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Abstract

Exotic phenomena in the deterministic model of complex chemical reactions are studied on the basis
of preliminarily reported results. It is shown that the absence of a special kind of autocatalysis, anto-
inhibition and cooperativity implies the existence of a unique, asymptotically stable, positive equili-
brium point. The class of chemical reactions with gradient system as its deterministic model is de-
lineated. A procedure is given for the construction of oscillatory reactions, A neurobiological application
of one of the constructed models is shown.

1. Introdaction

Traditional reaction kinetics has been dealing with the large class of chemical reac-
tions characterized by having a unique and stable stationary point. The complementary
class of reactions is characterized either by the existence of more than one stationary
points, or by an unstable stationary point (which could possibly bifurcate to periodic
solutions). Other “extraordinaxities”, e.g. Lorenzian type chaotic effects and other
chemical strange attractors may occur in this second class. The term exofic kinetics
refers to different types of qualitative behaviour: to sustained oscillation, instability,
multistationarity, and chaotic effects. (Other irregular effects can be expected in higher
dimensions.)

Investigation of chemical exotic systems has been executed by pure and applied
, sciences as well. Occurence of exotic phenomena in industrial chemical reactors [1-3]
b and in chemical [4, 5} and biological [5] systems form the experimental basis of the
~ theory,

.. Exotic chemical phenomena, especially reactions exhibiting multistationarity, can
 be treated by different multidisciplinary theories: by catastrophe theory [6], by the theory
" of dissipative structures [5], and by synergetics [7). Since chemical reaction kinetics is
+  a relatively well-formulated discipline, belonging to the theories of population systems,
* this theory—sometimes called formal reaction kinetics—can be applied as a metalan-
guage to formulate several non-chemical phenomena. -

Though both deterministic and stochastic models are known to describe the temporal
evolution of chemical reactions phenomenologically, we testrict ourselves in this paper
. to the continuous time, continuous state deterministic model.
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Two different approaches will be made here. In the general M-dimensional case we
give negative criteria excluding exotic behaviour. In the two-dimensional case, however,
we present a method of constructing Kinetic systems with exotic behaviour: with pertodic
solution. These mean in particular that interdependence between the qualitative beha-
viour of the reaction system and its stoichiometry will be studied (Section 2). A special
conclusion will be given: Some (nonlinear) chemical systems without such—precisely de-
finable—effects as awtocatalysis, autoinihibition and cooperativity are shown to have
a unique asymptotically stable positive equilibrium point, if the reaction has a special
algebraic structure (i.e. it is weakly reversible [8]).

A broad class of differential equations examined by catastrophe theory is the class
of gradient systems. The question to be answered here is: Is this kind of differential
equations relevant to reaction kinetics? It will be shown that a narrow—and not too
important—subclass of chemical reactions can only have a gradient system as its deter-
ministic model (Section 3).

A procedure will be given for the construction of a class of twe-component chemical
systems which can exhibit oscillatory behaviour. The periodic behaviour of several
concrete systems has been supported by numerical integration of the kinetic differential
equations (Section 4).

The idea of the procedure is used to the construction of a four-variable system. This
example—shown in Section 5—has a neurobiological application as well.

The present paper is based upon the preliminary reports [18, 24, 29, 30].

2. Structural Condition of Exotic Behavionr in Complex Chemical Systems

2.1. Exotic Chemical Systems: Some Preliminaries

The differential equations describing chemical systems do not generally lend them-
selves to analytic solution. Linear stability analysis and numerical simulation were the
methods most often used to investigate the qualitative properties and the temporal
evolution of systems. Another approach derives from HorN and Jackson 8] who
established the existence of a Lyapunov function for a broad and easily identifiable class
of systems. Subsequently, HORN [9] and FEINBERG {10, 11] established criteria relating
the qualitative behaviour of the reaction system to the algebraic structure of the under-
lying reaction mechanism. They gave a negative criterion for the existence of exotic
behaviour. Here we summarize some of their notations and results.

Let the chemical components or species of the mechanism be A(1), ..., A(M), the
complexes

- M
Cn) =% y*myAm) (n=1,2,..N).
m=1
Therefore the complex vectors of stoichiometric coefficients are

P = @), ., Y@ (=12, ..N)
The elementary reactions of the mechanism are
Ciy-Ci) G=+jiij=12 .. N).
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Let L be the number of the connected subgraphs of the directed graph formed by the
complexed as vertices and reactions as edges, i.e. L is the number of the linkage classes.”
The reaction is wealkly reversible, if the transitive closure of the relation determined
by the above defined directed graph (the FHJ graph) is a symmetric relation.

Let s be the dimension of the stoichiometric space S, where

S:= span{p(j) — »(@); CGE - C(}-
The deficiency of the mechanism is
‘ d:=N-—-L —3s.

According to one of the assertions of the zero deficiency theorem [11] if a chemical
system with & = 0 is weakly reversible, then for mass action kinetics with any choice
of positive rate constants the existence, uniqueness and asymptotic stability of a positive
equilibrium point follow, i.e. the exotic behaviour of these systems is excluded.

The Volpert-graph of a chemical mechanism is a directed bipartite graph with mul-
tiple edges constructed as follows. Each elementary reaction and each chemical compo-
nent is represented by a vertex from the two classes of vertices, respectively. The number
of directed edges running from A(m) to the vertex representing the elementary reaction
C(i) » C(j) is y™(i) and the number of directed edges from the vertex representing this
reaction to A(k) is y*(j).

Based upon a theorem of VOLPERT [12, 13] the set of reactions which can exhibit
exotic phenomena, can be further narrowed, namely:

If the Volpert-graph of the reaction is acyclic, the existence, uniqueness and asymptotic
stability of a nonnegative equilibrium point follow.

Let us turn to studying two-dimensional systems. Linear stability analysis gives a
necessary condition for limit cycle behaviour of these systems. If 4 is the matrix of
coefficients of the linearized kinetic equation, and tr 4 and det 4 denote the trace and
‘the determinant of the matrix A4, then tr 4 > 0 and (tr 4> — 4 det A < 0is a necessary
and sufficient condition of the existence of an unstable focus, that may bifurcate to a
limit cycle [14].

* The Hanusse-Tyson-Light theorem [15, 16] is a straight consequence of this con-
- dition applied to systems with mass action kinetics: .A complex chemical reaction
- involving two intermediates must have at least one three-molecular elementary reaction
in order to show limit cycle behaviour.

A useful idea by FEISTEL and EBELING [17] is that they specialized

() = F(x(0), (1)),
Ho) = GG(), (1))
_in order to obtain a system of differential equations being able to lead to limit cycle.

g : The specialization has been motivated by subsequent linear stability analysis. Their
L system of differential equations is:

He) = WOLE) — b(x(e)) — x(1), )
k W5 =1 — p(Of(x(1)) + b(x(1)). )
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Here a generalization of (1)-(2) will be given, and as a consequence, a class of chemical
reactions being possibly candidates of oscillatory behaviour will be delineated.

2.2. Independent Complex Vectors: Non- Exotic Behaviour

Returning to the general M-dimensional case a class of nonlinear complex chemlcal
reactions will be excluded from the possible representatives of exotic chemical systems.
Technically, a subclass of the class excluded by the zero deficiency theorem will be
characterized [18]).

The main point is that the deficiency of a chemical mechanism with independent
complex vectors—except possibly the zero vector corresponding to the empty com-
plex—is zere. .

At first, let us suppose that L 1. Then s equals to the number of edges of a spanning
tree of the FHJ-graph, i.e. s = N — 1. Therefore 6 = 0.

In the general case let the number of complexes being contained .in the Ith linkage
class ({ = 1,2, ..., L) be N,, then the stoichiometric subspace S is the direct sum of
subspaces S, ..., Sy, where the numbering may be chosen so that dim §; = ¥, — 1.

Therefore N = Z NLS = Z dim S,, thus § = 0.

Now the zero deﬁcwncy theorem can be applied: In a chemical mechanism with
independent complex vectors—except possibly the zero vector—

(i) if the mechanism is not weakly reversible, then no positive equilibrium concen-
tration exists (for arbitrary, i.e. for not necessarily mass action kinetics);

(ii) if the mechanism is weakly reversible, then for mass action kinetics with any
choice of positive reaction rate constants, there exists a unique positive equilibrium
concentration, every positive equilibrium concentration is asymptotically stable and the
kinetic differential equation cannot give rise to nontrivial sustained periodic solutions
with positive coordinates.

A special case where independence of the complex vectors is fulfilled will be obtained
if all of the components occur in exactly one complex. In this case none of the compo-
nents occurs as reactant and product in the same reaction:

Z i) ym(j) =0

m=1
what is equivalent to the exclusion of this special kind of aufocatalysis and auto-
inhibition. (Pairwise orthogonality of the complex vectors—not necessarily belonging
to the same elementary reaction—ensures their independency.)

A further specialization provides the generalized compartment system, i.e. the system
where it is also true that all of the complexes contain not more than one component.
This means that only complexes of the form y{m) A(m) (m = 1,2, ..., M) are allowed.
(Compartment systems—often applied in biology—are obtained when all of the stoichio-
metric coefficients are less than or equal to 1 [19]). We may say that a certain kind of
cooperativity is excluded in generalized compartment systems, because no (reactant)
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-complex contains more than one kind of the different chemical components. In other
words, this kind of nonlinearity excludes exotic behaviour.
~ In the case of generalized compartment systems, exotic behaviour can be excluded
also for some further, not weakly reversible mechanisms using the results of Vor-
PERT [[3]. In every generalized compartment system having an acyclic FHJ-graph and
| being endowed with arbitrary Kinetics and not containing the zero complex
(1) the solution of the kinetic differential equation is defined and bounded on [0, + c0);
(i1) the kinetic differential equations cannot give rise to nontrivial sustained periodic
- solutions with nonnegative coordinates;
. (iii) there exists a unique nonnegative equilibrium concentration having at least one
© zero coordinate;
(iv) there exists a positive constant X such that

[Pl <K (m=1,2,.., M),

¢ {Here c,(t) is the concentration of the mth component in time z.)

. The statements of the theorem follow from the fact that the FHJ-graph of a generalized
' compartment system is acyclicif and only if its Volpert-graph is acyclic. Exotic behaviour
i in the generalized compartment system

2X23Y - 4Z

is not excluded by our statements, only the first part of the zero deficiency theorem
. can be applied,

3. Relationships between Catastrophe Theory and Reaction Kinetics

In the qualitative theory of differential equations, especially in catastrophe theory it
has turned out that differential equations of the gradient type are relatively easy to
. deal with [6, 28]. Is this kind of differential equations relevant to reaction kinetics?
" How is it related to genuine kinetic properties? The special importance of the question
¢ is emphasized by the fact that no consensus exists about the logical status of gradient
¢, systems in nonequilibrium chemical thermodynamics. Though it is absolutely clear that
b gradient systems satisfy a symmetry relation similar to the Onsager-relation [7] and the
h dynamics of a dissipative system can only be derived from a potential in some exceptional
F situations [5, 20], some effort was made to set up a generalized dissipation potential
F [20-22]. '

L As even the significance of thermodynamic coupling in chemical reactions has been
- questioned [23], the flux-force formulation does not seem to be very useful for the case
§ of chemical reactions. What we do here is only to analyze kinetic gradient systems on
¥ the base of [24].

¥~ The differential equation

) ) =flele)), feC'(R™, RM™)
1s of the gradient type if there exists a function ¥ € C3(R¥, RM) (called potential) such
¥ that f = grad V.
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A complex chemical reaction {or mechanism) is a gradient system, if its kinetic
differential equation is of the gradient type.

A special class of reactions will be defined: A mechanism is eross-catalytic if for each
elementary reaction C(j} - C(i) (i,j = 1, 2, ..., N; [ & ) either

(1) the coordinates of the elementary reaction vector x(i,j):= y(i) — y(j} are non-
negative (thus, there is at least one positive among them), or

(ii) the reactant complex vector is a multiple of one of the base vectors of R.

In other words, in a cross-catalytic mechanism there does not exist any chemical
component causing the decrease of another. Nothing has been claimed about the effect
of components on themselves. . '

The reaction X + ¥ — 2Y is not cross-catalytic, since the elementary reaction vec-
tor is {—1, 1)7, and the reactant complex vector (1, 1)* is not a multiple of a base
veclor, The reaction X + ¥ — 2X + 2Y is cross-catalytic, although this reaction does
not obey the law of material balance. The notion of conservativity, a generalization of
obeying the law of atomic balance introduced by Horn and JACKSON [8], will be useful:

A mechanism Is conservative if there exists a vector r e RY with positive coordinates,
orthogonal to all of the elementary reaction vectors (or to the stoichiometric space).

" Obviously, if a cross-catalytic mechanism contains elementary reactions of type (i)
too, then it is not conservative.

Realistic chemical mechanisms consist of reactant complexes not longer than two,
A mechanism is called weakly realistic if its reactant complexes C(f) (i€ {1, 2, ..., N})
belong to one of the following two types:

(i) there exists an m € {1, 2, ..., M} such that C() = y™(i) A(m),
(i) C(H) = E y™(i) A(m); y™(iy =0 or 1 forall me {1, 2, ..., M}.
- m=1

Realistic chemical systems and generalized compartment systems are weakly realistic.

According to a theorem [24] a weakly realistic mechanism of the gradient type is
cross-catalytic. Let us suppose, on the contrary, that there is a term-—kc¢,c,, P on the
right side of the mth equation of the kinetic differential equation; here ke R*,
m, ome{l,2 ..., M}, m+ m and P is a-—possibly void—product of certain ¢; — s
(i £ m,m’). A well-known necessary and sufficient condition for the existence of a -
potential for the equation X = fox, where f=(fi, ..., fu), i8: 0 =0 (L je{l,
2, ..., M}) ([25), 10-35 Remarks). In our case

Oms fm = keoP + .. = Opfns

should hold, i.e. f,., should contain the term —kc2Pj2. This is impossible, becanse
this term has a negative coefficient and it does not contain ¢, {26].

As a corollary of the theorem a necessary condition for a system to be a conservative
gradient system can be given: Conservative gradient systems may only be found in .
two classes of mechanisms: '
(x} in the class of non-weakly realistic and non-cross-catalytic ones, and _
(f) in the class of those cross-catalytic ones that only contain elementary reactions f
of type (ii). :
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A closed compartment system is an element of the class (8). In the special case when
the matrix of reaction rate constants is symmetric, the system Is of the gradient type.

Two remarks are to be added to the connection between kinetic and thermodynamic
gradient systems: '

(t) The wsual procedure is to transform the kinetic equation é(f) = f(e(r)) by M(¢)
1= @{e(1)) so as to obtain f{e(r)) = V'(3(1)), where ¥ & C2(RM, R). Naturally, the thermo-
dynamic equation ¢ = F’oy is not a gradient system. It would help to clarify the obscure
situation if we could determine when will a gradient system be obtained by a transfor-
mation of the above type?

{ii) Motivated by the fact that sometimes a generalized dissipation potential ¥ can be
constructed by decomposing a thermodynamic flux into a sum of two fluxes:

J=gradV +u

where Ve p*(RM, R) and u: RM — R™ such that aTu(x) = 0 holds for all x € R, the
notion of a generalized kinetic gradient system can be introduced:

A differential equation x(r) = f{x(r)) is of the generalized gradient type if there exists
two functions ¥ € ¢*(R™, R) and u € o'(RM, RM) such that

S=grad V+u=V+u,
and
xTu(x) = 0 (xe RM),

This decomposition is clearly non-unique, namely if
f=Vi+tu =V, +u,

then ¥V, — ¥, is a homogeneous function of order 0, and u, — u, is 2 homogeneous
function of order —1, and (V, — VY = u, — u, holds (and not necessarily
Vi — V,=0and 4, — u; = 0).

It is an open question which of the kinetic differential equations are of the generalized
gradient type. It would be also interesting what is the chemical {thermodynamical)
meaning of the quantity () := x%(#}f2 — V(x(1)) being constant even in the case of
generalized gradient systems.

4. Candidates of Limit Cycle Behaviour: Two-Component Systems

FeisTeL and EBELING [17] considered (1}(2)} as the deterministic model of chemical
reactions with two intermediates. They used this system becanse the coordinates of
the equilibrium point are easy to calculate. One of its coordinates is 1, and the other
I can be determined as a function of the first one:

1 + 5(1)
* %) = {1,
579 ( 70 )
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This principle can be used for generalizing (1)«2), and thus the following system of
differential equations is obtained:

3(0) = gD = b)) + HOAE) — X8 (e, @
D = =g SEHE) + b)) — A() + o(1D)). @

Assuming that ¢(y*) # 0 and knowing the functions b, c, f, g, h the second coordmatc |
of the stationary point can be calculated from the relationship

A(*) — (v®) + g(y*) f(1) = B(1)
and
x* =1, thus (x*, y%) = (1, y*).

A practical disadvantage of (3)~(4) is that the Volterra-Lotka model and the Brusselator
cannot be derived from them as special cases. A simple common generalization of the ‘
kinetic differential equation of these celebrated models is:

X(t) = (N (x(1) — bO() + Hx()), | )
) = —g(NF () + bx(1)) — A(N(e). ©

The functions &, £, g, h, | have to be specialized as shown in Table 1.
. Now we give a common generalization of (34 and (5)(6):

He) = gL (x(1) — (1)) + k(x(2)) [H(D) — x(t) e(p(2)) — Hx(1))]
+1(x(1)), (M
ey = —gOUf (X)) + b)) — A1) + c((E)) k(x(e)). ®
If k(x) = 1, we get (3) and (4), if k(x) = 0, we get (5) and (6).
Assuming that o(y*) #+ 0 and k(x*) % 0, the following relation holds
oo 1 4 JOY — IO K — 1)
k(x*) c(y*)
To simplify this formula to x* = 1 two special assumptions are possible:
() A(y*) =1l(x*), and
(i) k(x*) = 1.

~ Table 1. Specification of funciions to appear in (5) and (6)"

Volterra-Lotka model Brusselator
Hx) 0 kyx
£) —kax kax?
£y ¥ g i
iy) kyy 0

Iix) kox ky — kqx
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Table 2. Several examples: candidates to exhibit limit ¢ycle behaviour

457

Al A2 Al
Compiex 2X + ¥ - 3X 22X+ ¥ —-3X 2X+=3X
chemical XX+ Y X2Y->2Y X+Y=2X
reaction Y- X =+ X+Y->0 XY
w & 7
0 X+Y-=Y 0
B(x) 0-1x2 0-dx* + 0-15x 0-04x% + 0-07x2
(3} 0 (or: arbitrary) ¥ 01
) 0-1x* 4+ 005 06x2 + 0-2x 55+ x + 1
- &(») ¥y ¥ 002y
h(y) —1 03y —{-93
k(x) 0 1 ) x
I(x) - 0 (or: arbitrary) —01x + 007
Kinetic % = 0lx?y — 01x® & = 0-6x%p — 0.4x2 &= 011x% + 0-02xy + 0-02y
differential + 005y — x ~0-8xy — 0-15x — 0-04x* — 0-07x2 — 1-1x
equation + 03y + 007
¥ =01x%y + (_)-lx2 » = —06x2y + 0-4x2 ¥ = —011x%py — 0-02xy — 0-02p
— 005y +1 — 02xy + 015x + 0-04x® 4+ 0-07x% + O-1x
+ 07y + 093 ’
(x*, y*) 1,73 (1, 53 {, 76
tr A 0117 1155 0-314
(tr4)? — 4 —0586 —0-358 —05M
det 4
Deficiency 2 3 2
50 cont.
yit}
4§l
5 Xit)
0 | |
0 1o 25 15 10

Fig. 1. Time evolution of concentrations in reaction A 1
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4/
T i
~ F -
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1

0

0 1 Z 2

X — -

Fig. 2. Selectivity curves of the reaction A 1 with different initial concentrations

I 5 10 15 20 25
time —

Fig. 3. Time evolution of concentrations in reaction 4 2

Reactions having (7)«8) as their kinetic differential equation may exhibit oscillatory
behaviour, especially if their stationary point is an unstable focus. Several examples
are shown in Table 2. (Here we have to emphasize that the correspondence between
reactions and kinetic differential equations is not unique by far [26].)

The reactions of Table 2 are similar, but different from those presented by SCHNA-

KENBERG [27].

P ——




A. CsAszAr et al.: Several Exact Results on Deterministic Exotic Kinetics 459

1

Y% =

12

10

.y
I

A0

0 2 4 & g 10

y ———-

Fig. 4. Selectivity curves of the reaction A4 2 with different initial concentrations

17 cone.
Yie
o L Y
6 —
3 X}
0 |
2 10 20 30 40 - 50

Hme o ——

Fig. 5. Time evolution of ¢concentrations in reaction A 3

The necessary conditions for the limit cycle behaviour are fulfilled and the numerical
integration of the kinetic differential equations support that the reactions show oscil-
lations. The temporal evolution of the concentrations with several initial conditions
and the selectivity curves can be seen on Figs. 1-6.
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0 Z 4 6 g 10
Y —a—

Fig, 6. Selectivity curves of the reaction A 3 with different initial concentrations

5. Oscillatory Behaviour of a Four-Component System
A Newrobiological Example

An open chemical system with two intermediates showing osciliatory behaviour is
given by the scheme below:

! ? 4

Q— y —= y —= 9
&
The processes involved are:

1: inflow,

2: conversion,
3: autocatalysis,
4: outflow.

A four-component closed system can be constructed by slightly modifying the
scheme (9):

C-Y
Y- X
2X + Y- 3X (10)
X B |
B-C
The numerical solution of the kinetic differential equation of (10) can be seen on
Fig. 7. This model has oscillatory solutions thus being a possible analogue of the

example by IvaNova [13]. As it is known, only (asymptotically stable) limit cycles are
impossible in closed systems [28]. )
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110

conc.

30 -
15~
Y

5 -
1
0 .

0 50 160 150 210

time
Fig. 7. Time evolution of concentrations in reaction (10). When this reaction is used to model
the slow wave, the identifications X := free ACh is the cytosol, and ¥:= Ch (Cf.
Fig. 8 below)} are made

1
¥ g

G

"y

Y e ¢
3
Fig. 8. Skeleton of a lumped model for the exptanation of slow wave of ACh. Concentrations:

X = cytoplasmic [ACh]: B = [ACh] at the postsynaptic membrane surface; C, ¥

= [choline]. Subprocesses: | = diffusion of ACh, cleft processes i 2 = hydrolysis
of ACh; 3 = diffusion of choline; 4 = reuptake of choline; 5 = autocatalytic syn-
thesis of ACh

This reaction is a possible model of the recycling of transmitter during neurochemical

> acting ones. At least three different neurochemical and neurophysiclogical oscillatory
phenomena appear at different hierarchical levels of synaptic transmission [29, 30].
g The slow wave of free cytoplasmic acetylcholine (ACh) were presented by DUNANT
f et al. [31].

g This slow wave seems to be the result of integrated activity of the synaptic metabolic
8 subprocesses. The skeleton of a2 lumped model for the explanation of the slow wave can
% be seen on Fig. 8.
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To simplify the model most of the subprocesses are assumed to be linear. An auto-
catalytic process (synthesis) is superimposed on the linear uptake process of choline.
The model just described is analogous with reaction (10).

6. Discuassion and Qutlook

Here we presented several general results providing negative criteria for exotic pheno-
mena in the deterministic model of complex chemical reactions. In connection with
this was determined two classes of reactions that may contain gradient systems. Then
we presented a method for constructing oscillatory reactions, and we have shown several
examples, one of them having a neurobiological application.

We think the most important trend on the area of exotic chemical phenomena are:

(1) The construction of further general negative criteria, i.e. criteria for the exclusion
of exotic behaviour cf. [11];

(ii) stating general positive theorems on the existence of exotic phenomena;

(iii) the investigation of these phenomena in the stochastic model and relating the
results cf. [32};

(iv) the application of models with exotic characteristics, especially to biological
sciences.
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