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Abstract

The vibrational spectrum of uracil trapped in an argon matrix has been interpreted based on ab initio
Hartree-Fock SCF calculations with a split-valence 4-21 basis set. The directly computed theoretical gen-
era! valence force field was scaled with empirical scale factors in order to correct for the systematic errors
originating in the limitation of the theoretical model. Scale factors transferred from related molecules pro-
vided a priori prediction of fundamental frequencies and intensities, permitting several corrections to be
proposed for earlier assignments. Using the observed spectrum with the few altered assignments, a new set
of scale factors was optimized to give the best force field available from combined consideration of the
experimental and the theoretical data. For unknown reasons, the out-of-plane force field predicted a spec-
trum agreeing slightly less well with experiment than did the in-plane force field. However, the overall
agreement between theory and experiment provided additional support for the assumptions involved in the
method. The computed force fields were compared with others available from previous work. The com-
parison demonstrated the importance of expanding the energy surface around the true energy minimum and
of using a proper scaling procedure. Previous scaled cNDO/2 calculations were found to be surprisingly
good despite the large corrections required and the fact that they were made at an incorrect geometry.

Introduction

The essential biological importance of uracil and its derivatives has motivated a
number of recent studies of the structure and spectroscopy of these molecules [1-5].
Although free pyrimidine and purine bases do not occur in natural biological systems,
the interpretation of certain biological processes (e.g., genetic damage) as monitored
by infrared and Raman spectroscopy, and the analysis of more complex systems
(such as nucleosides and nucleotides), should be based on a sound understanding of
the spectra of the free base molecules. Unfortunately, there are serious deficiencies in
such understanding in the case of uracil.

The structure of the free uracil molecule has only recently been resolved [6] by
gas-phase electron diffraction. Earlier x-ray diffraction studies (e.g., Refs. 7-9) re-
vealed the major impact of the strong intermolecular hydrogen bonds with possible
significant distortions in the molecular geometry.
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The gas-phase vibrational spectrum of uracil is practically unknown. Apart from an
early work by Nowak et al. [10], who studied the vyy and vy stretching region, there
is only an unpublished attempt [11] to record the gas-phase spectrum. The results of
that experiment are referred to in Ref. 12 and have been used for comparison with a
CNDO/2 study [1]. However, since the details of that work have never been made
available, we hesitate to use it for our interpretation.

The best available approximation to experimental vibrational spectra of the free
uracil molecules comes from spectra in argon matrices [3-5, 13-15]. Spectra in inert
gas matrices are, indeed, better resolved than gas-phase data since the low tempera-
ture causes them to lack rotational envelopes. There are, however, frequency shifts
and intensity variations arising from interaction with the host matrix. For ground-
state organic molecules with small dipole moments, the frequency shifts are negligi-
bly small, perhaps up to 0.5%. For highly polar or quasi-ionic molecules, however,
the shift can be quite significant, up to 10% or even more. Uracil has a dipole
moment of 3.998 [16], so one must be concerned about small but serious frequency
shifts owing to matrix effects. The situation is helped if, with Overend and coworkers
[17], we believe that the matrix effects are dominated by perturbations of the
quadratic term in the intermolecular potential, leaving the higher order terms unaf-
fected. As explained below, certain procedures for using scale factors for the correc-
tion of computed force constants can absorb these quadratic matrix perturbations.

Examination of the available experimental data [3-5, 13-15] on the spectra of
uracil in argon matrix reveals a lack of full agreement in the assignment of fun-
damental modes and also, to some extent, in the direct experimental observables of
band frequencies and intensities (see Table I). Because of the small but not negligible
discrepancies in the experimental data, a degree of caution is required when com-
puted spectra are to be compared with those that are available from the experiments.

Our main purpose in this work is to attempt an unambiguous assignment of the ma-
trix isolation spectra of uracil based on ab initio calculation of the vibrational force
field, followed by scaling of the force field using a procedure that has now been
shown to be highly successful for a wide range of other molecules. Both the use of an
adequate level of computation and the application of a suitable scaling procedure are
required to obtain the accuracy desired [18].

The best previous theoretical attempts to deduce force fields for uracil are the
CNDO/2 study of Harsdnyi and Csdszdr {1], which used a scaling procedure essen-
tially identical to that we use here, and the ab initio STO-3G results of Nishimura
et al. [19]. The former study suffered from an inadequate level of computation and
the latter from use of a circuitous and questionable scaling procedure. Other pub-
lished force fields include the recent MNDO-MOCIC calculation of Bowman and Spiro
[20], the MINDO/3 results of Shibata et al. [21], the force field of Espinosa-Miiller
and Bravo [22] obtained by an extension of Boyd’s method, and the force field from
an empirical normal coordinate analysis by Bandekar and Zundel [23]. These force
fields refer mainly to the condensed-phase spectra rather than to free uracil and ex-
hibit many mutual disagreements.
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Computational Details

We have computed energy-optimized geometries and force fields by standard
methods [18, 24] using the ab initio gradient program TEXAS ([25] and the 4-21 basis
set [18] of Gaussian orbitals. In separate calculations of the out-of-plane force field, a
complete set of d functions with orbital exponent 0.8 was added to the basis set for
both nitrogen and carbon. The matrix of force constants was determined from gradi-
ents calculated at displaced geometries and scaled by a procedure identical to that we
have used for maleimide [26]. Infrared intensities were also evaluated from computed
dipole moment derivatives.

A complete, nonredundant set of internal coordinates was used for the calculations
(Fig. 1 and Table II). This coordinate system was chosen in accord with our previous
recommendations [18] to minimize the contribution of off-diagonal elements in the
force constant matrix.

Results and Diseussion
Geometry

A crucial point in force field calculations, the importance of which is not always
recognized, is the choice of a proper reference geometry around which the energy
surface is expanded. This reference point shounid be the best approximation that can
be made, either from experiment or from theory, to the true equilibrium geometry of
the molecule [18,26]. The magnitude of the error introduced by an improper choice
of the reference geometry depends on the degree of anharmonicity of the vibrations.
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TaBLE II. Definition of internal coordinates for uracil.

No. Description Symbols Definition®
In-plane

1 C=C stretching Veec Rs

2 C—C stretching Ve R,

3-6 C—N stretching Ve Ri, Ry, Ry, Rg

7,8 C—H stretching Yoy Is, Tg

9, 11 C=0 stretching Ye—o T4, Iy

10, 12 N—H stretching VNH Iy, I3

13-15 Ring in-plane deformations Cring, 1 g~ as oy — ozt — o
Otring, 2 Qog — a5 — oy + 205 — 0 — @
Qying,3 as <o, toop oo

16,17 C—H bending Beu Bs — Bs: Bs — Bs

18,20  C==0 bending Be—o B, — B3 B4 — B

19,21 N-—H bending Bu Bs— B3 B — B

Out-of-plane

1-3 Ring torsions Tring, 1 Tois ™ Tsez * Taser ~ Tuase T Toms — Towm
Tring.2 Teis — Taser T Taase — Tizm
Tting, 3 27613 ~ Taser — Tuss T 2Tmas = Tims — Tseiz

4,5 C—H out-of-plane bending Yeu Y1 Y12

6, 8 C=0 out-of-plane bending Ye—o V> Y10

7,9 N-—H out-of-plane bending YNH Y7, Yo

®In-plane symbols used are shown in Figure 1. The index of the out-of-plane bending coordinates corre-
sponds to the numbering of the atoms in Figure 1, v, is positive if atom i moves in the positive y direction.
The four indices in the torsion are also numbers of the atoms (i.€., 7,345 is the dihedral angle of the 234 and
345 planes). The torsional angle 7, is positive if, viewing from the direction of atom k, a counter-clock-
wise rotation is needed to bring atoms i and / into eclipsed conformation.

As an illustration, it is well known [27, 28] that a computed C—H stretching fre-
quency has an error of 10 cm™ for every 0.001 A error in the reference C—H bond
length.

We have optimized the geometry of uracil at the ab initio 4-21 level and also with
the addition of d functions to the basis for carbon and nitrogen. The results are shown
in Table III along with calculated CNDO/2 [1], MINDO/3 [29], and experimental ge-
ometries. The reliability of the figures obtained from the various approaches is dis-
cussed elsewhere [18,29], but it is of interest to see the results of the different
methods compiled in one place.

We have chosen as our reference geometry the structure calculated with the 4-21
basis set and corrected by the small offset values [18,30] that have been found in
many examples to give a close approximation to an r, structure. In our opinion, the
differences between our computed force field and the force fields calculated by some
earlier authors may be largely attributed to their incorrect choice of the reference
geometry.

Scale Factors

The common practice of scaling the computed force constant matrix to correct for
computational errors arising from neglect of electron correlation and use of a finite
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TaBLE III. Bond lengths (in pm) and angles (in degrees) for uracil.

Experimental Ab-initio
X-Tay ED° CNDO/2°  MINDO/3? sT0-3G 421
Parameter* I’ rf 1/I, Lt L% r,Bh % L8 Tod
R, 137.1 138.1 139.5 138.4 139.0 142.5 142.7 138.0 136.9
R, 137.1 138.2 139.1 137.9 138.0 142.0 141.9 137.5 136.5
R; 137.1 138.1 141.5 138.9 140.1 143.6 143.2 139.9 138.9
R, 143.0 143.9 146.2 143.5 147.0 149.7 149.2 145.9 145.8
R; 1340 133.6 134.3 1343 1359 132.1 132.3 132.5 134.5
Rs 135.8 137.6 139.6 137.9 136.7 140.5 140.5 138.0 137.0
r 83.6 — 100.2 106.4 102.7 101.8 101.9 99.5 100.0
I, 121.5 121.6 121.2 127.8 121.6 121.9 121.9 121.5 121.0
I3 88.7 94.7 100.2¢ 106.7 103.4 102.0 101.9 99.8 100.3
A 124.5 122.5 121.2 127.8 i21.1 122.1 122.1 121.4 120.9
Is 93.1 96.1 107.2* 111.2 110.2 107.8 107.2 106.5 107.0
T 95.7 95.4 107.2 111.7 111.3 108.7 108.6 106.9 107.4
a, 122.7 120.7 123.2 121.7 126.6 123.3 122.7 123.3
o 114.0 114.8 114.6 1149 109.9 112.6 112.7 113.6
a3 126.7 127.2 126.0 126.2 131.6 127.5 127.9 128.5
o 115.6 114.6 115.5 115.1 111.1 113.3 112.6 113.4
o 118.9 119.0 119.7 119.3 121.2 120.7 121.2 119.3
o 122.3 123.7 122.1 122.4 119.6 122.7 122.6 121.8
B 122.2 120.2 121.1* 119.5 115.8 119.8 120.7 121.0
B, 123.7 1215 123.8 121.9 123.0 124.1 123.8 122.7
Bs 117.8 116.4 115.4* 115.7 112.8 117.0 115.4 115.4
B 119.0 126.3 120.2 118.0 120.4 126.3 1204 120.7
Bs 118.0 122.5 118.1* 119.1 119.1 121.7 117.5 118.1
Bs 123.2 113.4 122.8* 123.8 123.8 114.5 122.2 122.8
*For notations see Figure 1.
"Ref. 6.
Ref. 1.
4Ref. 29.

“Refs. 7, 9; x-ray structures for uracil.

fRef. 19, from x-ray structure for cyclohexyl uracil.

2Uncorrected theoretical equilibrium values.

BRef. 19.

iRef. 21.

'Obtained from the theoretical r, values, applying the small correction suggested in Ref. 18. The correction
used for the C—N distance is somewhat arbitrary.

* Assumed values, kept fixed during evaluation of ED data.

basis set may have either of two objectives. If the spectrum of a molecule is unknown
or uncertain, scale factors may be transferred from closely related molecules on the
assumption that the computational error is similar for similar types of vibrations in
similar molecules. This leads to an a priori prediction of the spectrum and can be
used to make or correct assignments of the fundamental modes. Alternatively, the
computed force field may be corrected by a set of scale factors that have been opti-
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mized to give the best fit of the computed spectrum to the observed spectrum, or to
some portion of it that is known with certainty. In this case, the object is to obtain the
best possible force field from a combination of all the available evidence, both ex-
perimental and theoretical. We have used both approaches here.

The scale factors we have used are shown in Table IV. Set A is transferred from
calculations on a group of small aliphatic molecules [24] and set B is transferred
from the closely related molecule maleimide [26]. Set C is optimized to give the best
fit to the uracil spectrum. Both a priori predictions, with either set A or set B, sug-
gested some inconsistencies in the experimental assignments [3-5, 13—15], leading to
a number of changes that are proposed below. The mean-square deviations between
the computed frequencies and the experimental frequencies are 21.1 cm™' of the in-
plane frequencies and 21.7 ¢m™' for the out-of-plane modes using the set A scale fac-
tors. These values are reduced to 11.3 and 21.5 cm™ using the more closely related
scale factors of maleimide, set B. The rather large discrepancies in the out-of-plane
modes call attention to the possible misassignments that are examined in a subsequent
section. After making these corrections, the set C scale factors were obtained by
least-squares optimization to the observed uracil matrix spectrum.

Limited calculations with d functions on all of the ring atoms gave results in ac-
cord with our earlier observations on maleimide [26]. Scale factors were nearer unity
with the higher-level calculation, but there was nothing to suggest that any improve-
ment in the quality of the scaled force field is obtained from calculations at higher
than the 4-21 level.

The uracil force field of Chin et al. [S] was based on the STO-3G calculations of
Nishimura et al. {19]. These calculations were apparently made at a reference ge-

TaBLE IV. Scale factors for Uracil.

Coordinate® Set A Set B® Set C® s10-3G®

In-plane
- 0.880 0.844 0.850 0.705
Ve 0.866 0.835 0.822 0.664
Voo 0.826 0.818 0.831 0.664
Unc 0.880 0.878 0.842 0.778
Ve 0.920 0.901 0.896 0.778
Vo—c 0.866 0.869 0.909 0.664
Bxu 0.800 0.790 0.793 0.737
Beu 0.800 0.785 0.768 0.737
Be—o 0.836 0.875 0.847 0.875
Bring 0.800 0.793 0.813 0.875

Out-of-plane
Yru 0.500 0.510 0.583 —
Yen 0.730 0.697 0.733 —
Ye=0 0.800 0.831 0.765 —
Teng 0.800 0.731 0.791 —

2For notations of the internal coordinates see Table II and

Figure 1.
®See text for specifications of the scale factor sets.
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ometry far from the true equilibrium geometry, a procedure which can introduce seri-
ous errors. Scaling was done in two steps. First, the ST0-3G force field was
multiplied by a set of scale factors that had been derived to convert STO-3G force
constants to 4-31 quality. Next, computed vibrational frequencies were multiplied by
the constant factor of 0.9 to predict experimental frequencies. The latter step is
equivalent to multiplying the force constants by the single factor of 0.9° = 0.81. The
two steps may be combined to give the scale factors shown in Table IV that give in
one step the same values as those obtained by the previous authors [5]. It must be
emphasized that these are scale factors for correcting the STO-3G computed results to
agree with experiment and that the earlier work was not based on any 4-31 computa-
tions on uracil.

Force Constants

The computed force field of uracil using the optimized scale factors of set C is
given in Table V for the in-plane modes and in Table VI for the out-of-plane modes.
Table V also gives the in-plane force field obtained by CNDO/2 calculations [1] and
by STO-3G {5, 19], both scaled as described above. The STO-3G results have been
transformed into our coordinate system for ready comparison. The most striking ob-
servation that can be drawn from an inspection of this table is that the scaled CNDO/2
force field shows better agreement with the ab initio 4-21 values than might be ex-
pected considering the large error that appears in the directly calculated CNDO/2 force
field. Apparently the error is sufficiently systematic, even at this level of calculation,
that the scaling procedure, properly applied, can correct for most of it. A close com-
parison of the results is not warranted because the CNDO/2 calculations were made at
a considerably different geometry (the CNDO/2 energy minimum geometry, see
Table IIT), and a somewhat different interpretation of the experimental spectrum was
used to refine the CNDO/2 scale factors. These two considerations may well account
for a good part of the differences seen in the diagonal force constants and particularly
in the ortho interactions of the vy and vy stretchings with the voc and vey stretch-
ings. The prediction of the exocyclic bond lengths was particularly poor by CNDO/2
(Table ). It would be extremely interesting to see CNDO/2 force constants for uracil
calculated at the true equilibrium geometry and fitted to the uracil spectrum as we
have interpreted it here.

Aside from the ortho interactions mentioned above, CNDO/2 predicted the off-
diagonal elements of the force constant matrix reasonably well. Although about 20 of
the 84 off-diagonal elements differ in sign when compared with either of the ab initio
force matrices, all but one of these elements is smaller than 0.05. Regardless of sign,
such small elements can have little effect on a predicted spectrum. In general, it ap-
pears that CNDO/2 calculations can give highly useful information at little expense,
provided care is taken in using the correct reference geometry and in the scaling pro-
cedure. On the other hand, the analysis is fully as complicated as for the ab initio
computations so that the greater certainty of higher accuracy from the ab initio calcu-
lations make them preferable if computer facilities permit. The level of calculation
was probably adequate for the STO-3G calculations, and better agreement with our
present results would be anticipated if they had been made at the equilibrium ge-
ometry and if our scaling procedure had been used.
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VIBRATIONAL SPECTRA OF URACIL 811

Table VI shows the out-of-plane force fields from our 4-21 calculations, our 4-21%*
calculations, and the CNDO/2 results. These force constants were not reported in the
earlier STO-3G work. Again, comparison bears out the high quality of the CNDO/2 re-
sults. Differences in sign are seen for 3 out of 45 off-diagonal elements, but all of
these have absolute values less than 0.03.

Assignment of In-plane Fundamentals

The vibrational fundamentals of uracil calculated at various levels of approxima-
tion are given in Table VII. As described in the Introduction, we choose to compare
our results only with matrix isolation data [3-5, 13—15]. Of the available experi-
ments, we can select that of Barnes et al. [3] for comment, since the assignments
given there correspond most closely to our own. Our proposed assignment of the in-
plane fundamentals differs from that of Barnes et al. [3] for only three bands, vs, v,
and v. The C=0 stretching region that contains vs and vs is noted for being
strongly influenced by Fermi interactions. In the uracil spectrum there are 10 bands
reported in this region [3], but only two fundamentals, vs and v, are expected. As in
the case of maleimide [26], the assignment of any of the observed bands can be ques-
tioned, and our choice of the bands at 1764 and 1741 cm™ is based largely on the
calculated frequency difference between v and vg, which is 15-20 cm™ by all meth-
ods considered here and on the predicted ratio of the absolute intensities. We do not
consider this to be a definitive assignment, however.

In the 950-980 cm™' region of the spectrum, there should be three fundamentals,
Vs, vig, and vy, all of very low intensity. Barnes et al. [3] observe only two bands in
this region, and the situation is very similar in most of the other experimental spectra
[4-5, 13-15]. Only Maltese et al. [14] report three bands in this region. One of these,
however, is described as uncertain, and only one is considered by them to be a fun-
damental. Since our calculations show v;s to be the most intense, we assign the band
at 958 cm™' reported in all four experimental spectra to it. The predicted intensity of
the other two bands is extremely low, and it is possible that neither of them has actu-
ally been observed. There is, however, some evidence for very weak bands at 982
[3], 970 [14], and 963 cm™' [5]. We have chosen, somewhat arbitrarily, to assign v,
at 963 cm™' and v at 982 cm™'. Despite these small uncertainties, we consider the
overall agreement between tht assignments of Barnes et al. and our calculations to be
excellent.

Assignment of Out-of-plane Fundamentals

The assignment of the out-of-plane fundamentals is more problematical than for
the in-plane modes. The C— H out-of-plane bends in y-pyrone [31] and in maleimide
[26), which have structures similar to that of uracil, lie in the 940980 cm ™ region.
This supports our assignment of the 963 cm™' band [5] in uracil as vy, in disagree-
ment with the suggestions of a much lower frequency made in the experimental work
(see Tables I and VII).
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814 HARSANYI ET AL.

The assignments of v,; and v, present a special problem. The intensity of a yc—o
band is usually high, in agreement with our calculated intensity. This supports the as-
signment of the 804 cm ~ ! band, the strongest one in this region of the spectrum, as
vy;. We feel that this is correct despite the better agreement wih the computed fre-
quencies that would have been obtained by reversing the assignments of v and vy,.

From experimental evidence (e.g., isotopic shifts [3]) it is quite certain that the yny
bands, v and v,7, are at 662 and 551 cm™ !, respectively. These vibrations are partic-
ularly susceptible to matrix effects, which may account for the larger than normal dif-
ferences between experimental and computed intensities.

There is little evidence to support the assignments of the last three modes, vy—v3.
The 411 and 185 cm™' frequencies assigned to v and v, are taken from gas-phase
spectra [11, 12]. For the lowest frequency, the ring torsion mode, we have used the
calculated value.

Conclusions

Use of scale factors transferred from related molecules permits us to make an
a priori prediction of the in-plane spectrum of uracil of sufficient quality to confirm
most of the previously assigned fundamental modes and to suggest three likely alter-
ations. Scale factors (set C) derived from combined use of the observed spectra and
the calculations allow us to obtain what should be the best currently available uracil
force field. Since these scale factors must partly compensate for quadratic effects re-
sulting from intermolecular potentials, they should partially correct for matrix inter-
actions of a systematic nature.

The out-of-plane force field produces a predicted spectrum that agrees less well
with experiment than we have come to expect from computations at this level. For
example, the out-of-plane modes for the related molecules maleimide {26], y-pyrone
[31], and pyridine [32] could be calculated with at least as much accuracy and reli-
ability as the in-plane modes. Particularly disturbing are the apparent reversal of sev-
eral bands compared with experiment. We have no ready explanation for the greater
errors in the out-of-plane spectrum of uracil unless they can be attributed to matrix
effects on the experimental spectra.

We intend to use the computed force fields to investigate the spectra of a variety of
isotopic species of uracil. These spectra contain a larger number of uncertainties in
assignment, and we expect the force fields we have obtained to make a useful contri-
bution in sorting out at least some of the difficulties.
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