁻²/atm) transitions of the (2 7 1) state predicted (5) at 18 254.48 and 18 129.00 cm⁻¹, respectively. As we achieved very good agreement between the predicted (5) and measured line intensities throughout the spectrum, we examine this situation in more detail and conclude that the above predicted lines are in fact blended with the similar transitions of the ν_2 + 5 ν_3 band at 18 254.087 and 18 128.624 cm^{-1} (see Fig. 4). In other words, the [414] energy level of the (2 7 1) state is found in coincidence, within the experimental uncertainty limit, with that of the $(0\ 1\ 5)$ state. This accidental degeneracy may give an interesting opportunity for studying line mixing effects through a detailed investigation of the pressure dependence of this line profile. Figure 4 shows the comparison between the ICLAS spectrum, the *ab initio* predictions (5), and the EH synthetic spectrum in the 18 247–18 275 cm⁻¹ spectral region, including the 4_{14} – 3_{13} transition of the $\nu_2 + 5\nu_3$ band. According to Ref. (5), this last line is predicted to be split into three transitions marked by the upper arrows, while the lower arrows indicate the two experimental absorption lines corresponding to the above three predicted transitions.

The occurrence of other less pronounced resonance perturbations is revealed by significant deviations obtained for some of the $K_a = 0$, 1 energy levels included into the fitting. In particular, the fitted vibrational term value (18 208.380 cm⁻¹) deviates by 0.054 cm⁻¹ from the energy value of the [000] level. On the basis of the predictions of Ref. (5), it appears that the slight perturbation affecting the (0 1 5) [606] sublevel is due to an accidental resonance with the (1 1 4) [652] sublevel. The identification of this resonance which takes place for levels with a large difference of K_a values could not have been expected from the mere comparison of the vibrational term value of the (0 1 5) and (1 1 4) states, separated by more than 350 cm⁻¹. It has only been possible on the basis of the predictions of Ref. (5). Though the resonance shift of the (1 0 5) [6 0 6] energy level is rather limited, the intensity transfer is

TABLE 5Rotational Energy Levels (cm⁻¹) of the (0 1 5) Vibrational State of HDO

J K _a K _c	Eobs	σ	N	obscalc	Δ	J K _a K _c	Eobs	σ	N	obscalc	Δ
0 0 0	18208,434		1	0.054	0.73	643	18722.230		1	-0.008	0.59
101	18223.592	0.005	2	0.069	0.71	642	18722.596	0.007	2	-0.001	0.60
111	18234.065	0.004	2	-0.027	0.72	652	18826.246	0.007	2	-0.001	0.52
110	18237.339	0.006	2	-0.032	0.72	651	18826.246	0.008	2	-0.009	0.52
202	18253.227	0.001	2	0.076	0.71	661	18951.806		1	-0.011	0.41
212	18261.080	0.001	2	-0.017	0.79	660	18951.806		1	-0.011	0.43
211	18270.890	0.007	3	-0.033	0.71	707	18586.121	0.006	2	0.023	0.71
221	18302.472	0.013	2	-0.015	0.69	717	18586.429	0.004	2	0.022	0.71
220	18303.124	0.013	2	-0.011	0.69	716	18664.463	0.014	2	-0.006	0.68
303	* 18296.233	0.004	2	0.131	0.69	726	18670.701	0.002	2	0.009	0.65
313	18301.241	0.007	3	0.020	0.71	725	18714.242	0.001	2	0.014	0.69
312	18320.732	0.003	3	-0.028	0.71	735	18746.558	0.005	3	-0.038	0.65
322	18347.872	0.011	2	-0.015	0.69	734	* 18759.192	0.001	2	0.141	0.62
321	18350.975	0.005	2	0.007	0.69	744	18830.528	0.011	2	-0.003	0.59
331	18408.577	0.001	2	0.012	0.65	743	18831.766	0.007	2	-0.006	0.66
330	18408.650	0.006	2	0.003	0.65	753	* 18933.921	0.019	2	-0.090	0.54
404	* 18351.113	0.001	2	-0.126	0.75	752	18934.048		1	-0.012	0.43
414	* 18354.483	0.006	2	0.376	1.00	762	19059.152		1	0.016	0.41
413	18386.166	0.004	3	-0.022	0.71	761	19059.152		1	0.015	0.46
423	18407.868	0.003	2	-0.004	0.70	808	18687.667	0.001	2	0.020	0.80
422	18416.258	0.006	4	-0.002	0.69	818	18687.806	0.012	2	0.024	0.80
432	18470.139	0.004	3	0.005	0.65	817	18780.894	0.001	2	-0.001	0.67
431	18470.700	0.001	2	0.008	0.65	827	18784.305	0.001	2	0.007	0.66
441	18552.677	0.008	2	0.021	0.59	826	18844.263	0.007	2	0.027	0.74
440	18552.685	0.017	2	0.020	0.59	836	18868.143		1	-0.010	0.61
505	18417.970	0.004	2	-0.009	0.71	835	* 18890.977	0.007	2	0.166	0.63
515	18419.367	0.003	2	-0.059	0.71	844	18957.836		1	0.019	0.67
514	18466.155	0.001	3	0.001	0.68	909	18800.904	0.006	2	-0.014	1.07
524	18482.002	0.008	3	0.001	0.67	919	18800.985	0.002	2	0.008	1.07
523	18499.062	0.003	3	0.001	0.67	918	18908.468	0.007	$\frac{1}{2}$	-0.010	0.72
533	18547.168	0.005	3	0.006	0.64	927	18987.298		1	0.010	0.99
532	18549.279	0.007	2	0.012	0.64	10 0 10	18925.924	0.008	2	0.002	1 14
542	18629.627	0.004	2	0.007	0.59	10 1 10	18925.918	0.000	ĩ	-0.029	1.14
541	18629,704	0.007	2	0.009	0.59	101.9	19047.355		1	0.001	0.95
551	18734.066	0.002	2	-0.007	0.53	10.2 8	19142.024		1	-0.043	1.05
550	18734.066	0.001	2	-0.007	0.53	11011	19062.641		î	-0.006	1.05
606	18496.189	0.005	3	-0.046	0.81	11 1 10	19197.708		i	0.030	1.70
616	18496.935	0.003	2	0.016	0.68			(114)		0.050	1.05
615	18559 332	0.008	2	0.006	0.00	652	18406 505	0.005	2		0.06
625	18560 787	0.007	2	0.000	0.00	0.5.2	18490.393	(0(2)	2		-0.00
62 1	18509.707	0.007	2	0.011	0.00	404	19252 169	0.005			0.00
624	10370./42	0.000	2	0.011	0.07	404	18333.108	0.005	3		0.82
034	18039.42/	0.004	2	-0.010	0.65		10254 402	(271)			
035	18043.173	0.006	3	-0.009	0.63	414	18354.483	0.006	2		0.39

Note. Asterisks denote the energy levels excluded from the fitting. σ denotes the experimental uncertainty of the level in cm⁻¹. N is the number of lines sharing the same upper level. Δ is the difference between the experimental energy levels and the predictions of Ref. (5).

sufficient to give rise to two weak extra lines reaching the (1 1 4) [652] upper level (see Table 4).

CONCLUSION

The weak absorption bands of HDO surrounding the stronger $5\nu_3$ band at 16 920.02 cm⁻¹ have been studied in the frame of the effective Hamiltonian model. Interestingly, the (0 1 5) vibrational state, which is the most excited state of HDO analyzed so far, is found mostly decoupled from the nearby vibrational states. The (0 2 4) state at 16 456 cm⁻¹ is coupled to a number of vibrational states, some of which could be identified only by considering the results of the *ab initio* calculations of Schwenke and Partridge (5). The effective Hamiltonian approach applied to this interacting system has allowed us to retrieve the effective rovibrational parameters of the (0 2 4), (1 0 4), and (5 0 1) interacting states.

Our systematic ICLAS investigation of the HDO overtone spectrum between 13 000 and 18 500 cm^{-1} has proven the high quality of the results obtained by Schwenke and Partridge both

104

TABLE 6Spectroscopic Constants of the(0 1 5) Vibrational State of HDO(in cm⁻¹)

for line positions and intensities. In particular, the deviations between the observed and predicted energy levels do not show any significant trends over the whole spectral range. In contrast, the highly excited regions considered in the present paper are among the best predicted ones with an average deviation as low as -0.06 cm^{-1} in the 16 300–16 670 cm⁻¹ region.

As a general comment concerning the anharmonic couplings

in HDO, it appears that, in addition to the regular Fermi-type resonance, high-order anharmonic interactions between the (V_1, V_2, V_3) vibrational state and $(V_1 \pm 2, V_2 \mp 4, V_3)$, $(V_1 \pm 3, V_2 \mp 6, V_3), (V_1 \pm 1, V_2 \pm 3, V_3 \mp 2), (V_1, V_2 \pm$ 5, $V_3 \neq 2$), $(V_1 \pm 1, V_2 \neq 8, V_3 \pm 2)$ states together with minor rovibrational couplings can affect the HDO rovibrational energy levels destroying possible polyad structure. Accounting for these interactions in the frame of the effective Hamiltonian method is hindered by the necessity of a correct estimation of rotational and centrifugal distortion constants of the highbending states. However, the rovibrational energy levels and line intensities could be modeled, in most cases, in the frame of the EH model. This well-established approach, which has the advantage of being compact, has allowed us to fix some ambiguous rovibrational assignments provided in Ref. (5), to test and confirm ab initio intensity calculations, and, in certain cases, to provide more accurate line position predictions compared to Ref. (5). Finally, the joint application of these two theoretical approaches to the spectra analysis has added to the reliability of the HDO spectra assignment and prediction.

ACKNOWLEDGMENTS

O. Naumenko thanks the University Joseph Fourier of Grenoble for the Visiting Professorship, during which this work was carried out, and acknowledges as well

FIG. 4. Comparison of the HDO stick absorption spectrum in the 18 247–18 275 cm⁻¹ spectral region. (a) Stick spectrum extracted from the ICLAS spectrum. (b) Calculated spectrum provided by the *ab initio* calculations of Ref. (5). For easier comparison with the experimental data, all the predicted frequencies were decreased by 0.7 cm⁻¹. (c) Synthetic spectrum obtained from the effective Hamiltonian (EH) approach. The upper arrows mark the 4_{14} – 3_{13} unperturbed transition of the ν_2 + $5\nu_3$ band which is predicted (5) split into three components due to resonance interaction with levels of the (0 6 3) and (2 7 1) vibrational states. The lower arrows indicate the two observed lines corresponding to the above three predicted transitions (see text). Two more identified extra lines (E) are observed in agreement with Ref. (5). The only observed transition of *b* type is also marked (B). One unassigned line (may be due to H₂O) is marked by "U."

the financial support from the Russian Foundation for Basic Researches, Grant 99-03-33210. The expert help of G. Weirauch during the recording of the spectra is also acknowledged. We are grateful to D. Schwenke and H. Partridge for access to the results of their HDO calculations before publication.

REFERENCES

- O. Naumenko, E. Bertseva, and A. Campargue, J. Mol. Spectrosc. 197, 122–132 (1999).
- 2. O. Naumenko and A. Campargue, J. Mol. Spectrosc. 199, 59-72 (2000).
- O. Naumenko, E. Bertseva, A. Campargue, and D. Schwenke, J. Mol. Spectrosc. 201, 297–309 (2000).
- 4. E. Bertseva, O. Naumenko, and A. Campargue, 203, 28-36 (2000).
- 5. D. Schwenke and H. Partridge, J. Chem. Phys., in press.
- A. Perrin, J.-M. Flaud, and C. Camy-Peyret, J. Mol. Spectrosc. 112, 156–162 (1985).
- 7. A. Perrin, J.-M. Flaud, and C. Camy-Peyret, *Can. J. Phys.* 64, 736–742 (1986).
- 8. T. Ohshima and H. Sasada, J. Mol. Spectrosc. 136, 250-263 (1989).
- A. D. Bykov, O. V. Naumenko, L. N. Sinitsa, B. P. Winnewisser, M. Winnewisser, P. S. Ormsby, and K. Narahari Rao, *SPIE* 2205, 248–252 (1993).

- A. D. Bykov, O. V. Naumenko, T. M. Petrova, L. N. Sinitsa, and B. A. Voronin, *Atmos. Oceanic. Opt.* **19**, 1281–1289 (1999).
- 11. A. D. Bykov, O. V. Naumenko, and L. N. Sinitsa, Atmos. Opt. 3, 1015–1025 (1990).
- 12. M. Herman, J. Liévin, J. Van der Auwera, and A. Campargue, Adv. Chem. Phys. 108, 1–431 (1999).
- A. Campargue, M. Chenevier, and F. Stoeckel, Spectrochim. Acta Rev. 13, 69–88 (1990).
- S. Gerstenkorn and P. Luc, "Atlas du Spectre d'Absorption de la Molécule d'Iode," Edition du CNRS, Paris, 1978.
- L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
- M. Carleer, A. Jenouvrier, A.-C. Vandaele, P. F. Bernath, M. F. Mérienne, R. Colin, N. F. Zobov, O. L. Polyansky, and J. Tennyson, *J. Chem. Phys.* 111, 2444–2450 (1999).
- 17. R. Toth, J. Mol. Spectrosc. 162, 20-40 (1993).
- 18. O. L. Polyansky, J. Mol. Spectrosc. 112, 79-87 (1985).
- J.-M. Flaud, C. Camy-Peyret, A. Bykov, O. Naumenko, T. Petrova, A. Scherbakov, and L. N. Sinitsa, J. Mol. Spectrosc. 183, 300–309 (1997).