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I
I AbcErct
L
I botic pbtu()ltl@ in the deterninisric oodel ofcomplex chemi@l FctioN m srudjed on rhc bas6
N of preltu&ily reponed Rsulrs. lt is shoM rhAr rh€ abene of a speial kid ot auro@ratysis. .uto-

I innibirion ed @operarivhy inpties rhe exisrede of a uniqu.. dympLoricalty stable, pdirive cquili
I brium poiDl. The chrs ot c.lmical |@tio$ wirh gadicnr lrsl.m as hs detelfuislic dod.t is de-
J lirered. A prGd@ is siKb for rr)e constA,ction ot osciltatory scnons. A nruobiolosiqt apptication

I 
or oR or the (lfiiructed mod€k is shown.

I
I f.InEodmtiotr
I
I lradiiional reaction kinelics has been dealing wilh lbe large ctass of chemical reac-

J rion\ characterizrd by having a unique and srable stationary point. The complementar)

J class of reactions i" charaaerized either by rhe erisrence of more rhan one starionary

I po'nls. or by an unstable stationary poinl (which could possibly bifurcate to periodic

I solurions). Orber "extraordinaxities". e.g. Lorenzian type cbaoric effecrs and other

I chemical strange atuactors may occur in rhis second ciass. The lerm exrric loericr

I refer\ to differenr typ€s of quallarive behaviour: ro sirslained oscillation. instabitily.

I mulri\lationariry. and chaotic effecls. (Olher inegular effecrs can be expecred in higher
J dimensions.)

I tnvest;garron of chemical exolic systems has been execured by pve and apptied

I sciences a: well. Occurence of exotic phenomena 'n rndu.Lrial chemrcal readors lt-lj
I  and in chemical [4,5] and biological  [5]  rysrems form lhe experim€nlal  basis oftbe

J rheory.

I  
.  E\ot ic ch€mical ph€nomena. esp€cial ly reacr ion\ exhibir ing rDutr istal ionariry.  can

J b€ lreated by di[€renl multidisciplinary r heoriesi by .atastrcphe theory 16]. by the rheory

1 of dissipatiDc snu.turc\ I5). aDd by syneryetr'.r [71. Since cbemicat reaclion kinerics is

I a relarively well-formulared discrpline. belonging Lo rhe lh€ories of population sysrf,ms.

I this fheory-somelimes called formal reacrion kineti$ -<an b€ applied as a metalan-

I elraee to formulare several non-chemical phenomena.

I Though both deterministic and stochasric models are known to describe rhe temporal

I elolurion of chemic.al reaoions phenomenologically. we resFict ourselves in lbis pap€r
f to lhe conlinuous dme, continuous srare determinrsric model.
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Two difrerent approaches will be made here. ln the gpneral M-dimensional case we

give negative criteria e.tcldiry exotic behaviour. In the two_dimensional case, howev€r,

we present a method of corsrruct g kinetic systems wittr exotic behaviour: with periodic

solution. These mean in panicular tlat interdep€ndence betw€en the qualitative beha-

viour of the reaction system and its stoichiometrv will be studied (Section 2). A sp€cial

conclusion will be given : Some (nonlinear) chemical systems rvithout such-precisely de-

firable- +ffects as autocatalysis, auloinihibition and cooperutioity are shown to have

a unique asymptotically st.ble positive equilibrium point, ifthe reaction has a special

algebraic structure (i.e. it is weaklr rcoenible l8I.
A broad class of difrerential equations examined by catastrophe theory is the class

of gadient systems. The question to be answer€d here is: Is tlds kind of differential

equatjons retevant ro reaction kinetic.? It will be shown tfiat a nafiow -and not Loo

important-subclass of chemical reactions can only have a gradient system as its deter_

ministic model (Section 3).
A procedure wiU be given for the construction of a class of tto-compone,t chemical

systems which can exhibit oscillatory behaviour. The periodic behaviour of several

concrete systems has been supported by numerical jntegration of the kinetic diff€rential

equations (Section 4).
The idea of the procedure is used to the construction of a four_variable system. This

€xample-shown id Section 5-h9:s a eunbiohgical application as vell.

The present paper is based upon the preliminary reports [18, 24' 29, 30]

2. Structual Conditiotr of Exotic BehaYioff in ComPlex CheDicrl Systems

2 . 1 .  E x o t i c  C h e m i c a l  S y s t e m s :  S o m €  P r e l i m i n a r i e s

The diFercntial equations describing cbemical svstems do not g€nerally lend them-

selves to analltic solution. Linear stability anatysis and numerical simulation were the

methods most often used to investigate the qualitative properties and the temporal

evolution of systems. Another apFoach derives fiom HoRN and JacKsoN [8] who

$tablished tbe existerce of a Lyapunov function for a broad and easily identifiable class

of systems. Subsequently, HoRN [9] and FEINBERG [10, 11] established criteda relating

the qualilative behaviour of the rcaction system to the algebraic stluctule of the under-

lying reaction mechanism. They ga\e 4 negatioe citefion fot the existence of exotic

behaviour. Here we summarize some of tleir notations and rcsults

Let the chemical components or species of the mechanism be A(l), ' A(M\, the

c(n) = t f '(n) A(n) (n: t '2' ... n-

Theteforc the complex uectoru of stoichiometric coefficients are

y(n) = OtO\,  . . . ,  ) t t (n\)r  (1:  t ,2, . . .  t '0.
'fhe elementary rcactions of the mechanism are

c() -  ca)  G + j :  i , j  :  r ,2 , . . .  N) .
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Let I be the number of the connected subgraphs of rhe directed graph formed by the
complexed as vertices and reactions as edges, i.e. l, is the number oftle /,nkage classes.'

The reaction is )e"dkry fer? rrle, ifthe transitive closure ofthe relarion d€termined
by the above defined directed gaph (the FHJ graph) is a symmetdc relarion.

Let r be the dimension of the stoichiometic space S, wherc

s:: ryd,llt) - )(i); c(i) ' 61.;11.
The ,1ercr€rcl of the rn€chanisrn is

d : : r r { - I - s .

Accordiflg 1o one of the assertions of the zeto deficiency theorem [11] if a chemical
system with , : 0 is weakly reversible, tlrcn for mass action kinetics with any choice
of positive rate constants tie existenc€, uniqueness and asymptotic stability of a positive
equilibrium point follow, i.e. the exotic behaviour of these systems js excluded.

The Volpertgraph ol z ch€mical mechanism is a directed bipartit€ graph with mul,
tiple edges constructed as follows. Each elementary reaction and each chenical comoo-
n€nt is represenled by a vertex from the two classes ofvertices, respectively. The number
of directed edg€s running from ,4(m) to the vertex repres€nting t]le elementary rcaction
C(, - C(J) is l'(t) and th€ number of directed edges from the vertex rcpr€senting rhis
reaction to .{(r) is l0).

Based upon a theorem of VoLpERr [12, 13] the set of reactions whjch can exhibit
axotic ph€nomena, can b€ further narrowed, namely:

lf the Volpert-graph of the reaction is acyclic, the existence, uniqueness and asymptotic
stability ofa nonnegative equilibrium point follow.

Let us turn to studying two-dimensioral systems. Linear stability a alrsis Ei\es a
necessary condition for limit cycle behaviour of these systems. If I is the matrix of

.co€mcients of the linearized kineaic equation, and tr.{ and det I denot€ the trace and
the determinant ofthe matrix l, then tr I > 0 and (tr l), - 4detl < 0isanecessary
ard suffroient condition of the ex;stence of an unstable focus, that may bifurcat€ to a
limit cycle [41.' The Emusse-Trson-Light theorcn U5, 16l is a straight consequence of this con-

.dition applied to systems with mass action kinetics: .A complex chemical reaction
iDvolving two intermediates must have at least one three-mol€cular elementary reaction
in order to show limit cycle behaviour.

A useful idea by FrrsrEL and EBELTNG U7l is that they specialized

r(0 = F(.x(,), Cl(/)),

r(D : c(r10, r(t))
in order to obtain a system of differential equarions being able to lead to limit cycle.

iTh€ specialization has been motivat€d by subsequent linear stability analysis. Their

451

r(t : }(r),f((n - D(.r(r)) {0,
i(r): l -.r(r)fi.{t) + b(,x(r).

( l )

(2)
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Here a generalization of (l)-(2) \r'ill be given, and as a consequence' a class ofchemical

reactions being possibly candidates of oscillatory b€haviour will be delineated.

2 . 2 .  l n d e p € n d e n t  C o m p l e x  V e c t o l s :  N o n - E x o t i c  B e h a v i o u r

Returning to the general M-dimensional cas€ a class of rorlrtear complex ch€mical

r€aciions will be €xcluded from the possible rcFesentatives of exotlc chemical systems.

Technically, a subclass of the class exclud€d by the ze(o defrciency tleorem will be

characterized F8l.
The main point is tha! ahe deficiency of a chemical mechanisat v)ith in.lepenelent

cofiplex t)ectors -excEpt possibly the zero vector corresponding to the empty com-

A1 nrst, lel us suppose that a : 1. Then r equals to the number of edges of a spanning

tree ofthe FHJ-8raph, i .e.  s = rV- I  Ther€fored:0.
]n the gederal case let the numb€r of complexes being contained in the lth linkage

class (/ = 1,2,...,L) be Nr, tlen the stoichiometric subspac€ S is the direct sum of

subspac€s Sr, ..- ,S., where the numbering may be chosen so that dim & = ll! - l.

Therefore lr' : I ir,, t : I dins,, thusd = 0.

Now the zero deficiency theorem can be appli€d: ln d chemical m€chanbm with

independ€nt complex vectors'- €xcept possibly the zero v€ctol-

(i) 'f the rn€chanism is uat weakly reversible, then no positive equilibrium concen-

tration exists (for arbitrary, i.e. for not necessarily mass action kinetics);
(ii) if th€ mechanisrn ir weakly reversible, then for mass action kinetics with any

choice of positive reaction rate constants, there exists a unique positive equilibrium

concentration, every positive €quilibrium conc€ntration is asymptotically stable and the

kin€iic diFerential equation cannot give rise to nontrivial sustaid€d periodic solut;ons

with noshive coordinates.

A special case where independenc€ of the complex v€cto$ is fulfilled will be obtained

ifall of the components occul in exactly one compl€x. ln this cas€ nonc of the compo-

nenls occu15 a: reactant and produd in lhe same reaciion:

t r'(i))''Ci) - 0

what is equivalent to the exclusion of this special kind of outocatalrsk ̂nd auto-

inhibition. (Pairwise orthogonality of the complex vectors-not' necessarily belonging

10 the same elemertary reaction-ensures thefu independency.)

A further specialization ptovidEs lhe Senerulize,l conpatrtue t swtem' i.e. the system

where i! is also uue that all ofthe complexes contain not more than one compon€nt'

This means that ooly complexes of the form t'(rn) AQrt) (n : 1, 2, ..., M) are allowed'

(Companhent systemt-often applied in biology-are obtain€d when all of the stoichio_

met c coefficients are less than or €qual lo I [19D. We may say that a certain kind ol

cooperativity is excluded in generaliz€d compartment systems, because no (reactant)



A- C${sziR et al.; S.ve.al Eecl Resulti or D.re.minislic E{olic Kin dcs 453

complex contains more than one kind of tlrc different chemical components. In other
ilords, this kind of nonlineadty excludes exotic behaviour.

In the case of generalized compartment syst€ms, exotic behaviour can be excluded
also for some further, not weakly r€versible me€hanisms usillg the results of VoL-
?ERr [31. In every generalized compartment system having an acyclic FHJ-$aph and
b€ing endowed with arbitrary kinetics and not containing the zero complex

(i) the solution of the kinetic difierential €quation is defined and bounded on [0, +oo);
(ii) the kinetic difierential €quations cannot give rise to nontrivial susrained periodic

solutions with nonnegative coordinates;
(iii) there exists a unique nonnegative equilibrium concentration having at least one

zero coordinate:
(iv) there exisls s positive constant ( such ltrat

t 6 , . ,
J o  l c i l  <  ^  l m  =  t , 2 ,  . . . .  M t .

(Here c"(t) is the concentrarion ofthe nth componenr in rime r.)
The statem€nts oftherheorem follow from the fact thattle FHJ-graph ofageneratized

compadment syst€m isacyclicifand only ifits Volperr,graph is acyclic. Exotic behaviour
in the generalized compartment system

2X -3Y - 42

is ,ot excluded by our statements, only the first part of rhe zero deficiency theorem
can be applied.

3. Relrtior}shil€ b€tweetr C rstrophe Theory llrd Reaction XiDedcB

ln tl|e qualitativ€ theory of difierenaial equations, especially in carastrophe theory it
has turned out that differential equations of the gadient type are relatively easy to
deal with 16, 281. Is this kind of differential equations televant to reaction kinetjcs?
How is it related to genuine kin€tic properties? The special impo(ance of the question
is emphasized by the fact that no consensus exists about the logical status of gradient
systems in nonequilibrium chemical tlemodynamics. Though it is absolutely clear that
gradient systems satisfy a symmetry relationsimilar to the Onsag€r-relation pl and the
dynamics ofa dissipative system can only be derived from a potential in someexceptional
situations [5, 20], some effort was made to set up a generalized dissipation porential
Im 22l.

As even the significance of rhermodynamic coupling in ch€mical reactions has been
questioned [23], the nux-force formulation does not seem to be very useful for the case
of chemical reactions. What we do her€ js only to analyze kinetic $adient systems on
the base of [241.

The differential equation

l(t) = ,f(.(t)) , Ie Ct lRu, RM)

is oI the grudient tpe if there exists a function ,/ e C,(Xv, n9 (catled p ote tiat]| such
thatf=gradV.
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A €omplex chemical reaction (or mechanism) is a gradient system, if its kinetic
difierential equation is ol the gradient type.

A special class of reactions will be defrned: A mechanism is crrff-cataryri. iffor each
elementary reaction C(J) - C(D (1, j : 1, 2, ...,,V; I + j) either

(i) the coordinates of lhe elementar! teaction t'ectot {t, j) : : }'(t) - J,(, are non-
negative (thus, there is at least one positiv€ among tlem), or

(ii) the r€actant complex vector is a multiple of one of the base vectors of -R'.

In other words, in a c.oss-catallaic mechanisn th€r€ does not exist any chemical
component causing the decrease of another. Nothing has been claimed about the effect
of components on themselves. .

The reaction ,f i f+ 2y is not cross-catalytic, since the elementary reaction v€c-
tor is (- 1, 1)r, and the rcaclant complex vector (1, l)r is not a multiple of a base
vector. The reaction X + Y: 2X + 2y is cross-catalytic, although this reaction does
not obey the law of material balanc€. The notion of crrreruatr:ritl, a gpneralization of
obeying the law of atomic balance introduced by HoRN and JAcKsoN [8], will be useful :

A mechanism is conseruarire if there exists a vector / € nx wilh positive coordinates,
orthogonal to all of the elem€ntary reaotion vectors (or to tlle stoichiometdc space).

Obviously, if a cross-catalytic mechanism contains elementary reactions of type (i)
too, then it is not conservative.

Realistic chemical mechanisms consist of reactant complexes not longer than trro.
A mechanism i  czl led weol ly rcal i  i? i f  i tsreactanlcomplexe.C(i l ( i€f l .2. . . . .dl l
belong to one of the following two types:

(i) there exists an ,n € {1, 2, ..., M} such that C(i) : f^Q\ A(n);

(ii) c(i) : L J^(i) 
A(n) ; r,'(i) : 0 or I tot att m e lt, 2, ..., M\.

Realistic chemical systems and generalized companment systems are weakly realistic.
According to a theorem [24] a weakly realistic mechanism of the gradient type is

crosecatalltic. Let us suppose, on tlle contrary, that there is a term-&c.c,, P on the
right side of the dh equation of the kinetic diferential equation; here &eR+,
n, n'e {1,2, ..., M\, n} + h' and P is a-possibly void-prodrlct of certain .r - r
(i + n,'7.'\. A well-known necessary and suficient condition for the existenc€ of a
potential for the equation i::fox, wherc f =Uit....,f,), |s: dfi : d!fi (i, j e \1,
2, ..., Ml) (12.51,10.35 Remarks). In our case

d^,f- :  kc"P + . . .  :  dJ",
qhoufd hold. i .e. / ; .  should conrain rhe term - k4Pl2.Ih]A is impossrble. because
this term has a negative caefficient and it does not contain c., [26].

As a corollary ofthe theorem a necessary condition for a system to be a conse ative
gradient system can be given I Conservative $adient systems may only be found in
two classes of mechanisms:
(di) in the class ofnon-weakly realistic and non-cross-catalltic ones, and
(p) in the class of those cross-calal)'tic ones that only contain elementary reacttons
of type (ii).
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A closed compartment system is an element ofthe class (f). In the sp€cial case wh€n
the matrix ofreaction late constants is symmetric, the system is ofthe gradient type.

Two remarks are to be added to the connection between kinetic and th€rmodynamic
gradient systems:

(i) The usual procedure is to transform the kinetic equation iO =,(c(t)) by ),(t
:: q(.(D) so as to obtain flc(t)) : v'( t)),*herc V €C,(-Re,.R). Naturally, tle thermo-
dynamic equation a = Z'o) is not a gradient system. It would help to clarjfy the obscure
situation if we could determine when will a gradient system be obtained by a transfor-
nation of the aboYe type?

(ii) Motivated by the fact that sometimes a generalized dissipation potential t, can be
constructed by decomposing a thermodynamic flux into a sum of two fluxes:

J = g l a d y +

wherc /€A'(R', R) and ,: R! + Xv such tnat drrQ.):0 holds for all neRM, the
notiotn of a generulized kinetic gadient slsaem csn be introduc€d:

A ditrerential equation i(t) :J(.{t)) is of the generalizeil gailient twe if rhete exisits
two functions ,/ e p'�(n', R) and 4 E pr(nM, RM) such that

f : s r a d Y + u = V ' + u ,

j'r(.t) = 0 (x€nM).

This d€composition is clearly non-uniqu€, namely if

I : v ; + u t : v ; + u ,

then Vt - y, rs a homogeneous function of order 0. and ,: - ,r is a homogeneous
function of order -1, and (V,-V")': 12 -11 holds (and not nec€ssarily
Y'-  V2: O a'nd u2 - u '  = 0).

It is an open question which of the kinetic difierential equations arc ofthe generalized
gadient rype. It would b€ also interesting what is the chemical (themodyDamical)
m€aning of the quantity (r:: jr,(l)i2 - ,({r)) being cotrstanr even in the case of
generalized gradient systems.

4. Cr.didates of Limit Cyde Behrvlour: Two-CompoDeDt St€telns

FErsrEL and EBELTNG tl71 considercd 0H2) as the deterministic model of chemical
reactions with two intermediates. They used this system because the coordinates of
th€ equilibrium point are easy to calculate. One of its coordinates is l, and the ottrer
can be determined as a functiotr ofthe fust one:

455
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ji(r) = 80(r))/({n _ r(x(t)) + h(ru\\, 4t) c(}(t)),
r,(t: -sMD)^{r) + r({t) - rut) + dlr).

Assuming lbat rcl,*) + 0 and knowing rhe functions r, c,l & i the second coordinare
ofthe stationary point can be catculated from the relationship

,O*) - cOy) + s()t)il) = r(D

r '  -  l .  thus (x ' .J, ' )  -  ( l , r ' . ) .

A practical disadvanrage oi (3H4) is that the Voltera-Lotka model and the Bruss€lator
cannot be derived from them as sp€cial cases. A simple common genemlization of the
kinetic dimerential equation of these celebrat€d models is:

{4 = c0(t)"f(x(t) - r({r) + r(,(r)),
-(t = -so()/(r(t) + r({r)) - rb.(t).

The functions b,l & ,, / have to be specialized as shown in Table l.
Now we give a common generalization of (jH4) and (5H6)i

r(4: g0(r)),f(.r(r)) 6(.{t) + r(r(4) t c,,(/) _ {D.ooD _ (,(/)l
+ r(.{r)),

f0 : -c0(r))t({0) + r(x(n - ,(r(r) + 4r,(n &(r(,)).
If t(-r) = I, we set (3) and (4), if r(i) =- o, we ser (t and (6).

Assuming that .0,.) + 0 and ,t(r.) + 0, rhe following relalion holds

, *_ , ,  t rQ ' )  -  / (x * ) l  [ l ( - r ' )  -  l l
k(r') (r-)

To simplify tlis formula to .x* : 1 two special assumptions are possible:

(i) h0') : r('.), and
(ii) k(x*t = 1.

Tabl€ l. sp€.ificarion of funcrios to appea. in (5) dd (O

Volterm-Lotkamodel Erussltaror

Ur)

(3)
(4)

This principle can be us€d for gen€ralizing (tX2), and thus the following system of
differential equarions is obtained:

(5)

(6)

(7)

(8)

t(r)

h(t)

(r)
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Tabl.2. Sever.l eenpl€s: @didates to exhibil limit cycta b€haviour

Complex 2X + Y- 3X
c b € m i q l  2 X r X + Y

0

01r1 + 0.05

_ I
0

2 X + Y - 3 X

2 X - X + Y + 0

0.3.y
I

(1,5.5)
I  t55

-0.358

3

0

0.1

0 OZr
-0.93

- 0 l r  +  0 0 ?

( t , 7 6 )
0.314

-0501

2

b4xJ

h(tJ

lt,7.3)
0 l l 7

0 (or: .rbirEry) !

K iner ic  t=Otxz!-O,1x,  i=0.6t2t -0.4x2 i=O. l t r r r ,+ 0-01rr  + 0.02/
+ 0 0 5 ) - r

+ 03,
i :or: , r+o.t j ,  i= -o.6x2r + 0.4,2 '= -0.1rt2, o.o2r,  -o.02,

O05/+1 O.zq + Orsx + 0.04r. + O-ofu, + 0.lx

- 0.04x3 - 00tu2 l,lr
+ 0.07

+ 0.7, + 0.93

(lr..l): 4 -0586

10 ts 2t

tioe +

rig. L Tift.volution ofconenrBriors in recrion ,4 |

l5



458 A. CsisziR et al.: Several Exact Rsults on Delerministic Exotic Kinetics

I

t +

Fig. 2. Selectivily cuves of the rcaclion ., I wilh difercnt ioiiial .onentnrions

t 2
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E

6

t 0 t5

15

?

0

2520

Fig. 3. Tide evolutiotr of concentmtions it Mction ,l 2

Reactions having (?H8) as their kinetic difrer€ntial equation may exhibit oscillatory
behaviour, especially if th€ir stationary point is an unstable focus Several examples

are shown in Table 2. (Here we have to emphasize that the corespondence between

rcactjons and kinetic differential equations is not uniqu€ by far [26].)
The reactions of Table 2 are similar, but different from those presented by SCHNA-

KENBEf,G [27],
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X +

Fi& 4, Selectivity cutues of the @aciion ,4 2 *ilh diifercnl inid.l conentrations

t2

9

6

3

0

2 0 l0

1A

I

504010

t ine +

Fig, 5. Titue evolurion of conenrarions in @ction ,.t 3

The necessary conditions for the limit cycle behaviour are fulfilled and t}le numerical
integration of the kinetic difrerential equations support that the reactions show oscil-
lations. The temporal evolution of the concentmtions with several initial conditions
and the s€lectivity curves can be seen on Figs. 1-6.
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Fis, 6. Selecdvily curves of the @crion ,,r 3 wnh diffemt initial @ncntralions

5. Oscilrtory B€haviou ofr Four-ComponeDt System:
A Nefiobiological Exampte

An open chemical system with 1wo intermediates showing oscillatory behaviour is
grven by the scheme below:

, 1 1
I
t 9
I

J

J

o -.1- r l- t l-o
\,

The processes involved are:

I : inflow,
2: conversion,
3: autocatalysis,
4: outflow.

A four-component ciosed system can
schen€ (e):

C + Y

Y e X

2 X + Y - 3 X 00)
X + B

B * C

The numerical solution of the kinetic diflerential equstion of (10) can be s€€n on
Fig. 7. This model has oscillatory solutions thus being a possible analogue of the
example by IvANovA !31. As it is known, only (asymptotically stable) limit cycles are
impossible in closed systems [28].

(e)

be constructed by slightly modifying the
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0
1 t

0

3

0

150 210

tin.

Fig. 7. Time evolution of @nenlGlions in @ction (10)- when rhii @ction is Bed to modcl
th€ slov vave, the idenrificatioN )r:= f@ ACh is lhe cyt6ol, and t:= Ch (Cf.

t0

Fig. 8. Skeleton of a ludped model for rhe explanation of slow Mve ot ACh. CorMtralions :
X= cltoplisdic tAchli , = [ACh] al the poststMpti. meobrue sudael c, t
= Icholincl. Subprls*s: | = diffusion of ACh, cleft proeses i 2 = hvdlolvsis
of ACb: 3 = difiusiot of choline: 4 = rcuptak€ of choline; 5 : aul@talvtic avn_
ibcsis of ACh

This reaction is a possible model of the recycling oftransmitt€r during neurochemical
traNmission. Chemically mediated synaptic transmission is considered to be a dynamic

Focess. The difrerent subprocesses ofthe transmission (synthesis, storage, release, cleft
processes, transmitter-rec€ptor interaction, hydrolysys, reuptake) are treated as inter-

acting on€s. At least three different neurochemical and neurophysiological oscillatory
phenomena appear at different hierarchical levels of synaptic transmission [29, 30].
'lhe slour $'aue of free cytoplasmic ac€tylcholine (Ach) were presented bv DUN^Nr
€t al. [31].

This slow wave seems to be the result of integrated activity of the synaptic metabolic
subprocesses. The skeleton of a lump€d model for the explanation of the slow wave can

be s€en on Fig. 8.

Fis. 8 b€low) are Mde
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To simplify the model most ofthe subproc€sses are assumed to be lin€at. An auto-
catalltic process (syntlesis) is superimposed on tbe lir€ar uptake proc€ss ofchotine.

The model just described is analogous with reaction (t0).

6, Discrssiotr snd Outlool

Here we prcsented several ger€rdl results providing negative criteria for exotic pheno-
mena in the deterministic model of complex chemical reactions. In connection with
th;s was determined two classes of reacrions that may contain gradr'er, ryrremr. Then
we prcsented a method for constructing oscillatory rcactions, andwehaveshown several
examples, one of them having a neurobiological application.

We think th€ most important trend on the area of exotic chemical phenomena are:
(i) The construction of further geneEl negarive criteria, i.e. cdteria for the exclusion

of exotic behaviour cf. Fll;
(ii) stating ger€.al positive theorems on rhe existence of exotic phenomena ;
(iii) the investigation of these phenomena in the stochastic model and relating the

results ci [32];
(iv) the application of models with exotic characteristics, especially to biologicat
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