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The inclusion of the anharmonicity of molecular vibrations is an important aspect of the goal of making highly accurate theo- 
retical predictions of the spectroscopic properties of molecules. Recently developed analytic third derivative methods for self- 
consistent-field (SCF) wavefunctions have made it possible to determine the complete cubic and quartic force fields of poly- 
atomic molecules, thus allowing the treatment of anharmonic eIfects. Here we continue our systematic evaluation of the perform- 
ance of such theoretical methods by studying several linear molecules which are well characterized experimentally, viz, HCN, 
DCN, COs, NsO, QCS, CsH,, and C2Dr. A number of anharmonic molecular properties have been determined, including vibra- 
tion-rotation interaction constants, vibrational anharmonic constants, fundamental vibrational frequencies, sextic centrifugal 
distortion constants, rotational constants which include zero-point vibrational corrections, and vibrational and rotational &type 
doubling constants. These anharmonic molecular constants are not as well converged with respect to basis set enlargement as 
those which were previously determined for asymmetric top molecules, appanmtly because all the molecules considered here 
contain multiple bonds. However, the reported anharmonic constants at the SCF level of theory are still in reasonably good 
agreement with the corresponding experimental constants. Siicant improvements in accuracy are achieved by incorporating 
electron correlation at the configuration interaction singles and doubles (CISD) level of theory. Standard spectroscopic pertur- 
bation theory methods are used in this study, which are directly and immediitely applicable to larger molecular systems than 
those studied here. 

1. Introduction 

The present paper is the continuation of our studies of vibrational anharmonic effects and the feasibility of 
using computational quantum chemistry to predict the wide variety of constants which characterize the vibra- 
tion-rotation spectra of semirigid molecules [ 11. In the past, most theoretical investigations have been re- 
stricted, for very practical reasons, to the harmonic approximation. Numerous ab initio studies [ 2-8 ] indicate 
that for most molecules and normal modes, self-consistent-field (SCF) harmonic vibrational frequencies, which 
can now be routinely calculated, are higher than experimental frequencies by approximately 1096. It has also 
been shown that basis set incompleteness, electron correlation effects, and anharmonicity of molecular vibra- 
tions all affect this overestimation in an important way. For a more detailed discussion of the relative impor- 
tance of these factors, see the introductory part of ref. [ 91, the first paper in the present series (hereafter called 
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part I). At this point it suffices to say that recent theoretical developments in analytic derivative methods [ 1 O- 
12 ] (particularly those which have made possible the calculation of analytic third derivatives of the SCF energy 
with respect to nuclear displacements [ 131) in conjunction with the ever increasing availability of computer 
resources have made it feasible to reinvestigate the role of these factors, ultimately leading to a better under- 
standing of them, which is one goal of this research. Perhaps an even more important goal is to document the 
effect of improving the theoretical treatment and thus ascertain a minimum theoretical level that is satisfactory 
in the prediction of the spectroscopic constants (harmonic and anharmonic) necessary to describe the vibra- 
tion-rotation spectra of vastly different molecules. 

In part I [ 9 ] complete quartic force fields were determined at the SCF level of theory for several asymmetric 
top molecules and compared to appropriate CISD (configuration interaction singles and doubles) force fields 
(quartic for triatomics and quadratic for larger molecules). Some important results of that study were: (a) for 
most constants the SCF quartic force fields show rather little variation with basis set extension, and the observed 
changes may be primarily due to variations in the underlying optimized geometries; (b ) for many anharmonic 
molecular constants and properties, the values predicted via SCF higher (i.e. third and fourth) derivatives seem 
to have converged with respect to basis set variation at the double-zeta+polarization (DZP) level, although the 
basis sets considered were certainly not large enough to show this definitively; (c) particularly good agreement 
between the various theoretical anharmonic constants and experiment was found when the CISD quadratic 
force field was coupled with the corresponding SCF cubic and/or quartic force constants computed with the 
same basis set. 

In the linear molecules considered in the present paper (HCN, COz, NzO, OCS and C,H,) there is substan- 
tially more localization of electron density in the form of multiple bonds than in the asymmetric top molecules 
considered in part I. The proper theoretical description of these multiple bonds and their interaction with other 
electron pairs is certainly very demanding, and thus the use of extended and flexible basis sets and methods 
including a substantial portion of the electron correlation might be necessary. While in part I the largest basis 
set used was of triple-zeta + polarization (TZP ) quality, it is feasible to use an even larger basis set here (TZZP ) 
which contains two sets of polarization functions. Furthermore, for triatomic molecules there is a straightfor- 
ward and accurate procedure to calculate the complete quartic force field from finite differences of analytic first 
derivatives (see section 3 below). This allows calculation of pure CISD quartic force fields, and thus an analysis 
of the utility of the CISD method to predict anharmonic spectroscopic constants is possible. In summary, the 
present study investigates exhaustively the ability of both the SCF and CISD methods to predict quartic force 
fields and several of the anharmonic molecular constants of linear molecules, at the same time providing a 
fundamental perspective on the experimentally observed constants for these well-studied molecules. At this 
point it is necessary to emphasize that, similarly to part I, spectroscopic constants are calculated from the quartic 
force fields by formulas obtained using low-order perturbation theory [ 11. Thus not only may the calculated 
force constants contain errors but in certain cases the treatment based on perturbation theory may break down 
[ 14,151. 

Section 2 serves to review the necessary theory and formulas which have been employed for the determination 
of the spectroscopic constants of linear molecules. Section 3 describes the theoretical procedures applied in this 
study and contains a few comments regarding the practical details of obtaining the complete quartic force fields. 
Section 4 discusses separately the results obtained for each molecule studied. The complete quartic force fields 
at both levels of theory (SCF and CISD) obtained with the largest basis set (TZZP in most cases) are also given 
in section 4 for each molecule. 

2. The evaluation of various vibration-rotation constants 

Formulas for the various vibration-rotation constants described here and their relationship to molecular ge- 
ometries and force constants have been determined previously using results of perturbation theory [ 1,16-23 1. 
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Although these formulas have been presented, discussed and reviewed several times, we find it helpful to reit- 
erate formulas and discussions which are useful from our point of view. The method applied in the present study 
to determine the spectroscopic constants is complementary to the usual spectroscopic practice, in which numer- 
ous constants contained in the rovibrational Hamiltonian are fitted to the measured spectra. In contrast, we first 
determine equilibrium geometries and potential energy derivatives (force constants), which are then used to 
calculate the spectroscopic constants. In sections 2.1 to 2.8 we present explicitly those formulas which pertain 
to linear polyatomic molecules. 

2.1. Energy expressions 

The vibration-rotation term values of a polyatomic molecule may be expressed empirically as the sum of a 
vibrational term which is independent of the rotational quantum numbers and a rotational term which is largely 
independent of the vibrational quantum numbers, that is [ 201, 

T(v,J)=G(v)+F,(J). (1) 

The rotational term values F,(J) of a linear polyatomic molecule are given in the form [ 2 1 ] 

F,(J)=B,[J(J+1)-I*]-D,[J(J+1)-1*]2+H,[J(J+1)-I2]3+..., (2) 

where 1 is the quantum number for the total vibrational angular momentum, B, is the effective rotational con- 
stant, DJ is the quartic centrifugal distortion constant, and H, is the sextic centrifugal distortion constant. 

The vibrational term values G(Y) of a linear polyatomic molecule are expressed as 

G(u)= C w,(u,+Id,)+ C xrs(~r+fk)(~s+f4)+ 1 xr,c1t1r +... 3 

I r,s fat’ 

where subscripts r and s denote either non-degenerate or degenerate normal modes and t and t’ indicate degen- 
erate modes only. In eq. ( 3 ) , w, is the rth harmonic frequency, d, is the degeneracy of the rth normal mode, and 
x,~ and x,,~,. are the vibrational anharmonic constants. 

Following Nielsen’s treatment [ 17- 19 ] we employ the dimensionless normal coordinate 

e=rf”Qr, 

where 

(4) 

The vibrational potential energy is then expanded in terms of these dimensionless normal coordinates as 

where the &St and q&, are the cubic and quartic force constants, respectively. It should be noted that the multiple 
summations in eq. ( 6 ) are unrestricted, and thus the @s differ from Nielsen’s original anharmonic ks by multi- 
plicative factors. 

2.2. The vibration-rotation interaction constants 

The vibrational dependence of the effective rotational constant for a linear polyatomic molecule is given by 

B,=B,- 1 a,(v,+td,)+... , (7) 
, 

where B, is the equilibrium rotational constant, the (rr are the vibration-rotation interaction constants, and the 
summation runs over all the normal modes. 
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Perturbation theory gives the formulas for the vibration-rotation interaction constants of a linear molecule 
as [21] 

and 

(8) 

(9) 

where the subscripts s and s’ denote non-degenerate modes, and t indicates a degenerate mode. The equilibrium 
rotational constant B, in eqs. ( 7 ) , ( 8 ) , and ( 9 ) is given by 

B, =A2/2hcl, , (10) 

and the inertial derivatives over the normal coordinates, a,, are defined as 

a,=(az,/aQ,),=(al,/aQ), , (11) 

where Z, ( =Z,=Z,) is the equilibrium moment of inertia (the molecule is assumed to lie along the z axis). 
Note that the inertial derivatives in eq. ( 11) are nonzero only for totally symmetric normal modes. 

The Coriolis zeta constants, cSb which couple QS to Qt through rotation about the x and y axes, have the 
following property for linear polyatomic molecules: 

L = Kb = - K. 7 (12) 

and they are defined by 

c;:,“’ = 1 [Lj/L1’,” -Lj:‘L,!B’] ) (13) 
I 

where o, 8, and y are cyclic permutations of x, y, and z, and L is the matrix which transforms the normal 
coordinates to mass-weighted Cartesian coordinates. In applying eq. (9), it is useful to note that for a linear 
polyatomic molecule the nonvanishing cubic force constants involving degenerate coordinates are 

@*sl.r. = &lb (14) 

and 

2.3. The centrifugal distortion constants 

Following Aliev and Watson [ 22,23 1, rotational derivatives B, are defined by 

B,=By=B$=- 
h3 a, 

2h3/Zc3/ZWff2 E ’ (16) 

where the inertial derivatives a, are those given in eq. ( 11). The quartic centrifugal distortion constant, D,, is 
expressed in terms of these new parameters as 

D+~, 
s s 

(17) 

and the sextic centrifugal distortion constant H, is given by 
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(18) 

In eqs. ( 17 ) and ( 18 ), the summations are only over totally symmetric normal modes. 
Aliev [ 24 ] has investigated lower and upper bounds for quartic centrifugal distortion constants. He obtained 

an especially simple formula, DY =4Bq/O&., for the upper bound in the case of linear molecules, where Omi, 
is the lowest stretching frequency. Comparing calculated upper bounds with available experimental results, he 
also showed that experimental D, constants of linear molecules are typically very close to this upper bound, and 
thus are insensitive to the complete force field of the molecule. This means that the calculated DJ constants of 
the present study are not particularly informative about the details of the quadratic force fields. (This situation 
is in clear contrast to the case of asymmetric top molecules [ 9,251, where the quartic centrifugal distortion 
constants are sometimes very sensitive to changes in the quadratic force field.) For the sextic constant H.,, no 
such simple formula is available which would give similar insight into its sensitivity to the full cubic force field. 

2.4. The rotational I-type doubling constants 

The rotational l-type doubling constants q1 associated with a degenerate vibration w, of a linear molecule 
describe, for example, the splitting of the I= _+ 1 pair of levels of the Y,= 1 fundamental manifold, these levels 
being separated in energy by an amount qJ( J+ 1). These constants have actually been observed to be v, J, and 
K dependent [ 2 1,261, but in the present study only the corrections due to centrifugal distortion are considered 
using the formulation of Watson [ 27 ] 

q~=q4:+q:J(J+1)+qP(K*1)2. (19) 

The qt values are given by 

(20) 

and the formulas for qf and q? are presented in table V of Watson’s paper [ 271 as 

and 

(22) 

where C,= - BJw,, and B, is given in eq. ( 16). It should be noted that for a linear polyatomic molecule the q; 
in eq. (20) is independent of the anharmonic force constants, whereas qf and qfc depend on the cubic, but not 
quartic, force constants. 
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2.5. The vibrational anharmonic constants 

The vibrational anharmonic constants appearing in the vibrational term formula (3) may be determined 
using the results of perturbation theory [ 17-2 11. For a linear polyatomic molecule, the general formulas are 

and 

for the diagonal terms, and 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

and 

for the off-diagonal terms. The denominator A,.,. in eqs. (26)-( 29) is defined by 

A ,1*1” = (w,+w,r +w,.)(w,+w,~ _W,“)(W,_w,, +w,“)(w,-w,~ -0,“) . (30) 

All of the summations in eqs. (23)- (29) are unrestricted, however, the index s runs only over non-degenerate 
modes, and the index t runs only over degenerate modes. 

2.6. Anharmonic resonance 

If either of the following relationships is satisfied accidentally for a linear polyatomic molecule, 

2”, % W,? and 9,,,, #O ; (31) 

w, + w,, x w,.. and q&,, II # 0 (32) 

the quantities xn and x,+ in section 2.5 may become indefinitely large and the perturbation theory method de- 
scribed above will fail. This phenomenon is called vibrational anharmonic resonance [ 1,191, and the case given 
in eq. ( 3 1) is generally referred to as Fermi-Dennison [ 28,291 resonance. 

The components of the diagonal terms [eqs. (23)-( 25) ] which contain # 3, may be factored as follows [ 18 ] : 

err, 8”; - 3~5, 
“,*(4w;-wf,) =4@42” iWr# - 2” ‘, + &) I I 

and 

(33) 
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where r and r’ denote either non-degenerate or degenerate normal modes. If an anharmonic resonance (2~5~ o, ) 
occurs, the resonating terms are replaced according to 

&?I,, 
80; - 3wf. 

0, (4wf -w:) ‘42w.:wr, + 2) 

in eqs. (23) and (24), and 

(35) 

(36) 

in eq. (25). 
Similarly, the components of the off-diagonal terms [ eqs. (26)-( 29 ) ] which have @f,,,- as a coefficient may 

be factored according to 

&” 
w,“(w:-w:-w;~) 

A = t+‘*,-(, +w:.+w -w +w;,_w + w,_w;,+w - w,_w’,_w )T (37) I,’ ,” I I” I I” I” I” 

@L wywr” =@qw +:,.+, 
rr’ I” , 

- w +o: -w,. - ,-w:.+w I” I I” + w,-k-w r- )- 
If the resonance w,+ w, = w,, occurs, the resonating terms are replaced according to 

$%- 
W,“(Wf” -wf -w:> 

A -B 9L” t 
,, r- ( 1 1 1 

0, + w,* + 0,” 
+ 

w,-w,. +w,- - 0, - w,, - 0,” > 

ineqs. (26)-(28) and 

@5*- w:;,T +@:*“(w,+w; +w,. - w,_w;. +o,” + w,_w;# _w,.> 

(38) 

(39) 

(40) 

in eq. (29). 
A complete analysis of the vibration-rotation interaction of resonating levels must involve a first-order rather 

than a second-order treatment. In many experimental analyses tirst-order interactions arc indeed accounted for 
independently so that the resulting empirical xn constants correspond to deperturbed energy levels. The replace- 
ment of terms described in the above equations effectively removes interactions in the second-order treatment 
which are more properly treated in first order. This provides for a direct comparison between our ab initio 
constants and empirical constants associated with deperturbed energy levels. 

Another type of resonance which may appear in linear molecules is Coriolis resonance, which can occur only 
if the Coriolis constant 6 between normal modes s and t is nonxero. Thus, in linear molecules Coriolis resonance 
always involves a non-degenerate normal mode s and a degenerate normal mode t. No Coriolis resonances are 
of concern for the molecules studied in this paper. 

2.7. The findamentalfcies 

The fundamental frequencies [ 16 ] of a linear polyatomic molecule are obtained from the harmonic frequen- 
cies and the anharmonic constants defined in the preceding sections according to 

Vi=Wi+Ai=Wi+Xii(l+di)+f &X&+X/,~,r (.41) 
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where xlrr, is non-zero only for degenerate modes. The fundamental frequencies should closely correspond with 
the frequencies obtained from vibrational-rotational spectra. 

2.8. The vibrational l-type doubling constants 

Vibrational energy levels of linear polyatomic molecules may also be perturbed by vibrational l-type doubling 
if two or more doubly degenerate tibrational modes are excited [ 2 11. For example, the (v!J, v$ ) = ( 1 * ‘, 1 * ’ ) 
manifold of acetylene consists of the following levels: ( 1) 1= 0, Z,’ symmetry, relative energy = - r45; (2) 1= 0, 
C; symmetry, relative energy = +r45; and (3) l= f 2,4, symmetry, relative energy = 2,~) where xlds is the 
vibrational anharmonic constant of eq. (29), and r4s is the vibrational l-type doubling constant. The general 
expression for the vibrational l-type doubling constant for a linear polyatomic molecule is given by 

(42) 

where A,,,. is already defined in eq. (30). 

3. Theoretical methods 

The test molecules chosen for this portion of our systematic study of anharmonicity are HCN, DCN, COz, 
N20, OCS, C&HZ, and C2D2. We have chosen five basis sets, of double-zeta (DZ ) , triple-zeta (TZ ) , double-zeta 
plus polarization (DZP ) , triple-zeta plus polarization (TZP ) , and triple-zeta plus double polarization (TZZP ) 
quality for determination of the quartic force fields and the various harmonic and anharmonic quantities de- 
scribed above. The DZ basis is that of Huzinaga [ 301 and Dunning [ 3 1,321 and consists of a (9sSp/4s2p) set 
of contracted Gaussian functions for carbon, nitrogen, and oxygen, an ( 11 s7p/6s4p) set for sulfur, and a (4s/ 
2s) set for hydrogen atoms. The TZ basis set is obtained from the same set of primitive Gaussian functions [ 301 
but is more loosely contracted; it may be designated (9s5p/5s3p) for carbon, nitrogen, and oxygen, ( 1 ls7p/ 
7~5~) for sulfur, and (4s/3s) for hydrogen atoms. We have employed the primitive functions as they are pub- 
lished by Huzinaga [ 301, since the more commonly used tabulation of Dunning and Hay [ 321 contains a minor 
typographical error; namely, the second most diffuse s exponent of sulfur should be 0.4264 rather than 0.4246. 
For the DZP and TZP basis sets, a single set of polarization functions, consisting of six Cartesian d-type func- 
tions for each heavy atom [ad(C)=0.75, a,(N)=0.80, cr,(O)=O.85, (~,,(S)=0.50] or a set of p-type func- 
tions for each hydrogen atom [ a,( H ) = 0.75 1, was added to the corresponding DZ or TZ bases. For the TZ2P 
basis set, two sets of polarization functions, consisting of sets of six Cartesian d-type functions for each heavy 
atom [a~(C)=1.50,0.375;(~~(N)=1.60,0.40,a~(O)=1.70,0.425;a~(S)=1.00,0.25]orsetsofp-typefuno 
tions for each hydrogen atom [ a, ( H ) = 1.50,O. 37 5 1, were added to the corresponding TZ basis. 

Electronic wavefunctions were determined in this study by both the single-configuration, selfconsistent-field, 
restricted Hartree-Fock (SCF) method and the single-reference configuration interaction singles and doubles 
(CISD) method, the CISD wavefunctions being constructed from the respective SCF orbitals. The numbers of 
core and virtual orbitals which were frozen in the CI treatments for the different molecules are as follows: 2 core 
and 2 virtual orbitals for HCN, 3 core and 3 virtual orbitals for CO1 and NzO, and 7 core and 1 virtual orbital 
for OCS. 

The equilibrium geometries of the test molecules were obtained by optimization using analytic SCF and CISD 
gradient methods [ 2,33-351. The residual Cartesian gradients were in all cases less than lo-’ hartree/bohr. 

At the SCF level, quadratic and cubic force constants were determined analytically [ lO-13,36-381, while 
quartic force constants were obtained by finite differences of third derivatives. Both positive and negative dis- 
placements of the size 0.000 1 bohr were applied for the individual atomic Cartesian coordinates. 

The complete CISD quartic force fields were determined for the triatomic molecules (HCN, COz, NzO and 
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OCS) whereas only the quadratic force field was obtained (by finite difference of first derivatives with 0.01 
bohr displacements) for C2H2. The quartic force fields for the triatomics were obtained from finite differences 
of analytic CI gradients in the following fashion. Analytic Cartesian first derivatives were computed for 18 
different points ( 1.1 in the case of CO*) and transformed to internal coordinates, chosen to be the individual 
stretches for each molecule and the two equivalent linear bending angles. The single displacements involved 
perturbations of each symmetry-unique internal coordinate by + 0.01 and + 0.02 A or + 0.02 and f 0.04 rad. 
All the symmetry-unique double displacements (i.e. displacements involving a stretch and a bend or the two 
stretches at the same time) were also made and calculated. These were used in a cost-efficient finite-difference 
(rather than surface-fitting) procedure to generate all force constants up to fourth order. The quartic force field 
in internal coordinates was then transformed directly and analytically to Cartesian coordinate derivatives with 
the program INTDER, written by W.D. Allen. The whole finite-difference procedure using information only 
from analytic first derivatives was tested at the DZ SCF level for HCN against the procedure using finite differ- 
ences of analytic third derivatives. The two sets of force constants are compared in table 1, where excellent 
agreement is seen. For example, the force constantsf- andf,,,, for the CN stretch are - 138.52 aJ AT3 and 
723.73 aJ Am4, respectively, using the third derivative method as compared to - 138.68 and 724.18 using the 
first derivative method. 

The vibrational anharmonic constants and vibration-rotation interaction constants were then evaluated from 
the Cartesian quartic force fields by performing a linear transformation into normal coordinates and using the 
formulas presented in section 2. 

No anharmonic resonances involving the lowest vibration-rotation levels occur for HCN, DCN, &Hz or 
C2D2. For COz, N20 and OCS the anharmonic (resonance) interactions between the first overtone of the bend- 
ing vibration (2~~) and one of the stretching vibrations (wI for CO2 and OCS, and w3 for N20) have been 
taken into account experimentally in first-order treatments. A similar experimental analysis has been performed 
for the interaction between 2wi and o3 for OCS, levels which involve the two stretching vibrations. Therefore 
the measured vibrational anharmonic constants (L) correspond to deperturbed energy levels. In the present 
calculations these resonances have been explicitly removed from the second-order perturbation treatment through 
the appropriate replacement formulas (see section 2 ) at all levels of theory, regardless of the values predicted 
for the harmonic frequencies. This treatment ensures that the calculated anharmonic vibrational constants (cor- 

Table 1 
Complete quartic force fields of HCN calculated at the DZ SCF level a1 

constant Anal. 3rd ‘) Anal. 1st =) Anal. 3rd b, 

fw(CH) 
/ rR 

7.169261 7.169259(2) 
-0.319451 -0.319451(O) 
22.478773 22.478766(7) 

0.375665 0.375665(O) 
-40.510 -40.556(46) 

0.6680 0.6683(3) 
0.1766 0.1769(3) 

- 138.52 -138.68(16) 
-0.27539 -0.27541(2) 
-0.72226 -0.72231(5) 

205.34 205.48( 14) 
-2.7708 -2.7710(2) 
- 1.9268 - 1.9273(5) 
- 1.8205 - 1.8208(3) 
723.73 724.18(45) 

0.22816 0.22797( 19) 
0.27963 0.27971(8) 

-0.00151 -0.00145(6) 
0.36511 0.36131(380) 
0.71080 0.62132 

Anal. 1st =) 

‘) Units for the force constants are consistent with energy measured in al, stretching coordinates in angstroms and bending coordinates 
in radians. 

b, The force constants were obtained from analytic third derivative procedures; the quartic constants by finite differences. 
=) The force constants were obtained from analytic first derivatives (for details see text); fwmp is calculated from the mathematical 

identity fwFy= fV;.ar.rr+4f~).wheref~=f-=f~cl,andfmaa,f-= =fapppr~ The values given in parentheses are the de- 
viations from the analytic cubic force constants. 
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responding to deperturbed energy levels) can be compared correctly to each other and to experiment. Note also 
that considerable care should be exercised in comparing the theoretical and experimental vibrational fundamen- 
tals in molecules having Fermi resonances, as one should distinguish between the measurable (perturbed) fun- 
damentals (denoted usually as 0 1 ‘OAWO, etc. ), the so-called ground state vibrational fundamentals (denoted 
usually as WY [ 16]), and the deperturbed fundamentals (the values which are to be compared with the current 
theoretical results). 

4. ResuIts and discussion 

4.1. HCN and DCN 

Hydrogen cyanide is one of the few molecules whose vibrational-rotational spectra (and those of its isoto- 
pomers) have been studied exhaustively both experimentally and theoretically [ 39-53 1. Results of the present 
theoretical study are collected in tables 2-5 for HCN and tables 6-9 for DCN, where comparisons are made to 
the recent experimental data which, according to our analysis, appear to be the most reliable. The TZZP quartic 
force fields, calculated at the SCF and CISD levels of theory, are presented in table 10. 

One salient trend is that at the CISD level of theory the CH and CN bond lengths decrease with basis set 
enlargement so that the distances which are too long at the DZ level become too short at the TZZP level (see 
table 3). The experimental bond lengths actually lie between the DZP and TZP values. Nevertheless, the TZZP 
CISD bond lengths deviate less than 0.01 A from the experimental distances, and thus the agreement can be 
considered good. The trend at the SCF level is not as simple (table 2 ); a similar decrease of the CN distance 

Table 2 
Theoretical (SCF) and experimental geometries, dipole moments, vibration-rotation interaction constants, rotational constants, cen- 
trifugal distortion constants, and rotational l-type doubling constants for HCN 

Basis set DZ TZ DZP TZP TZ2P Experiment 

E (hartree) 
r,(CN) (A) 
r,(CH) (A) 
p (debye) 

-92.83694 - 92.84767 -92.88958 -92.89955 
1.1507 1.1375 1.1366 1.1268 
I .0542 1.0547 1.0638 1.0576 
3.2963 3.2829 3.2156 3.2439 

- 92.90428 
1.1235 
1.057 1 
3.2360 

1.1532(l) ‘) 
l&555(2) ‘) 
2.985(4) b, 

a,X LO3 (cm-‘) 8.00 8.30 7.69 
a*x 10’ -2.60 -3.08 -3.33 
aax 10’ 9.61 9.40 9.59 

7.91 8.00 9.970(20) c, 
-2.56 -3.28 -3.565(7) ‘) 

9.71 9.92 10.441(2) =) 

1.4951 1.5244 1.5223 1.5475 1.5556 1.4847 *’ 
1.4889 1.5186 1.5170 1.5412 1.5499 1.478220(2) ‘) 

2.4424 2.6159 2.4233 2.5343 2.5777 Dc=2.906(3) ef), D.=2.853 ti) 
2.47 2.85 2.64 2.85 2.93 I&,=2.72( 128) *) 

6.3291 6.5802 6.7139 6.7384 6.9754 
-5.019 -5.531 - 5.686 - 5.234 - 5.969 

4.342 4.754 4.941 4.429 5.139 

7.4869(4) =JI’ 
-8.68(8) JI) 

B. (cm-‘) 
SO 

0,x lo6 (cm-‘) 
H,x lo’* 

4; x 103 (cm-‘) 
q:x10* 
q:x IO’ 

‘) Ref. [43]. ‘) Ref. [52]. Cl Ref. [46]. d, Ref. [47]. =) Ref. [45]. 
f, DO is the quark centrifugal distortion constant, D,, in the gro~d vibrational state. 0. is the equilibrium value of 0,. 
I) Ref. [ 39 1. HO is the sextic centrifugal distortion constant, H,, in the ground vibrational state. 
w The f-type doubling constants were obtained for the timdamental01’0. The qf term was not included in the experimental fit. 
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Theoretical (CISD) and experimental geometries, dipole moments, vibration-rotation interaction constants, rotational constants, ccn- 
trifugal distortion constants, and rotational l-type doubling constants for HCN 

Basis set DZ TZ DZP TZP TZ2P Experiment 

E (hartrae) 

r,(a) (A) 
re(CW (A) 
P (debye) 

-93.03202 -93.05574 -93.16042 -93.18467 - 93.20228 
1.1832 1.1648 1.1631 1.1497 1.1436 
1.0720 1.0700 1.0707 1.0625 1.0615 
3.1302 3.1379 3.0010 3.0433 3.0469 

1.1532(l) l ) 
1.0655(2) *) 
2.985(4) b, 

a,xlO3(cIn-‘) 8.91 9.26 8.54 
azx lo3 -2.88 -4.01 -3.67 
ar,x 10’ 9.71 9.65 9.56 

8.84 8.99 9.970(20) =) 
-2.71 -3.61 -3.565(7) ‘) 

9.77 10.21 10.441(2) =) 

1.4189 1.4580 1.4612 1.4937 1.5078 1.4847 d’ 
1.4125 1.4526 1.4558 1.4871 1.5018 1.478220(2) ‘) 

2.5419 2.7581 2.5120 2.645 1 2.703 1 D,=2.906(3) =*‘), D.=2.853 J, 
2.06 2.52 2.30 2.51 2.60 H,,=2.72( 128) ‘) 

6.3978 6.9272 6.788 1 6.7556 7.0968 
-6.018 - 7.622 -6.811 - 5.995 - 7.066 

5.348 6.840 6.100 5.219 6.247 

7.4869(4) =JI) 
-8.68(8) qb) 

0,x lob (cm-‘) 
H,x 10” 

q$ x 10’ (cm-‘) 
fAx1os 
q:x 10’ 

‘) Ref. [43]. b, Ref. [52]. ‘) Ref. [46]. d, Ref. [47]. =) Ref. [45]. 
‘) Do is the quartic centrifugal distortion constant, D,, in the ground vibrational state. 0. is the equilibrium value of D,. 
I) Ref. [ 391. Ho is the sextic centrifugal distortion constant, H,, in the ground vibrational state. 
b, The I-type doubling constants were obtained for the fundamental 01’0. The qf term was not included in the experimental tit. 

Table 4 
Theoretical (SCF) and experimental harmonic vibrational frequencies, vibrational anharmonic constants, and fundamental vibrational 
frequencies for HCN 

Basis set DZ TZ DZP TZP TZZP Experiment l ) 

w, (cm-‘) 2326.8 2314.8 2403.2 2409.4 2407.6 2127.2(4) 
W 882.7 895.4 856.6 902.6 868.2 726.9(2) 
w3 3697.0 3626.3 3631.2 3623.2 3603.3 3442.5( 1) 

xl1 (cm-‘) -8.19 -7.94 -7.84 - 7.86 -7.87 - 10.07( 19) 
x12 - 1.45 0.05 -0.99 - 1.49 -0.25 -3.25(20) 
XI3 - 13.04 - 11.96 - 13.42 - 13.79 - 13.58 -13.31(7) 
x22 -0.86 - 1.73 -3.30 -6.38 -4.21 -2.55(9) 
x23 -20.74 -18.18 - 16.72 - 19.04 - 16.68 - 18.98(6) 
x33 - 52.40 - 46.00 -47.32 -45.25 -46.15 -52.72(11) 
xhh 4.81 5.57 5.78 6.62 6.11 5.30(9) 

v1 (cm-‘) 2302.4 2293.0 2379.8 2385.3 2384.8 2096.7(2) 
v2 873.8 886.7 843.7 879.8 853.2 713.5 b, 
v3 3564.9 3510.2 3513.2 3506.8 3487.6 3311.5b’ 

Al (cm-‘) -24.3 -21.8 -23.4 -24.1 -22.8 - 30.5 
42 -8.9 -8.7 -13.0 -22.8 -15.0 -13.4 
A3 - 132.1 -116.2 -118.1 -116.4 -115.8 -131.0 

‘) Ref. [46]. b, The experimental precision is considerably h&her than indicated here. 



438 W.D. Allen et al. /Molecular vibrational anhar?nonicity 

Table 5 
Theoretical (CISD) and experimental harmonic vibrational frequencies, vibrational anharmonic constants, and fundamental vibm- 
tional frequencies for HCN 

Basis set DZ TZ DZP TZP TZZP Experiment l ) 

co, (cm-‘) 2104.0 2104.3 2213.8 2230.9 2239.0 2127.2(4) 
w2 761.0 738.6 754.0 814.4 778.9 726.9(2) 
W 3492.0 3429.9 3530.9 3530.4 3495.9 3442.5 ( I ) 

XII (cm-‘) -9.04 -8.71 -8.74 -8.80 - 8.99 - 10.07( 19) 

Xl2 
x13 

x22 

x23 

x33 

xhh 

-2.99 - 1.34 -2.51 
- 12.36 -11.34 - 12.04 

1.03 5.56 -1.40 
- 19.55 - 15.03 - 16.14 

- 56.45 -49.77 -51.38 

3.98 2.98 4.98 

- 3.28 
- 12.49 

-6.23 
- 18.38 

-48.85 
6.45 

- 1.94 
- 12.64 

-4.99 
- 15.24 
-51.01 

6.35 

“1 (cm-‘) 2076.7 2079.9 2187.8 2203.8 2212.7 

Vl 756.8 750.0 745.4 791.3 761.7 

v3 3353.4 3309.7 3406.0 3408.0 3372.4 

A, (cm-‘) 

A, 
A3 

-3.25(20) 
-13.31(7) 

-2.55(9) 
-18.98(6) 
-52.72(11) 

5.30(9) 

-27.3 -24.4 
-4.2 11.5 

- 138.6 - 120.2 

- 26.0 
-8.6 

- 124.9 

-27.1 -26.3 
-23.1 -17.2 

- 122.3 - 123.6 

2096.7(2) 
713.5 b) 

3311.5 b) 

-30.5 
-13.4 

- 131.0 

‘) Ref. [46]. b, The experimental precision is considerably higher than indicated here. 

Table 6 
Theoretical (ECF) and experimental vibration-rotation interaction constants, rotational constants, centrifugal distortion constants, and 
rotational l-type doubling constants for DCN 

Basis set 

ar,x1O’(cm-‘) 
a,x 103 
ar3x 103 

B. (cm-‘) 
Bo 

DZ TZ 

5.33 5.37 
- 3.20 -3.56 

9.58 9.58 

1.2221 1.2434 
1.2178 1.2395 

DZP TZP TZZP 

5.21 5.36 5.43 
-3.79 -3.17 - 3.77 

9.42 9.54 9.73 

1.2397 1.2595 1.2655 
I .236 1 1.2552 1.2617 

Experiment 

6.01(11)*’ 
-4.23( 1) *) 
10.84(7) ‘) 

1.2120b’ 
I .2078 l ) 

0,x lo6 (cm-‘) 1.6162 1.7276 1.6119 1.6885 1.7166 Do= 1.929( 1) %=), D,= 1.837 V) 
H,x 10” 1.54 1.81 1.59 1.72 1.77 

q; x 10’ (cm-‘) 5.3043 5.4860 5.5764 5.5901 5.7804 6.211 *) 
4:x10s - 3.978 -4.297 -4.547 -4.071 -4.719 - 7.362 *) 
q:x IO8 3.395 3.633 3.904 3.375 4.004 - 

‘) Ref. [43]. b, Approximate value, calculated in the present study from B. using only the measured a! values. 
‘) Do is the quartic centrit&al distortion constant, D,, in the ground vibrational state. 0. is the equilibrium value of D,. 
*) Ref. [ 5 11. The I-type doubling constants were obtained for the fundamental 0 I ‘0. The qf term was not included in the experimental 

tit. 

occurs, but the CH bond distance goes through a maximum at the DZP level. It is important to note that the 
variations in the calculated harmonic wavenumbers o1 and w3 (tables 4,5,8 and 9) do not correlate with the 
trends in the corresponding bond lengths in any simple manner. Therefore, the trends in the harmonic frequency 
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Table 7 
Theoretical (CISD) and experimental vibration-rotation interaction constants, rotational constants, centrifugal distortion constants, 
and rotational I-type doubling constants for DCN 

Basis set DZ TZ DZP TZP TZZP Experiment 

a, x lo3 (cm-‘) 5.82 5.91 5.56 5.71 5.87 6.01( 11) *) 
a,x 10s -3.51 -4.54 - 4.22 -3.44 -4.22 -4.23( 1) l ) 
a,x 10s 9.87 10.01 9.71 9.89 10.32 10.84(7) l ) 

II, (cm-‘) 1.1621 1.1912 I.1934 1.2191 1.2296 1.2120s’ 
So 1.1578 1.1878 1.1900 1.2147 1.2258 1.2078 .’ 

0,x 1@ (cm-‘) 1.6642 1.8022 1.6495 1.7402 1.7814 Do= 1.929( 1) qc) , D.= 1 +=) . 837 
H,x 10” 1.41 1.73 1.50 1.63 1.69 

qf x lo3 (cm-‘) 5.3866 5.7979 5.6774 5.6404 5.9146 6.211 *’ 
Q:x1os -4.983 -6.316 - 5.684 -4.841 -5.810 - 7.362 *’ 
q:x 10’ 4.411 5.655 5.077 4.180 5.110 

‘) Ref. [43]. b, Approximate value, calculated in the present study from B. using only the measured (Y values. 
‘) Do is the quartic centrifugal distortion constant, D,, in the ground vibrational state. D, is the equilibrium value of 0,. 
d, Ref. [ 5 11. The f-type doubling constants were obtained for the fundamental 0 1’0. The qp term was not included in the experimental 

tit. 

Table 8 
Theoretical (SCF) and experimental harmonic vibrational frequencies, vibrational anharmonic constants, and Runlamental vibrational 
frequencies for DCN 

Basis set DZ TZ DZP TZP TZZP Experiment l ) 

0, (cm-‘) 2117.4 2100.0 2155.6 2154.8 2151.6 1952.8 

r& 703.4 714.2 683.9 720.8 693.5 580.0 

03 2926.8 2879.8 2916.5 2918.6 2904.8 2703.9 

xl1 (cm-‘) - 5.99 

x12 3.79 

Xl3 -30.35 

x22 -1.07 

x23 -15.77 

x33 - 19.87 

xhh 2.98 

- 5.67 
5.17 

-27.94 
-1.71 

- 14.02 
- 17.38 

3.54 

-6.07 -6.10 -6.15 
4.88 4.25 5.38 

-31.23 - 30.87 -31.46 
-2.67 - 4.60 -3.26 

- 13.95 - 15.22 - 13.82 
- 16.37 - 15.52 - 15.61 

3.63 4.16 3.86 

-7.03 
2.68 

- 32.44 
- 2.08 

- 15.96 
-20.56 

3.25 

VI (cm-‘) 2094.0 2079.8 2132.8 2131.4 2129.0 1925.3 

*2 697.2 708.2 675.0 705.7 683.3 570.3 

v3 2856.1 2817.1 2854.2 2856.9 2844.0 2630.3 

4 (cm-‘) -23.4 -20.1 -22.9 -23.4 -22.6 -27.5 

A2 -6.2 -6.0 -8.9 -15.1 -10.1 -9.7 

A3 -70.7 -62.8 -62.3 -61.7 -60.8 -73.6 

a) Ref. [41]. 

predictions cannot be attributed primarily to the effect of anharmonicity on the underlying quadratic diagonal 
stretching constants as the equilibrium distances change [ 41. 

Relatively little sensitivity to basis set is observed for the quartic centrifugal distortion constant, D,, in ac- 



Table 9 
Theoretical (CISD) and experimental harmonic vibrational frequencies, vibrational anharmonic constants, and fundamental vibra- 
tional frequencies for DCN 

Basis set DZ TZ DZP TZP TZZP Experiment l ) 

0, (cm-‘) 1940.4 1934.2 2024.9 2033.9 2034.4 1952.8 

02 605.8 588.7 601.1 649.4 621.4 580.0 

03 2727.9 2688.5 2781.3 2789.7 2772.0 2703.9 

xl1 (cm-‘) 

x12 

XI3 

x22 

x23 

x33 

xhh 

-6.36 -5.97 -6.09 -6.14 -6.26 
2.76 4.61 3.75 3.00 4.52 

-28.68 - 26.99 -29.50 -29.74 -31.66 
0.17 2.96 -1.41 -4.48 -3.73 

- 15.44 - 12.84 - 13.85 -15.13 - 13.48 
-23.17 -20.17 - 19.88 - 18.50 - 18.87 

2.40 1.82 3.06 4.00 3.96 

- 7.03 
2.68 

- 32.44 
- 2.08 

- 15.96 
-20.56 

3.25 

vI (cm-‘) 1916.1 1913.3 2001.7 2009.8 2010.5 1925.3 

V2 602.4 595.3 594.9 633.9 609.7 570.3 

v3 2651.8 2621.8 2712.9 2722.7 2704.9 2630.3 

A, (cm-‘) -24.3 -20.8 -23.2 -24.1 -23.8 -27.5 

42 -3.4 6.6 -6.2 -15.5 -11.7 -9.7 

A3 -76.1 -66.7 -68.4 -67.0 -67.1 -73.6 

l ) Ref. [41]. 

Table 10 
Complete quartic force fields for HCN .) 

In internal coordinates 

constant theory 

SCF CISD 

expt. b, 

In normal coordinates 

constant theory 

SCF CISD 

expt. b, 

6.790 6.433 6.244 
-0.169 -0.163 -0.211 
24.129 20.735 18.707 

0.362 0.295 0.260 
- 37.47 -36.49 - 33.76 

0.346 0.293 -0.992 
-0.080 0.067 0.092 

- 149.3 - 133.5 - 125.1 
-0.159 - 0.094 -0.108 
- 0.682 -0.664 -0.656 
194.2 190.3 153.1 
- 1.825 - 1.906 8.100 
-0.875 - 0.466 4.280 
-0.907 -0.996 4.380 
803.7 720.3 650.2 

0.140 0.020 - 0.440 
0.062 -0.054 0.276 
0.035 0.191 -0.040 

-0.154 -0.251 0.034 

2407.6 2239.0 
868.2 778.9 

3603.3 3495.9 
-615.6 -625.5 

101.0 110.2 
226.5 208.5 

- 504.3 -452.9 
1035.2 1152.8 

- 1778.3 - 1845.2 
138.5 148.9 

- 35.5 -38.2 
-62.2 -56.3 

69.3 57.4 
- 179.0 - 178.3 

216.0 200.4 
1001.6 1231.2 

- 838.6 -950.8 
922.4 979.8 

2128.7(g) 
727.1(5) 

3441.2(4) 
-641.4(30) 

106.6(50) 
192.4(28) 

-432.6(92) 
1217.8(26) 

- 1734.0(47) 
155.3(72) 

-31.4(48) 
-57.5( 16) 

56.0(60) 
- 178.7(38) 

172.4(36) 
1415(48) 

-979( 19) 
795(36) 

‘) All the theoretical constants were obtained in the present study using the TZZP basis set at both the SCF and CISD levels. Units for 
the force constants in internal coordinates are consistent with energy measured in aJ, stretching coordiites in angstroms and bending 
coordinates in radians. An additional nonxero quartic constant is fmed by cylindrical symmetry: f_,,,, = f cf.. +4f,), where 

fm =f,, =&,a, ~dLa,xa =fp =Lw,~ The force constants in normal coordinates are 8iven in cm-‘. The normal coordinate 
force constants refer to Hi2C”N. b, Ref. [42]. 
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cordance with the discussion in section 2.3. The TZZP SCF and TZZP CISD values of HCN (DCN) deviate 
from the experimental equilibrium values by only 9.6 (6.6)% and 5.3 (3.0)%, respectively. Variations in the 
sextic constants, H,, of HCN and DCN are also rather small, especially once the basis set is enlarged past DZ 
quality. As suggested in table 2, the quality of the predictions for these sextic constants (which are six orders of 
magnitude smaller than their D, counterparts) appears to be high, but a detailed analysis is hampered by the 
lack of precise experimental values. 

All theoretical predictions for the vibration-rotation interaction constants for HCN and DCN are qualita- 
tively correct, and the variations with level of theory are generally small. Nevertheless, the inclusion of electron 
correlation still improves the results significantly. For HCN the errors in the a,, (Ye, and a3 predictions are 
19.8%, 8.0%, and LO%, respectively, at the TZZP SCF level and only 9.8%, 1.3%, and 2.2%, respectively, at the 
TZZP CISD level. It is worthwhile to compare the magnitude of the Cri values of HCN with those of DCN. For 
DCN the experimental cy, and a2 constants are smaller and larger, respectively, in absolute value than the cor- 
responding HCN constants [ 4 1,43 1, an occurrence which is reproduced reasonably well by the theoretical val- 
ues, especially at the CISD level. For cr3 there are two contradictory experimental results. Suxuki et al. [ 411 
measured the DCN constant to be smaller in magnitude than that of HCN, while Winnewisser et al. [ 43 ] ascer- 
tained the opposite result. The present theoretical predictions are also somewhat inconsistent in addressing this 
issue; the SCF results (except at the TZ level) support the first experimental analysis while all CISD results 
support the latter one. Because the overall performance of the calculated CISD quartic force fields is better than 
that of the SCF force fields, it would seem that for DCN the cy3 value of Winnewisser et al. [ 431 is to be preferred. 

Variations in the theoretical Be-B,-, difference (half the sum of the Cri constants) are remarkably small for 
HCN. The results scatter around 0.006 cm-’ at both the SCF and CISD levels, the experimental result being 
0.0065 cm- ’ [ 47 1. Thus this small correction term (which is, however, rather important in structural determi- 
nations) is calculated extremely well at all levels of theory. 

The theoretical I-type doubling constants q; for HCN and DCN (tables 2,3,6 and 7 ) range from 5% to 15% 
in error, the best results being obtained (as one would hope) at the TZ2P CISD level. At all levels of theory the 
q; constants exhibit considerably larger deviations from experiment than their q; counterparts, the smallest 
error ( 12.2%) for HCN occurring fortuitously at the TZ CISD level. However, it should be realized that the q$ 

constant, which is predicted to be of the same magnitude as q$, was not included in the experimental fit. There- 
fore, the poorer agreement with experiment may not merely be due to subtle cancellations occurring in the large 
number of terms in eq. ( 2 1) . In any case the relative changes in the q; l-type doubling constants in going from 
HCN to DCN are predicted accurately by the present calculations. 

There are no strong anharmonic resonances which add to the complexity of the lower vibrational-rotational 
levels of HCN and DCN, and thus it is not necessary to invoke any of the replacement equations of section 2.6 
to facilitate the comparison of theoretical and experimental anharmonic constants x~~. Four of the seven con- 
stants of HCN (1, ,, x13, ~23 and x33) do not vary much with level of theory. For these constants the DZP SCF 
results are about as good as the TZZP SCF values, and even the inclusion of electron correlation does not sub- 
stantially improve the quality of the theoretical predictions. There is a slightly larger scattering of the theoretical 
results for xlz12, but again, the DZP SCF prediction is as good as (actually even better than) the TZ2P CISD one. 
For xl2 variation of the theoretical results is clearly larger on a percentage basis, but the wrong sign for this 
constant is predicted only at the TZ SCF level. The theoretical results appear to be the least dependable for xz2. 
At the CISD level the predictions extend from -6.2 to 5.6 cm-‘, while at the SCF level they extend from -6.4 
to -0.9 cm-‘. Although the result obtained at the highest level (TZ2P CISD) has the right sign, it is almost 
twice the magnitude of the measured value. In brief, the scatter of the theoretical values is too large to allow any 
firm predictions. The reason for this problem is an almost complete cancellation of the two terms determining 
xz2 (see eq. (24) ). Although variations in 9 2222, 95122 and $223 with the theoretical level are reasonably small, the 
unfortunate cancellation of the two rather large terms makes the theoretical prediction ofx22 extremely difficult. 
Similar problems exist for DCN (see tables 8 and 9), but the calculated constants scatter considerably less. 

The agreement between theory and experiment for the vibrational frequencies of HCN and DCN is quite 
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typical of such comparisons for small molecules. The harmonic frequencies wI, ~2, and ~3 are predicted to be 
13.2%, 19.4%, and 4.7% too large, respectively, at the TZZP SCF level whereas the corresponding TZZP CISD 
overestimations are 5.3%, 7.296, and 1.6%. The theoretical predictions for the total anharmonicities are quite 
acceptable at the SCF level, but significant improvements for the anharmonic components of the stretching 
fundamentals are observed if electron correlation is taken into account, as found in our previous study of asym- 
metric top molecules [ 91. Hence the TZZP CISD uI, y2, and v3 values are 5.5%, 6.8%, and 1.8%, respectively, 
above their experimental counterparts. In general, the anharmonicities at both the SCF and CISD levels are 
determined with enough accuracy to make the errors in the theoretical fundamental frequencies vi arise almost 
solely from deficiencies in the harmonic wavenumber predictions. 

The TZZP SCF and CISD force fields for HCN are reported in table 10 in two complementary representations: 
curvilinear internal coordinates and dimensionless normal coordinates, the former being isotopically invariant 
and allowing maximal physical interpretation and the latter enhancing the comparison with experimental re- 
sults. In general, the quality of the theoretical predictions is high and the agreement with experiment quite 
remarkable. However, some of the smaller internal coordinate force constants, like the cubic constant fRRl 
(R = CN, r= CH ) and several quartic constants, are sensitive to the level of theory and are consequently less 
reliable. For example,j& has a value of 0.067 aJ Ae3 at the TZZP CISD level but a value of -0.160 at the TZP 
CISD level. The range covered in the CISD results forf&, extends from - 2.05 (DZP) to 0.23 aJ A-’ (TZP). 
Even more noteworthy is the change inj,,aa, the quartic bending constant. Its values at the DZ, TZ, DZP, TZP 
and TZZP CISD levels are 0.47, 0.88, 0.15, -0.38 and -0.25 aJ rad-‘, respectively. Nevertheless, all these 
predictions suggest that the bending vibration of HCN is almost harmonic. It appears safe to conclude that the 
dominant force constants (e.g. the higher-order diagonal stretching constants) are calculated with considerable 
accuracy even at the SCF level but that accurate predictions of some smaller force constants which have little 
effect on the observed energy levels may require extremely high levels of theory. In this regard it is worth noting 
the excellent theoretical work of Dunn et al. [ 481, in which an anharmonic force field was calculated at the 
CEPA-2/6-31 lG( 2dp) level of theory for HCN, and the contradictory results forf~~,fRRI,jkRR,,frrrR,fRRaa and 
fima from several careful experimental investigations [ 41,42,49,50]. 

In the dimensionless normal coordinate representation, the force constants show considerably less variation 
than that observed in the case of internal coordinates, specifically, less than 10% for almost all of the constants. 
The variation with the theoretical level is actually so small that one can confidently assess the merits of the 
several experimentally derived force fields of HCN [ 41,42,44,49,50]. From a comparison with the TZ2P CISD 
results, it seems clear that the widely used force field obtained experimentally by Nakagawa and Morino [ 421 
more than 20 years ago is quite accurate, this being in essential agreement with the more recent, high-quality 
work of Strey and Mills [ 49 ] and Murrell et al. [ 501. The average percentage errors of the TZZP SCF and CISD 
@ijk and @UU constants compared to the values of Nakagawa and Morino [ 42 ] are only 13% and 7%, respectively. 
On the other hand, the recent quartic force field deduced by Quapp [ 441 differs more substantially from the 
TZ2P CISD force field; thus we feel that this refinement converged to several constants which are less reasonable 
on physical grounds. 

It is of interest to try to give simple physical interpretations to some selected internal coordinate force con- 
stants of HCN. The quadratic stretch-stretch coupling constant, frR, is calculated to be negative for HCN, in 
agreement with experiment. Note that this is in contrast to the situation for the other triatomic molecules con- 
sidered in this study, whereJ;= (or& in the case of C02) is always positive. Indeed, very simple, chemically 
intuitive arguments would suggest thatf, is positive in general, since in this case elongation of one of the bonds 
leads to a decrease of the other bond length. But one is able to interpret the difference between& of HCN and 
the other molecules in simple terms as follows. Stretching a bond to the extreme results in a fragmentation of 
HCN into a diatomic and an atomic radical, and of the two possible products, H+CN is the most stable. The 
bond length of g 2C+ CN is 1.172 A [ 541, and thus differences in electronic structure give a CN bond length 
which is actually longer than that of HCN, viz. 1.153 A [ 43 1. Thus the negative sign of f;R is explained. This 
same argument can be used to interpret the positive& constants of C02, N20 and OCS, because in these cases 
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the diatomic fragmentation products (CO and N2) have strong triple bonds as compared to the double bonds 
of the parent compounds. 

Interpretation of the force constants in higher orders seems to be even more challenging. Probably the most 
straightforward way to visualize them is through derivative relations such as frurs= &J& or&= a&J& (s= r 
or R). The higher-order, diagonal stretching force constants for HCN follow the patterns of relative signs and 
magnitudes which are expected from such relations for simple Morse oscillators, and thus display no unusual 
features. The off-diagonal, stretch-bend cubic constantsf,,, and&,, are negative for HCN (both theoretically 
and experimentally), which can be understood by noting that stretching either bond eventually drops f& to 
zero. Hence the derivativesf,,, andf- are expected to be negative in the equilibrium structure, assuming that 
over the course of bond formation f& increases monotonically. The situation is somewhat more complicated 
with the stretch-stretch cubic interactions&, andf,,, which are calculated to be positive at the highest level of 
theory for HCN. (Note, though, that fRR, changes sign at the different theoretical levels and that fRR, and fRrr 
have opposite signs experimentally.) Referring again to arguments based on fragmentation products, one notes 
that the bond lengths in both 2 *Z+ CN ( 1.172 A) and 2 211 CH ( 1.120 A) are substantially longer than those 
in HCN. Therefore, as predicted by Badger’s rule [ 5 5 1, the fRR stretching constant of CN and the f, stretching 
constant of CH are smaller than their counterparts in HCN. This, in turn, suggests that the derivatives&, and 
fRll should be negative. Consequently there is some disagreement between the values of the cubic stretch-stretch 
interaction constants in table 10 and those suggested by this simple model. One is lead to the conclusion thatf,, 
andf, do not change monotonically as the opposite bond is stretched from equilibrium to infinity. 

The quartic stretch-bend interaction constants cf,,,, fam andfaaR,) should modulate the first-order effect 
on faa represented by the cubic constants faar and fati. Although theory and experiment agree that these quartic 
constants are not very large, there is substantial disagreement between them concerning signs and magnitudes. 
The experimental and theoretical signs are different for all three constants while the relative magnitudes are 
reversed theoretically as compared to experiment. It is important to note that the experimental faaRR has a larger 
error than the constant itself [ 42 ] and that f,,, suffers from a similar problem. (Note again the contradictory 
results obtained for these constants in refs. [49,50].) Therefore, further experimental studies are needed to 
establish a true physical picture for these quartic interaction constants; it seems, however, that positive values 
offaam andfaarr would be more consistent with the theoretical results for the other compounds of this study. 

4.2. CO, 

Besides its simple, symmetric structure and ease of experimental handling, carbon dioxide owes a good deal 
of its spectroscopic recognition to the anharmonic vibrational resonance between v1 and 2 v2, identified first by 
Fermi [ 281. Carbon dioxide has been thoroughly studied since then [ 56-6 11, and its complete force field through 
sixth order has been determined experimentally [ 56,571. To our best knowledge (and astonishment) not even 
the complete quartic force field has been previously determined for CO1 by ab initio methods. The only study 
aimed at this goal is that of Steele et al. [ 941, who obtained part of the force field from SCF calculations using 
the 4-3 1 G basis set (which is somewhat lower than DZ in quality). Thus the present force fields seem to be the 
first complete theoretical predictions for COz. The harmonic and anharmonic molecular constants calculated in 
this study for COz, together with some selected experimental values, are presented in tables 11-14. The TZ2P 
quartic force fields, obtained at the SCF and CISD levels, are tabulated in table 15. 

The theoretical bond distances of carbon dioxide display the same trends which were observed for the CN 
distance in hydrogen cyanide. In particular, the theoretical CO distance decreases as the basis set is enlarged 
(both at the SCF and CISD levels), and the experimental bond length is between the DZP and TZP CISD 
values. The errors in the TZ2P SCF and CISD bond lengths are 0.025 and 0.0 10 A, respectively. The Be-B,, 
difference is predicted again with considerable consistency, the TZZP CISD value being 0.00 13 cm- I. Using the 
measured B. value of 0.39022 cm-’ and the TZZP CISD Be-B0 difference, one arrives at an r,(CO) value of 
1.1600 A, which is precisely the value chosen by Suzuki [ 581 and equivalent to the 1.15999( 4) ..& result ob- 
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Table 11 
Theoretical (SCF) and experimental geometries, vibration-rotation interaction constants, rotational constants, centrifugal distortion 
constants, and rotational l-type doubling constants for CO1 

Basis set DZ TZ DZP TZP TZZP Experiment 

E (hartree) - 187.55339 - 187.56280 - 187.67624 - 187.68792 - 187.69554 - 
r,(CC) (A) 1.1652 1.1594 1.1453 1.1387 1.1349 1.1600” 

or X 10’ (cm-‘) 1.14 1.12 1.03 1.04 1.07 1.2030 b, 
(Y*x 10’ -0.65 -1.18 -0.70 -0.67 -0.74 -0.7325 ‘) 
cu,x 10’ 3.27 3.26 2.96 2.97 3.01 3.1136 b, 

B.X 10’ (cm-‘) 3.8817 3.9202 4.0172 4.0639 4.0912 3.9164 *) 
E,X 10’ 3.8661 3.9101 4.0043 4.0505 4.0782 3.9022 b’ 

D,x 10’ (cm-‘) 1.1932 1.2633 1.1321 1.1701 1.2057 Do= 1.3332(3) M) 
H,x lOI 0.88 1.34 1.25 1.39 1.41 H,,=O.898 ‘@), 1.02(25) sd) 

qf x 10’ (cm-‘) 5.8751 6.5719 5.8287 5.9622 6.0962 6.154(2) e, 6 156(2) =) 
4: x 1O’O -4.837 - 11.220 - 5.225 - 5.028 -5.511 -7.0(4) =), :8.9(8) =) 
q:x 10’0 3.686 9.965 4.204 3.921 4.349 - 

‘) Ref. [58]. b, Ref. [56]. Cl Ref. [60]. 
d, Do and Ho are the quartic and sextic centrifugal distortion constants, D, and H,, respectively, in the ground vibrational state. 
e, Ref. [ 60). The different values were obtained from different model assumptions (see the original publication). The qf term was not 

included in the experimental tit. The constants refer to the fundamental 010. 

Table 12 
Theoretical (CISD) and experimental geometries, vibration-rotation interaction constants, rotational constants, centrifugal distortion 
constants, and rotational f-type doubling constants for CO1 

Basis set 

E (hartree) 
r.(CC) (A) 

a,x 10” (cm-‘) 
atx 10’ 
cr,x 10’ 

Bex 10’ (cm-‘) 
Box 10’ 

0,x 10’ (cm-‘) 
H,x 10” 

DZ TZ DZP TZP TZ2P Experiment 

- 187.85244 - 187.89161 - 188.09489 -188.13876 - 188.18187 - 
1.1925 1.1833 1.1647 1.1567 1.1503 1.1600” 

1.13 1.12 1.05 1.06 1.10 1.2030 b’ 
-0.67 - 1.27 -0.71 -0.70 -0.78 -0.7325 b’ 

3.16 3.16 2.93 2.94 3.02 3.1136 b, 

3.7059 3.7638 3.8849 3.9387 3.9829 3.9164.’ 
3.6912 3.7552 3.8721 3.9257 3.9701 3.9022 b, 

1.2250 1.2998 1.1573 1.1983 1.2421 Do= 1.3332(3) ‘nd) 
0.91 1.43 1.20 1.34 1.37 H,=O.898 b*d), 1.02(25) sd) 

q; x 10’ (cm-‘) 5.8014 6.6615 5.7567 5.9263 6.0954 6 154(2) =) 6 156(2) ‘) 
dx10’0 - 6.470 - 15.307 -6.306 -6.317 -6.935 -7:0(4) C), i8.9(8) =) 
q:x 10’0 5.373 14.091 5.340 5.258 5.816 - 

l ) Ref. [58]. ‘) Ref. (561. “Ref. [60]. 
d, Do and Ho are the quartic and sextic centrifugal distortion constants, D, and H,, respectively, in the ground vibrational state. 
Cl Ref. [ 601. The different values were obtained from different model assumptions (see the original publication). The qf term was not 

included in the experimental fit. The constants refer to the fundamental 0 10. 
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Table 13 

Theoretical (SCF) and experimemal harmonic vibrational frequencies, vibrational anharmonic constants, and timdamental vibrational 
frequencies for CO2 l ) 

Basis set DZ TZ DZP TZP TZZP Experiment w 

0, (cm-‘) 1400.2 1381.2 1513.4 1514.7 1507.2 1353.8 

a2 716.6 608.0 766.0 776.5 768.3 672.9 

oJ3 2384.5 2301.7 2590.3 2570.7 2550.7 2396.5 

XII (cm-‘) 

XL2 

XI3 

X22 

X23 

X33 

Xhh 

-3.05 -2.81 

-5.19 -7.31 

-25.17 -23.37 

1.55 8.17 

- 14.12 -8.52 

- 15.86 - 13.81 

-0.98 -3.83 

-2.74 -2.74 -2.75 

-5.42 -4.83 -5.35 

-21.34 -21.23 -21.23 

1.73 1.43 2.52 

- 12.76 -12.71 - 12.27 

- 13.17 - 12.83 - 12.61 

- 1.12 -0.98 -1.41 

- 2.993 

- 5.276 

- 19.140 

1.580 

- 12.542 

- 12.503 
-1.014 

Y, (cm-‘) 1376.3 1356.6 1491.9 1493.8 1485.8 1332.9 

v1 710.7 620.8 761.0 771.0 756.6 667.7 

V3 2326.1 2253.9 2540.5 2521.7 2502.6 2349.1 

A, (cm-‘) 

42 

A3 

-23.9 -24.6 -21.6 -20.9 -21.5 -20.9 
-6.0 12.8 - 5.0 -5.5 -2.7 -5.2 

- 58.4 -47.8 -49.8 -49.0 -48.1 - 47.4 

‘) The experimental results given in the table correspond to deperturbed ( lOO)-(020) energy levels. Thus, to correspond to the experi- 

mental analysis, the 202-01 interaction has been excluded in second order at all levels of theory shown in the table. b, Ref. [ 561. 

Table 14 

Theoretical (CISD) and experimental harmonic vibrational frequencies, vibrational anharmonic constants, and fundamental vibra- 

tional frequencies for CO1 a) 

Basis set 

w (cm-‘) 

cJ2 

w3 

DZ TZ DZP 

1289.2 1280.9 1423.5 

639.0 532.2 705.4 

2254.0 2188.9 2502.3 

TZP TZZP 

1428.2 1426.4 

711.6 705.9 

2479.1 2468.7 

Experiment b, 

1353.8 

672.9 

2396.5 

xl1 (cm-‘) -2.76 -2.56 -2.65 -2.65 -2.69 - 2.993 

X12 -5.00 - 7.67 -5.33 -4.93 -5.32 - 5.276 

XI3 - 20.64 - 19.26 - 19.16 - 19.06 - 19.57 -19.140 

X22 1.67 9.22 1.61 1.80 2.89 1.580 

x23 - 13.35 - 7.97 - 12.58 -11.72 -11.81 - 12.542 

x33 - 13.95 - 12.32 - 12.65 -11.89 - 12.29 - 12.503 

Xhh - 1.03 -4.28 - 1.07 -1.12 -1.55 -1.014 

v, (cm-‘) 1268.3 1258.5 1403.3 1408.4 1405.9 1332.9 

v2 633.8 547.8 700.2 707.5 704.4 667.7 

v3 2202.4 2146.6 2454.8 2434.1 2422.5 2349.1 

A, (cm-‘) -20.8 -22.4 -20.2 -19.8 -20.5 -20.9 

42 -5.2 15.6 -5.2 -4.0 -1.4 -5.2 

A3 -51.6 -42.2 -47.5 -45.0 -46.2 -47.4 

l ) The experimental results given in the table correspond to deperturbed ( lOO)-( 020) energy levels. Thus, to correspond to the experi- 

mental analysis, the 2y-0, interaction has been excluded in second order at all levels of theory. b, Ref. [ 561. 
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Table 15 
Complete quartic force fields for COz *) 

In internal coordinates 

constant theory 

SCF CISD 

expt. b, 

In normal coordinates 

constant theory 

SCF CISD 

expt. 

19.067 17.42 1 16.022 
2.342 1.754 1.2613 
0.977 0.847 0.785 

138.6 - .124.7 - 113.9 
-2.917 -2.564 - 3.909 
- 1.232 - 1.149 -1.218 
750.1 695.3 630.0 

4.125 6.831 22.06 
10.086 6.098 12.090 
0.066 0.692 2.015 
3.047 2.558 3.740 
2.422 2.594 1.106 

1507.2 1426.4 
768.3 705.9 

2550.7 2468.7 
-274.3 - 267.6 

165.5 164.3 
-547.1 - 522.9 

39.2 40.7 
-47.0 - 47.4 

78.9 80.2 
81.2 88.9 

-115.1 -113.5 
176.5 169.2 

1354.3 b), 1353.7 C) 
672.9 “, 672.7 =’ 

2396.3 “, 2396.4 =) 
- 274.7 b’, - 273.0 =’ 

149.4 b), 150.5 c, 
-498.3 b), - 506.1 c, 

46.1 b’, 43.1 C) 
- 44.6 b’, - 48.0 =) 

78.1 b’, 82.6 =’ 

58.8 b’, 65.4 =’ 
-110.2b’ -1124f’ 

151.2 b): 160:4” 

a) See footnote to table 10. The normal coordinate force constants refer to the ‘*C’60, isotope. b, Ref. [ 581. 
=) From the 35-parameter potential function of ref. [ 6 I]. These results are presently the best available using the direct numerical diagon- 

alization technique. 

tained by Lacy [ 571. In an interesting electron diffraction study, Gershikov and Spiridonov [ 591 arrived di- 
rectly at r,= 1.1602 (8) A, but upon correction for curvilinearity and centrifugal stretching distortion, they ob- 
tained 1.1620 A, a value too long to be the true re( CO) value. 

The variations in the quartic centrifugal distortion constant, D_,, are small, as expected, and the CISD results 
are somewhat better than the SCF values. The peculiar dependence of D, on basis set can be easily explained as 
follows. For linear triatomic molecules there is an alternative formula for DJ, which is a simplification of eq. 
(17): 

D.,= (4B:lw:) [ l- (&;,)*(d ---0:)/&l 3 (43) 

where w, and o3 are the harmonic stretching frequencies, and [g2 is the Coriolis coupling constant connecting 
o3 and the linear bending mode. For a symmetric triatomic molecule like CO2 with a symmetric stretching 
frequency o,, c$2 = 1, and eq. (43 ) reduces to DJ - -4B,‘/w:, which is equivalent to the general upper limit 
formula [24], DJ max =4B.?/CO&ny mentioned in section 2.3. In the present calculations for CO*, Be steadily in- 
creases with enlargement of the basis set, while o, increases sharply in going from DZ to DZP and remains 
amazingly constant at the higher levels. Consequently, the DZP SCF and CISD values for DJ are the smallest 
ones in their respective series. The simple formula mentioned above can also be used to calculate the equilibrium 
value of DJ using the experimental values of Be and wi . The result is 1.3 110 X 1 O- ’ cm- ’ ; thus, the vibrational 
effect on 0, is rather small, about 2.2 x 10m9 cm-‘. The TZ2P SCF and CISD DJ equilibrium constants lie 8.0 
and 5.3%, respectively, below this calculated experimental equilibrium value. 

Values calculated for the sextic centrifugal distortion constant, H,, are extremely small, about two orders of 
magnitude smaller than for HCN. Consequently, the contribution of the term involving HJ to a rotational- 
vibrational line is of the order of 1O-5 cm-l (for J values lower than about 30), i.e. of the order of the usual 
experimental precision. Therefore it is not surprising that somewhat different experimental values have been 
determined for H,, the range of the effective Ho constants being from 0.898X lo-i4 [ 561 to 1.02( 25) X lo-l4 
cm-’ [ 601. Although one should keep in mind that the measured values are effective constants while theory 
predicts equilibrium constants, the relatively large deviation between the best theoretical prediction ( 1.37X lo-i4 
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cm-‘, TZZP CISD) and experiment suggests that the Ho might actually be closer to the upper limit of the value 
reported by Bailly et al. [ 601. 

The theoretical vibration-rotation interaction constants for CO* exhibit little sensitivity to level of theory 
(except in the case of the TZ predictions for (Ye), and the general agreement with experiment is quite remark- 
able. The errors in the (Ye, cr2, and cr3 predictions are only 1 l.l%, 1 .O%, and 3.3%, respectively, at the TZZP SCF 
level and only 8.6%, 6.596, and 3.0% at the TZZP CISD level. 

For XY2 molecules the I-type doubling constant q$ takes an especially simple form (cf. eq. (20) ): 

4Cz=(2Bf/02)[(o:+30f)/(o:-oi:)l* (44) 

Because o2 (the linear bending frequency) and o3 (the antisymmetric stretching frequency) do not vary much 
in all the polarized basis set calculations (at the respective SCF or CISD levels), the increase of E, in going from 
DZP to TZZP is responsible for the corresponding increase of q$. Eq. (44) can be used to determine the equilib- 
rium value of q$ from the experimental Be, co2 and o3 values. The result is 6.12 X 1 0m4 cm-‘, just slightly smaller 
than the measured value. This shows that the vibrational effects are small for this constant as well. Note also 
that the TZ2P SCF and CISD values deviate from the thus determined value of q; by only 0.4%! 

As shown by Watson (eq. (28) of ref. [ 27 ] ), the general formula for q; also simplifies considerably for 
symmetric XY2 molecules. In this case the dependence of q< on the anharmonic force field arises only from two 
terms which contain a2 and o3 as multiplicative factors. Except in the TZ case, the oi constants in tables 11 and 
12 show little variation, and consequently neither does qi (or even qf). The TZZP CISD result of - 6.93 x 10 -lo 
cm-’ for q; agrees excellently with the experimental value extrapolated to y = - l/2, which is - 7.0 x 1 O-lo 
cm-’ [ 27,601. 

Most of the anharmonic vibrational constants, x,~, are in excellent agreement with the experimental values. 
Especially gratifying is the agreement at the TZ2P CISD level. Note that the measured x~~ constants correspond 
to deperturbed energy levels, i.e. the effects of the ol-20, anharmonic resonance have been removed. Thus, in 
the theoretical calculation of these constants it was necessary to invoke the replacement equations of section 2.6. 
This affects three constants: xr2, x22 and bh. To demonstrate the dramatic effect of the resonance term on’ the 
anharmonic vibrational constants, the theoretical values calculated at the TZ2P CISD level excluding (includ- 
ing) the o,-2w2 interaction as compared to the experimental values [ 561 are as follows (all data in cm-‘): 
x12= -5.32 (224.7) versus -5.28,~~~=2.89 (-54.6) versus 1.58, andx,z,2= - 1.55 (56.0) versus - 1.01. 

It is clear from tables 13 and 14 that the theoretical total anharmonicities are not as substantially improved 
by the inclusion of electron correlation as the harmonic frequencies are. The o,, w2 and o3 values for CO2 are 
predicted to be 11.3 (5.4)%, 14.2 (4.9)% and 6.4 (3.0)% too large, respectively, at the TZ2P SCF (CISD) 
levels. On the other hand, the TZZP SCF (CISD) differences between the calculated and measured values for 
the total anharmonicities (A, = u1 -ol, A2= v2-w2 and A3- - v3--03) are only -0.6 (0.4), 2.5 (3.8) and -0.7 
( 1.2) cm-‘, respectively. The excellent agreement for A, between experiment and theory is especially impres- 
sive, because this level is not measured explicitly but rather obtained from the measured values of 1286 and 
1388 cm-’ by considering the effect of Fermi resonance on the V, and 2v2 levels. 

As seen from table 15, the TZ2P CISD cubic and quartic internal-coordinate force constants agree with ex- 
periment better than the SCF values in only four of the nine cases, but in those four cases the improvement is 
substantial. The representations of the TZ2P force fields in normal coordinates are in almost complete agree- 
ment with the best experimental results [ 56-58,6 11, which also show considerable consistency among them- 
selves, despite the fact that they were obtained using different techniques. Specifically, the average percentage 
errors of the TZ2P SCF and CISD giik and giiw constants compared to the values of Wattson and Rothman [ 6 I] 
are only 5.8% and 3.8%, respectively (neglecting in both cases the large discrepancies for @2222). However, even 
at the highest level of theory applied in the present study (TZZP CISD), the description of the bending motion, 
similarly to HCN, appears to still be deficient, @ 2222 being in error by 36%. Finally, for reasons detailed in section 
4.1, one finds& > 0 andf,,< 0 for C02. Unlike the case for HCN,& is unambiguously negative and of signif- 
icant magnitude, but it is not in accord with qualitative arguments which suggest that fill, should be positive 
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because upon fragmentation to 0 + CO, the quadratic force constant for CO stretching increases. The difficulty 
of qualitatively predicting the signs of small interaction constants is apparent once again in the case of& and 

f T,.,,,., which in the theoretical results have signs opposite those of their HCN counterparts. 

4.3. N# 

Nitrous oxide, NzO, has been the subject of a number of theoretical and experimental studies [ 62-701, and 
particular attention has been paid experimentally to rotational I-type doubling and the Fermi resonance between 
the y3 and 2 v2 vibrational states. Since these two states are separated by more than 100 cm-‘, the Fermi reso- 
nance is substantially weaker than in the analogous case of COz. Nevertheless, proper comparison between the 
theoretical and experimental results is ensured only if they refer to the same bung of data; thus this resonance 
has been taken into account in the theoretical calculations. Experimental force fields up to sixth order are avail- 
able for NzO. It should be realized that these force fields were obtained by three rather different approaches: (a) 
numerical, algebraic contact transformation [ 681; (b) second-order perturbation theory [ 691; and (c) direct 
numerical diagonalization [ 63,64 1. To the best of our knowledge, no ab initio study of the quartic force field of 
N,O exists in the literature besides the work of Steele et al. [ 941; thus the present theoretical results have an 
additions s~i~~~. These results, together with some selected experimental values, are compiled into tables 
16- 19. The TZ2P quartic force fields, calculated at the SCF and CISD levels of theory, are presented in table 
20. 

Similarly to HCN and C02, the bond lengths of N20 decrease as the basis set increases, and they do not appear 
to be converged even at the highest level (the difference between the NO bond lengths at the TZP and TZZP 
CISD levels is still 0.01 A). It is also noteworthy that the addition of polarization functions to the basis set 
causes a very large change in the bond lengths, the difference in the NO distances at the SCF/CISD DZ and 

Table 16 
Theoretical (SCF) and experimental geometries, dipole moments, vibration-rotation interaction constants, rotational constants, cen- 
trifugal distortion constants, and rotational I-type doubling constants for N20 

Basis set DZ TZ DZP TZP TZ2P Experiment 

E (hartree) - 183.59541 - 183.60967 -183.71576 - 183.72672 - 183.73825 - 
I, (A) 1.1069 1.0963 1.0955 1.0866 1.0815 1.1273.’ 
r,(NO) (A) 1.2557 1.2496 1.1872 1.1796 1.1723 1.1851 ‘1 
p (debye) 1.5395 1.5610 0.8244 0.7950 0.6586 0.1609 b, 

a,x 103 (cm-‘) 1.78 2.03 2.55 2.65 2.68 3.444 a) 
ff*x 10’ -0.046 -4.30 -4.80 -3.02 -3.86 - 5.697 *) 
ar,x 10’ 6.03 5.37 2.85 2.86 2.92 I .925 a) 

&x 10’ (cm-t) 4.0234 4.0802 4.3171 4.3801 4.4286 4.2112.’ 
Box 10’ 3.9843 4.0474 4.2949 4.3556 4.4045 4.1901 a) 

13,x 10’ (cm-‘) 2.3815 2.3811 1.6098 1.6947 1.7447 ~~=l.76~O(l)c~ 
H,x lOI -64.98 -51.98 - 7.77 - 8.02 -8.38 H,=-1.555(130)=’ 

q;xl(r (cm-‘) 8.9537 9.0842 7.7623 7.8300 8.0278 7.920 &=’ 
q:xlo’o 26.936 8.603 -3.617 - 1.497 - 1.619 - 10.13(7) d, 
q:x 10’0 - 39.688 -17.511 0.405 - 2.245 - 2.346 

a) Ref. [68]. b, Ref. [65]. ‘) Ref. [ 62 1. De and He are the ground vibrational state DJ and Hlconstants, respectively. 
dt Ref. [62]. The I-type doubling constants were obtained for the fundamental 01’0. The qf term was not included in the experimental 

fit. ‘) The experimental precision is considerably higher than indicated. 
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Table 17 
Theoretical (CISD) and experimental geometries, dipole moments, vibration-rotation interaction constants, rotational constants, cen- 
trifugal distortion constants, and rotational I-type doubling constants for N20 

Basis set DZ TZ DZP TZP TZZP Experiment 

E (hartree) 

I, (A) 
r,(NO) (A) 
IC (debye) 

-183.91871 - 183.96041 
1.1494 1.1337 
1.2577 I .2492 
0.9643 0.9928 

- 184.16117 
1.1285 
1.1990 
0.4692 

- 184.20324 - 184.24327 
1.1162 1.1073 
1.1900 1.1809 
0.4544 0.3428 

1.1273.’ 
1.1851 .’ 
0.1609 b, 

a,xlO’(cm-‘) 2.70 
a*x 104 -5.30 
a,x 10’ 2.73 

&X 10’ (cm-‘) 3.8813 
Box 10’ 3.8594 

2.80 2.93 
-9.18 - 6.28 

2.63 1.93 

3.01 3.08 3.444 a’ 
-4.59 -5.41 - 5.697 *’ 

2.00 2.11 1.925 ” 

3.9592 4.1556 4.2320 4.2988 4.2112 ‘) 
3.9413 4.1376 4.2116 4.2782 4.1901 *’ 

D,x 10’ (cm-‘) 1.7424 
Hrx 10” -9.61 

1 .a47 1 
-8.49 

1.5055 1.6010 1.6743 0,=1.7610(l) c, 
-2.07 -2.28 -2.78 H,=-1.555(130)” 

7.920 .Q’ 
-10.13(7) d) 

4% X 104 (cm-‘) 7.8729 8.5487 7.4968 7.5507 7.8160 
4: x 1O’O - 7.920 - 17.434 - 8.875 -6.898 -7.218 
q:x 10’0 4.474 14.223 6.769 4.496 4.551 

*) Ref. [68]. b, Ref. 1651. ‘) Ref. [ 621. DO and HO are the ground vibrational state 0, and H, constants, respectively. 
d, Ref. [ 62 1. The I-type doubling constants were obtained for the fundamental 01’0. The qf term was not included in the experimental 

tit. =) The experimental precision is considerably higher than indicated. 

Table 18 
Theoretical (SCF) and experimental harmonic vibrational frequencies, vibrational anharmonic constants, and fundamental vibrational 
frequencies for N,O 

Basis set DZ TZ DZP TZP TZZP Experiment 

2430.9 2404.1 2589.0 2595.8 2588.7 228 1.7 *), 2282.1 b, 
554.9 519.1 668.4 707.0 706.9 596.5 *), 596.3 b, 
964.0 991.1 1358.0 1354.2 1355.6 1298.5 ‘), 1298.3 b, 

XII (a-‘) 
XL2 
x13 

x22 

x23 

x33 

?&h 

VI (cm-‘) 

v2 

5 

- 15.46 
-7.92 
27.01 

0.20 
- 17.20 
- 39.40 

0.30 

- 13.67 
-7.40 
23.09 

5.30 
- 13.80 
- 34.55 

-1.46 

- 14.07 -14.15 - 14.26 
- 11.64 - 12.73 -11.80 
-73.68 - 79.72 -74.77 

0.52 -1.01 -0.011 
-8.79 -8.87 -8.74 
-0.12 1.93 0.57 
-0.12 0.48 0.12 

-15.138 b, 
- 14.328 b, 
- 27.207 b’ 

1.112b’ 
- 5.374 b’ 
-4.319b’ 
-0.575 b’ 

2405.6 2380.9 2512.4 2514.9 2511.0 2223 8 sd’ 
543.2 523.0 659.6 693.6 696.7 588:8 CA’ 
881.5 919.7 1312.1 1309.3 1310.6 1271.4 b, 

- 58.3 b, 
- 7.6 b’ 

- 26.9 b’ 

A, (cm-‘) 

A2 
43 

-25.3 -23.2 -76.6 - 80.9 
-11.7 3.8 -8.8 -13.3 
-82.5 -71.4 -45.9 -44.9 

-77.7 
- 10.2 
-45.0 

l ) Ref. [64]. b, Ref. [68]. ‘) Refs. [62,67]. d, The experimental precision is considerably higher than indicated here. 



Table 19 
Theoretical (CISD) and experimental harmonic vibrational frequencies, vibrational anharmonic constants, and fundamental vibra- 
tional frequencies for NrO 

Basis set DZ TZ DZP TZP TZZP Experiment 

w, (cm-‘) 2164.1 2160.0 2402.4 2418.8 2419.5 

02 507.2 461.8 606.4 644.5 645.5 

cJ3 1109.4 1113.4 1352.3 1347.3 1345.9 

XII (cm-‘) 
x12 

XI3 
x22 

X23 
x33 

Xhh 

- 14.37 
-11.39 

-4.08 ‘) 
2.79 

-7.32 
- 12.61 e, 

-0.91 

- 13.08 
-9.96 
- 6.43 =’ 

9.51 
-7.18 

-11.57” 
-3.35 

- 13.67 
- 12.78 
-30.16 

1.64 
-6.15 
-4.31 
-0.78 

- 13.77 
- 13.88 
-31.17 

0.10 
-6.00 
- 3.93 
-0.11 

-14.14 -15.138 b, 
- 12.88 - 14.328 b, 
-32.57 -27.207 b’ 

1.30 1.112b’ 
-6.10 -5.374 b’ 
-4.05 -4.319 b) 
-0.54 -0.575 b’ 

2281.7 *), 2282.1 b, 
596.5 -), 596.3 b, 

12985.’ 12983b’ ., . 

2121.9 =’ 
505.3 

1074.8 

2362.1 2223 8 c*d) 
639.4 588:8 4d) 

1315.4 1271.4 b’ 

*I (cm--‘) 
v2 

*3 

2120.7 =’ 2347.2 2361.8 
478.4 601.1 634.7 

1079.9 1322.4 1317.9 

A, (cm-‘) 

A2 

A3 

- 42.2 =’ 
-1.9 

-34.6 

-39.3 =) -55.2 -57.0 
16.6 -5.3 -9.8 

-33.5 -29.8 -29.4 

-57.4 - 58.3 b’ 
-6.1 -7.6 b’ 

- 30.5 - 26.9 b’ 

‘) Ref. [64]. b, Ref. [68]. c, Refs. [62,67]. d, The experimental precision is considerably larger than indicated here. 
Cl Due to the accidental 2w,-w, near-degeneracy at this level of theory, these constants were obtained by excluding both the 2o~s-c~~ and 

the 2wr-0, resonances in second order. Therefore these constants cannot be properly compared with the other respective theoretical 
and experimental values. 

Table 20 
Complete quartic force fields for N20 .) 

In internal coordinates In normal coordinates 

constant theory expt. b, constant theory expt. b, 

SCF CISD SCF CISD 

f”(NN) 26.533 21.914 18.25 1 WI 2588.7 2419.5 2282.1 
k(NO) 11.678 2.257 12.096 1.635 11.960 1.028 w2 cJ3 1355.6 706.9 1345.9 645.5 1298.3 596.3 

k - 191.2 0.886 -161.1 0.763 - 133.6 0.666 9) 9113 III - -316.4 660.4 -519.8 -401.6 - - 463.7 308.8 

k -3.976 0.660 - - 0.928 1.069 -6.872 1.498 9122 @IS3 257.4 189.6 204.7 142.4 106.4 142.4 
&RR -113.9 - 104.3 - 98.83 @223 75.0 103.7 111.1 

k - -2.051 1.837 - - 1.655 1.722 - - 1.580 1.537 $333 @I111 -519.1 194.8 -402.0 189.5 - 346.8 142.0 
k 1074. 8.754 I 931.3 5.699 691.4 46.45 @Ill3 @I122 -130.1 9.1 - 125.8 18.6 - 122.9 5.7 

k, 10.653 5.356 12.17 5.077 -7.691 - 3.485 @II33 91223 53.7 14.1 62.9 6.1 81.4 2.5 
f- 642.6 614.0 634.9 #I333 -72.1 -60.4 -52.1 
k, -1.157 4.881 0.237 4.117 5.105 1.808 h222 @2233 -44.3 56.7 -41.6 67.3 -42.4 56.4 

2.098 2.491 1.491 @3333 127.5 97.0 79.4 
1.797 2.414 1.897 

l ) See footnote to table 10. The normal coordinate force constants refer to “N2160. b, Ref. [ 681. 
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DZP levels being 0.07/0.06 A. Consequently, the calculations with unpolarized basis sets result in very poor 
predictions for the bond lengths of N20. Note that the experimental NN bond length lies between the DZP and 
TZP CISD values. The errors in the TZZP CISD predictions for r,(NN) and r,(NO) are 0.020 and 0.004 A, 
respectively. 

The sign of the electric dipole moment of N20 has been the subject of some controversy [ 661. Jalink et al. 
[66] finally gave experimental verification that the sign of the dipole is +NNO-. This is in accord with the 
present (and previous [ 701) theoretical results. The magnitude of the dipole moment obtained from Stark 
measurements is 1 kl I= 0.16 D [ 65 1. Although the calculated dipole moments decrease with increasing level of 
theory, at the highest level (TZ2P CISD) the dipole moment is still about twice the measured value, yet in an 
absolute sense the error is small, only 0.18 D. Note, however, that the basis sets employed are much too small to 
expect the calculated dipole moment to be fully converged. 

It is clear in tables 16- 19 that the theoretical description of N,O provided by unpolarized basis sets (DZ and 
TZ) is poor in general. This is true not only for the geometry and the dipole moment but also for the harmonic 
vibrational frequencies and the anharmonic potential. For example, at both the SCF and CISD levels, o2 and 
oj are significantly below experiment, and the predictions for (Ye, H,, xl3 and b3 show blatant errors. Therefore, 
in the following discussion results obtained with the DZ or TZ basis sets are not mentioned further. 

The predictive power of the SCF and CISD methods for the vibration-rotation interaction constants, cyi, of 
N20 is not as impressive as was observed for HCN or C02. To wit, the TZZP SCF errors for aI, cy2, and a3 are 
22.2%, 32.2%, and 51.7%, respectively. However, the respective TZZP CISD errors are reduced to 10.6%, LO%, 
and 9.6%, which are quite respectable. As usual, the a2 constant is the least stable against variation in the basis 
set. 

The predictions for the &-B, difference are surprisingly accurate once again. The TZZP CISD prediction is 
in almost perfect agreement with the measured value of 0.002 1 cm-‘, and even the TZSP SCF result of 0.0024 
cm- ’ is quite reasonable. This fact, observed repeatedly in this study, suggests that the &-B, difference is not 
particularly sensitive to the force field and that the errors in the theoretical vibration-rotation interaction con- 
stants (ai) more or less cancel one another. 

The theoretical values for the quartic centrifugal distortion constant, O,, approach the measured value with 
the extension of the basis. The TZZP SCF result, which is in error by only l%, is actually more accurate than the 
TZ2P CISD value. This is a consequence of fortuitous cancellation of errors arising when the overestimation of 
03, which is nearly the same at the SCF and CISD levels, is balanced by an overestimation of Be, which is 3% 
larger at the SCF level. Prediction of the small sextic centrifugal distortion constant, H,, is quite poor at most 
theoretical levels. Both extension of the basis set and inclusion of electron correlation are necessary to obtain 
reasonable agreement with the measured value, but even at the TZZP CISD level the predicted value is 78% too 
large in magnitude. \ 

The theoretical predictions of the f-type doubling constant q; are quite successful, and the calculated results 
show little variation with the extension of the one-particle basis:The predicted values of q’: deviate substantially 
(about 30% even at the CISD level) from the measured value, the best result being obtained at the DZP CISD 
level. 

Although the vibrational anharmonic constants xrs are somewhat inaccurate at the SCF level (note x,, in 
particular), the TZ2P CISD results agree very nicely with the experimental values [ 681. This excellent agree- 
ment can be obtained only if the replacement equations of section 2.6 are used in the evaluation of these con- 
stants, i.e. terms corresponding to the w3-2wz interaction are removed even though the separation between these 
zero&order levels is over 100 cm-‘. In particular, the TZZP CISD values excluding (including) this interaction 
as compared to the experimental values [ 68 ] are as follows (all data in cm- * ): x2* = 1.30 ( - 4.83 ) versus 1.11, 
~23~ -6.10 (18.41) versus -5.37, andXhh= -0.54 (5.59) versus -0.58. 

The overall agreement between the theoretical and experimental harmonic vibrational frequencies of N20 
must be considered good. The wI, o2 and o3 values are predicted to be 13.4 (6.0)%, 18.5 (8.2)% and 4.4 (3.6)% 
too large, respectively, at the TZ2P SCF (CISD) levels. This type of agreement is typical for such levels of 
theory. 
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The vibrational fundamentals of NzO were measured with exceptionally high precision by Maki and co-work- 
ers [62]: 1000-0000=2223.8cm-1,01’0-0000=588.8cm-L,and~1-0000=1284.9cm-’.Theexistenceofa 
first-order anharmonic interaction (Fermi resonance) between the levels 2v2 and v3 of “N2’60 was already 
noted by Herzberg [ 161 and was investigated in detail by Pliva [ 671. This interaction causes the unperturbed 
value of v3 (which should be compared with our calculated values) to be different from the measured one. 
Pliva’s [ 671 analysis placed the unperturbed v3 at 1276.9 cm-‘, but his x22 and x23 constants are substantially 
different from the more recent ones obtained by Teffo and Chtdin [ 68 1, these new values being supported by 
our theoretical data (see tables 18 and 19). Consequently, Teffo and ChMin arrive at a somewhat different 
value for v3, namely, 1271.4 cm-‘, which is accepted here as giving the experimental anharmonicity of this 
mode. 

The agreement between the TZZP SCF results and the measured values for the total anharmonicities is quite 
poor for Al and A3 but respectable for AZ. In contrast, the TZZP CISD values are excellent for all three constants, 
A,, AZ, and A3 exhibiting errors of only 0.9, 1.5 and 3.6 cm-‘, respectively. Note that the anharmonicity of the 
bending fundamental is quite small. Although this fact is reproduced at all levels of theory, quantitatively correct 
results are obtained only with the polarized basis sets. Since the Fermi resonance in the case of N20 is rather 
weak, it is of interest to see whether, by retaining the resonance term, second-order perturbation theory can be 
used to correctly predict the difference (Q = - 13.4 cm-‘) between the measured (perturbed) frequency OOOl- 
OOOO (1284.9 cm-‘) and the harmonic frequency w3 (1298.3 cm-‘). The TZZP CISD anharmonic constants 
obtained in this manner (and listed above) yield d 3 = - 6.0 cm- l, whose accuracy is quite reasonable. Never- 
theless, the corresponding A3 value in table 19 displays more impressive agreement with experiment (when 
compared to the deperturbed value of v3) than that observed for d,. 

A critical evaluation of the theoretical force constants obtained in this study for N20 (see table 20) is com- 
plicated by the fact that the experimental quartic force field of N20 is considerably less accurately determined 
than those of HCN and C02. Deviations of 5-10% are typical among the normal coordinate force constants 
obtained by Lacy and Whitfen [ 63 1, Kobayashi and Suzuki [ 64 1, and Teffo and Chedin [ 68 1, who, as men- 
tioned above, used different techniques to derive their potentials. Possibly as a consequence of this, some of the 
force constants are substantially different in these studies: the range for @i,, is from -271.8 [ 641 to -477.7 
cm-’ [63];for$,22itisfiom38.7 [63] to 106.4cm-’ [68];for9,,i3 from -82.6 [63] to 5.7 cm-’ [68], for 
$,223from -4.1 [63] to21.7cm-’ [64],andfor@ 3333from 73.7 [64] to 103.9cm-’ [63]. Iftheexperimentally 

uncertain force constants (911 I, 9122, +I I 13, @1223, and 93333) are left out of the comparison, the average percent- 
age errors of the TZZP SCF and CISD #i/k and &, force constants compared to the values of Teffo and Ch&lin 
[ 68 ] are 32% and 18%, respectively. Therefore, by any account it is clear that the agreement between theory 
and experiment is worse for N20 than for HCN and C02. 

One of the problems appears to be in the prediction of the diagonal cubic NN stretching constant &, , as well 
as the other constants involving NN stretching. The value of @, , , is - 660.4 cm-’ at the TZZP SCF level and 
- 5 19.8 cm- ’ in the TZ2P CISD case, while the experimental value is probably around - 300 cm-‘. The $+ i3 
value at the TZ2P SCF level is - 3 16.4 cm-‘, which improves to -401.6 cm-’ in the TZ2P CISD case, but the 
best result is still considerably smaller in magnitude than the well established experimental value of -463.7 
cm- ’ [ 68 1. Similar problems are seen for @ , 33, for which the TZZP CISD prediction is 44% in error. Finally, the 
TZZP CISD value for #2222, the diagonal quartic constant for linear bending, is 19% too large and thus of about 
the same accuracy as the analogous value for HCN. In summary, for N20 there are problems not only with the 
theoretical description of the bending vibration (as for HCN and C02) but also with the stretching vibrations, 
especially with the NN stretch. The current results should encourage further theoretical studies on this molecule 
and on other similarly multiply-bonded species, using larger basis sets (including f and even g functions) and 
methods which include a larger portion of the correlation energy (for example, MR CI, CCSD( T) or MR (A)CPF 
methods). 
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4.4. ocs 

Although the vibration-rotation spectrum of carbonyl sulfide, OCS, is about as thoroughly studied [ 71-781 
as those of the other triatomics considered in this investigation, only its quartic force field has been determined 
experimentally [ 73,741. The only theoretical investigation known to us to obtain even a partial ab initio quartic 
force field for OCS is that of Steele et al. [ 941, who studied the system at the SCF level using the 4-31G basis 
set. Thus, for OCS (as well as for CO2 and N20) the present study is the first theoretical work in which the 
complete quartic force field is obtained. Because calculating the complete quartic force field of OCS at the TZ2P 
CISD level proved not to be cost effective, no TZZP basis calculations were performed for this molecule. The 
various theoretical vibration-rotation constants of OCS, along with some recent experimental data (mostly the 
equilibrium molecular parameters determined by I&aye et al. [ 78 ] ), are presented in tables 2 l-24. The TZP 
quartic force fields of OCS, obtained at the SCF and CISD levels, are compiled into table 25. 

The trends in the SCF and CISD predictions for the geometrical parameters of OCS are that the length of the 
CO bond decreases continually with basis set enlargement while the length of the CS bond goes through a max- 
imum at the TZ level. The unpolarized basis sets, as expected, are clearly unsatisfactory for predicting the length 
of the CS bond. The errors in the TZP SCF (CISD) results for r,(CO) and r,(CS) are -0.029 (-0.006) and 
0.0 12 (0.009) A, respectively. The fact that the CS bond lengths are overestimated in these cases clearly indi- 
cates that the TZP basis is farther from saturation for sulfur than for the H, C, N, and 0 atoms. Accordingly, the 
agreement of the TZP CISD dipole moment with experiment (0.16 D error) must be considered good. 

The theoretical results for the vibration-rotation interaction constants display an agreement with experiment 
which is worse than for HCN and COll but better than for N20. In particular, the errors in the TZP SCF (CISD ) 

aI, az, and o3 values are 20.1% (l.l%), 19.2% (11.3%), and 19.7% (9.0%), respectively. Even though the 
individual vibration-rotation interaction constants have noticeable errors, the small correction term (half the 

Table 2 1 
Theoretical (XF) and experimental geometries, dipole moments, vibration-rotation interaction constants, rotational constants, cen- 
trifugal distortion constants, and rotational I-type doubling constants for OCS 

Basis set DZ TZ DZP TZP Experiment 

E (hart=) -510.17603 -510.18752 
re(co) (A) 1.1511 1.1411 
r,(a) (A) 1.6085 1.6151 
P (debye) 0.1610 0.0569 

- 510.27995 -510.28684 
1.1352 1.1273 
1.5736 1.5739 
0.3376 0.3247 

a,Xlti(cm-‘) 9.70 9.10 7.86 8.04 
arx 104 -2.61 -3.15 -3.07 -2.90 
Cxsx lo* 10.83 10.32 10.11 10.03 

B.X 10’ (cm-‘) 
BOX 10’ 

1.9663 1.9684 2.0423 2.0522 2.0346 .) 
1.9587 1.9618 2.0364 2.0461 2.0286 w’ 

D,x lo” (cm-‘) 
H,x 10” 

4.5429 4.5035 
-1.48 - 1.25 

4.0917 4.1884 Dp4.3405(3) h=‘, D,~4.272*~’ 
-0.69 -0.74 H,= -0.344(35) =sd) 

qzx1cr (cm-‘) 
dx10” 
q:x 10” 

2.0769 2.0733 
0.854 - 1.341 

-9.878 -7.227 

2.0448 2.0646 
-5.179 -3.732 
-0.763 - 3.033 

1.15617( 14) l ) 
1.56140(14) *) 
0.7150(15) a) 

6.6950(5) al 
-3.5870(3) a) 
12.496( 1) al 

2.122 W) 
- 14.33(9) W) 

‘) Ref. [ 781. b, Do is the quartic centrifueal distortion constant, D,, in the around vibrational state. 0. is the equilibrium value of D,. 

‘) Ref. [ 7 11. d, H, is the sextic centrifugal distortion constant, H,, in the around vibrational state. H. is the equilibrium value of H,. 
=) The I-type doublina constants were obtained for the fimdamentsl0 1’0. The qf term wxs not included in the experimental fit. 
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Table 22 
Theoretical (CISD) and experimental geometries, dipole moments, vibration-rotation interaction constants, rotational constants, cen- 
trifugal distortion constants, and rotational I-type doubling constants for OCS 

Basis set DZ TZ DZP TZP Experiment 

E (hart=) - 5 10.43023 -510.45810 - 5 10.66945 -510.69510 - 
r,(a) (A) 1.1845 1.1710 1.1595 1.1501 l.i5617( 14) ‘) 
r,(a) (A) 1.6164 1.6198 1.5732 1.5707 1.56140( 14) *) 
p (debye) 0.4420 0.3697 0.5243 0.5510 0.7150( 15) a) 

a,Xlti(cm-‘) 7.54 7.21 6.62 6.77 6.6950( 5) ‘) 
(Y,x 104 -3.12 -3.85 -3.41 -3.18 - 3.5870( 3) l ) 
a,xw 12.01 11.52 11.32 11.37 ’ 12.496( 1) l ) 

E,x 10’ (cm-‘) 1.9132 1.9245 2.0112 2.0275 2.0346 l ) 
BOX 10’ 1.9066 1.9190 2.0057 2.0216 2.0286 r, 

0,x lo” (cm-‘) 4.2563 4.265 1 3.9511 4.0422 0,=4.3405(3) br’, D,=4.272ab’ 
HJX 10” -0.70 -0.58 -0.34 -0.37 H,= -0.344(35) =**’ 

qr X 104 (cm-‘) 2.0195 2.0444 2.0182 2.0297 2.122 =) 
q: x 10” - 10.67 - 13.16 - 11.63 - 10.14 - 14.33(9) c+) 
q:x 10” 6.279 8.937 8.104 6.173 

‘) Ref. [ 781. b, Do is the quartic centrifugal distortion constant, 0,. in the ground vibrational state. D. is the equilibrium value of 0,. 
c, Ref. [ 7 11. d) I-I,, is the sextic centrifugal distortion constant, H,, in the ground vibrational state. H. is the equilibrium value of H,. 
e, The l-type doubling constants were obtained for the fundamental 01’0. The qf term was not included in the experimental fit. 

Table 23 
Theoretical (SCF) and experimental harmonic vibrational fkequencies, vibrational anharmonic constants, and fundamental vibrational 
frequencies for ocs 

Basis set DZ TZ DZP TZP Experiment l ) 

w (cm-‘) 797.0 802.3 891.0 886.8 875.291(8) 
02 534.9 536.4 574.8 583.1 524.3587(7) 
f% 2170.1 2155.9 2298.5 2297.3 2093.723(6) 

XII (cm-‘) - 5.86 -5.36 -4.63 -4.65 -2.736(32) 
XI2 -4.00 -4.26 -3.61 - 3.60 -3.214(2) 
XI3 - 1.43 -1.25 - 1.44 - 1.19 -6.458(127) 
X22 0.41 0.63 0.48 0.27 0.6084 
X23 -6.36 -5.69 - 5.88 - 5.85 -7.547(l) 
X33 - 13.61 - 12.56 - 12.57 - 12.42 - 11.457(2) 
xhh 0.16 0.039 0.072 0.17 -0.1714(4) 

VI (cm-‘) 780.6 786.7 877.4 873.3 863.3 
v2 531.1 533.3 571.5 579.4 520.6 
% 2135.8 2124.5 2266.7 2266.1 2060.0 

4 (cm-‘) 
42 

A3 

‘I Ref. [78]. 

-16.4 - 15.6 -13.6 -13.5 -12.0 
-3.8 -3.1 -3.2 -3.8 -3.8 

-34.3 -31.4 -31.7 -31.3 -33.7 
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Table 24 
Theoretical (CISD) and experimental harmonic vibrational frequencies, vibrational anharmonic constants, and fundamental vibra- 
tional frequencies for OCS 

Basis set DZ TZ DZP TZP Experiment .) 

796.1 802.5 891.7 892.2 875.291(8) 

487.3 485.0 536.3 550.7 524.3587(7) 

2008.2 2002.6 2192.7 2195.6 2093.723(6) 

xl1 (cm-‘) 
x12 

XI3 
X22 
x23 

x33 

Xhh 

-3.81 -3.59 -3.40 
-3.15 - 3.59 - 3.25 
-4.17 - 3.78 -4.06 

0.97 1.46 0.84 
-7.36 -6.53 -6.84 

-12.13 -11.23 -11.60 
-0.20 -0.44 -0.19 

-3.42 -2.736(32) 
-3.17 -3.214(2) 
- 3.97 -6.458( 127) 

0.47 0.6084(4) 
-7.05 -7.547( 1) 

-11.55 - 11.457(2) 
-0.039 -0.1714(4) 

VI (cm-‘) 783.3 789.9 879.6 880.2 863.3 

v2 484.8 483.9 533.6 547.0 520.6 

v3 1974.5 1971.8 2160.7 2163.5 2060.0 

4 (cm-‘) - 12.9 

42 -2.5 

A3 - 33.7 

- 12.7 -12.1 -12.0 -12.0 
-1.1 -2.7 -3.7 -3.8 

- 30.9 -32.1 -32.1 -33.7 

*) Ref. [78]. 

Table 25 
Complete quartic force fields for OCS *) 

In internal coordinates 

constant theory 

SCF CISD 

expt. b’ 

In normal coordinates 

constant theory 

SCF CISD 

expt. b, 

7.26 7.61 7.51 
1.65 1.23 0.99 

20.68 18.12 16.01 
0.79 0.72 0.65 

-45.7 -45.3 -46.5 
-1.95 -0.98 0.64 
-1.41 -2.02 - 3.47 

- 145.7 - 126.4 -95.2 
- 1.20 -1.12 -0.31 
-0.82 -0.92 - 3.09 
187.9 190.9 205.2 
-2.44 0.38 0.W 

7.58 4.38 0.W 
-3.01 2.03 o.o+ 
814.6 722.7 317.1 

0.84 1.00 0.89 
1.97 1.89 0.W 

-0.16 0.25 11.1 
1.28 1.22 2.16 

886.8 892.2 875.7 
583.1 550.7 523.6 

2297.3 2195.6 2092.5 
-235.1 -208.7 -201.5 

117.8 103.7 107.0 
66.1 76.3 85.9 

- 193.8 - 234.4 - 250.5 
258.8 226.5 102.6 

-657.5 - 574.9 -402.1 
43.3 37.8 37.2 

-26.5 -23.8 -26.4 
- 17.7 - 18.4 -19.8 

23.1 26.2 25.6 
-6.12 - 10.8 -4.8 
12.9 22.5 5.0 

112.7 99.9 42.5 
-135.1 - 126.5 -77.1 

198.0 186.6 95.5 

‘) TZP results. The normal coordinate force constants refer to ‘60’%32S. See footnote to table 10. 
‘) Ref. [ 741. The numbers indicated with an asterisk were constrained to xero. 
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sum of the (Ye constants) leading from Be to B. is calculated with high accuracy. Note that the best theoretical 
result of 0.00059 cm-‘, obtained at the TZP CISD level, is in excellent agreement with the measured value of 
0.0006 cm-’ [ 78 1. This remarkable fact has been observed repeatedly in this study and perhaps warrants further 
investigation. 

The theoretical D_, values for OCS exhibit the type of consistency and accuracy which was found for the other 
molecules in this study. For example, the TZP SCF and CISD equilibrium values deviate from experiment by 
only 2% and 5%, respectively. In contrast, the calculated values for H, are more sensitive to the underlying 
(cubic) force fields and show considerable variation with the level of theory. Nevertheless, it is gratifying that 
the higher levels of theory are in the best agreement with experiment, and the TZP CISD prediction of 
-0.37x10-‘4cm-‘isinaccordwiththeexperimentalresult,H,=-0.344(35)X10-‘4cm-’ [71]. 

The theoretical values of the l-type doubling constant q$ , as we repeatedly observe, are quite accurate at all 
levels of theory. This constant depends on the calculated values of the harmonic vibrational fundamentals (Oi, 
i= 1, 3), the equilibrium rotational constant (B,) and on c &, a Coriolis interaction constant (only one of the 
two Coriolis constants for linear triatomics is independent). If the fundamental vibrational frequencies of O’*CS 
and 0 13CS are used to obtain this constant, its value is C* =0.042 1 [ 75 1. If it is calculated from the measure- 
ments of the rotational l-type doubling constant q$, one arrives at the value of C* = 0.0266 [ 76 1. Our calculated 
value at the TZP CISD level is C* = 0.04 16, in almost perfect agreement with the former value. The q’: constants 
in table 21 show extreme sensitivity to the quality of the basis set at the SCF level, and concomitantly the 
agreement with experiment is poor. The sensitivity to basis set is reduced with the CISD method, and, in fact, 
the TZP CISD prediction of - 10.14 x IO- l1 cm- ’ is in reasonable agreement with the ql= - 14.33 (9) 
x10-l’cm-‘experimentalresult [71]. 

Two anharmonic (resonance) interactions have been included in first order (rather than second order) in 
the experimental analysis used to obtain the vibrational anharmonic constants for OCS: V, - 2 v2 and 2 V, - v3 
[ 78 1. Although the theoretical predictions for the differences between these levels are several hundred cm-l in 
some cases, the exclusion of their interactions in second order is necessary to obtain data directly comparable to 
the experimental results. As seen in tables 23 and 24, the agreement between the theoretical x,~ constants calcu- 
lated in this manner and the experimental values is remarkable, especially at the TZP CISD level. Exclusion of 
the two anharmonic resonance interactions affects all but two constants. The theoretical values obtained at the 
TZP CISD level excluding (including) the two interactions as compared to the experimental values [ 78 ] are as 
follows (alldatain cm-‘):xlr = -3.42 (-4.24) versus -2.74,x1*= - 3.17 (-6.65)versus -3.21,X13= -3.97 
(-0.69) versus -6.46,~~~=0.47 (1.34) versus0.61,andx,ti~=-0.04 (-0.91) versus -0.17. 

At the TZP SCF (CISD) level, the harmonic vibrational frequencies u,, o2 and w3 are in error by 1.3% 
( 1.9%), 11.2% (LO%), and 9.7% (4.9%), respectively. The errors for wI, the CS stretch, are unusually and 
fortuitously small due to basis set deficiencies, but the deviations for w2 and w3 are of the expected size. The 
anharmonic corrections to the harmonic frequencies are predicted with great accuracy at all levels of theory. For 
example, the TZP CISD errors are only 0.0, 0.1, and 1.6 cm- I, respectively, for d,, d2, and d3. Finally, the 
experimental differences (d, and d3) between the deperturbed fundamentals, v1 =863.3 cm-’ and v,=2060.0 
cm-’ [ 781, and the perturbed, measurable frequencies, v r=859.0 cm-’ and v3=2062.2 cm-’ [78], are of 
interest. By including the vi-2v2 and 2v,-v3 interactions in determining the TZP CISD xrs constants (listed 
above), one arrives at theoretical predictions of d, = 3.5 cm-’ and d, = - 1.6 cm-‘, which are in accord with the 
experimentalvaluesd,=4.4cm-*andd3=-2.2cm-L. 

The agreement between the TZP force constants calculated in internal coordinates (see table 25 ) and those 
of Foord, Smith and Whiffen [ 741 (hereafter FSW) is generally good, especially considering the decision of 
FSW to constrain fR_ fRRln fRRR,, andfad, to zero in their refinement. However, there is a substantial disparity 
between the TZP CISD prediction for fRRRR, 723 aJ As4, and the somewhat uncertain value of FSW, 3 17 (76 ) 
aJ A-*. The qualitative principles pertaining to the signs and magnitudes of the internal coordinate force con- 
stants of OCS are the same as those discussed in detail for HCN and the other compounds studied here. 

The overall agreement between the calculated @+ and @UM force constants with those of FSW is good. The 
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noteworthy deviations concern the cubic constant ezz3 and the quartic constants @rzz3, @1333, $222z, #z2233, and 
Qssss. For &223, FSW obtained 102.6 cm-‘, while Morino and Nakagawa [ 731 (hereafter MN) obtained 240.8 
cm“, the latter value being in nice agreement with our theoretical values. Note also that for &, MN obtained 
- 96 1.2( 246) cm- ‘, while FSW ascertained - 402.1 cm- I. Our theoretical values lie in between the two results, 
the TZP CISD value being - 575 cm-r. Among the quartic constants, FSW and MN agree only in the constants 

@ hLl3, llllr @, ,22 and 9, L33. For these constants the average deviation between the TZP CISD and FSW values 
is only 5.2%. For the other quartic constants, for which the two experimental studies disagree substantially, the 
present values generally lie in between the two sets of experimental results. Leaving out six constants ( #z223, +rzz3, 

$ I3339 $2222, @2233 and $3333) from the comparison, the average deviations between the experimental force con- 
stants of FSW [ 741 and the TZP SCF and CISD results are 16.3% and 8.3%, respectively. Finally, note that 
@z2222, the diagonal quartic constant for linear bending, is rather poorly predicted even at the highest level of 
theory, as is the case for all the other molecules studied here. 

4.5. C,H, and C,D, 

Acetylene, C2H2 [ 79-9 11, is one of those few molecules having more than three atoms whose quartic force 
field has been determined experimentally [ 80,8 1 ] with some degree of completeness. Results of the present 
study for C2H2 and C2D2 are collected into tables 26-29 and tables 30-33, respectively. Only the harmonic force 
fields have been determined for acetylene at the CISD level, and thus none of the molecular constants depending 
on the cubic or quartic force fields have been calculated. The TZZP SCF harmonic and anharmonic force con- 

Table 26 
Theoretical (SCF) and experimental geometries, vibration-rotation interaction constants, rotational constants, centrifugal distortion 

constants, and rotational I-type doubling constants for CsH, 

Basis set DZ TZ DZP TZP TZZP Experiment 

- 76.79923 -76.81113 -76.83190 -76.84305 -76.84505 
1.2010 1.1875 1.1912 1.1811 1.1793 

1.0538 1.0536 1.0616 1.0554 1.0539 

1.2033 ” 
1.0605 a) 

E 

apx 103 

a,x lo3 

a,x 103 

6.38 6.25 6.25 
4.73 5.02 4.74 

5.52 5.25 5.36 
-0.61 -0.68 - 1.46 
- 1.68 - 1.93 -2.12 

6.40 6.55 6.86 *), 6.89 b, 

4.93 5.01 6.21 *), 6.22 b, 
5.42 5.57 5.60 *), 6.00 b, 

-1.12 -1.13 -1.29”, -1.30b’ 
-2.02 -2.14 -2.15”, -2.11 b, 

Be (cm-‘) 1.1897 1.2101 

Bo 1.1836 1.2045 
1.1999 1.2189 1.2225 1.1824” 
1.1953 1.2137 1.2172 1.1766” 

0,x lo6 (cm-‘) 1.3931 1.4508 1.3839 1.4322 1.4542 

H,x lOI 1.29 1.31 1.27 1.30 1.33 
Do= 1.627(6) b*d) 

45 X 10’ (cm-‘) 
4:x10* 
q:x lo8 

45 X lo3 (cm-‘) 
q: x lo8 
q:x 10s 

4.1517 4.1400 4.4991 
- 2.029 - 1.983 -2.618 

1.722 1.632 2.300 

4.4477 4.6305 
-2.394 - 2.609 

2.055 2.266 

5.232( 1) =) 
-4.1(l)” 

4.0053 4.1418 4.1779 
- 2.275 - 2.432 -2.524 

2.007 2.127 2.235 

4.2637 4.3402 
-2.538 - 2.680 

2.226 2.364 

4.6996( 5) =) 
- 3.94(4) =) 

‘) Ref. [81]. b, Ref. [89]. ‘) Ref. [85]. 
d, Do is the quartic centrifugal distortion constant, D,, in the ground vibrational state. ‘) Refs. [ 84,871. 



Table 27 
Theoretical (CISD) and experimental geometries, rotational constants, centrifugal distortion constants, and rotational I-type doubling 
constants for C2Hz 

Basis set 

E (hartree) 
r,(CC) (A) 
r,(CH) (A) 
Be (cm-‘) 
0,x lo6 (cm-‘) 
q:x 10’ (cm-‘) 
q; x lo3 (cm-‘) 

DZ TZ DZP 

- 76.91129 -77.00072 -77.08231 
1.2299 1.2101 1.2131 
1.0707 1.0686 1.0691 
1.1388 1.1680 1.1635 
1.4207 1.5053 1.4180 
4.4749 4.7380 5.0250 
4.1532 4.4285 4.2749 

TZP TZZP 

-77.10696 -77.12005 
1.1979 1.1950 
1.0601 1.0578 
1.1907 1.1963 
i .4808 1.5157 
4.9350 5.3497 
4.3613 4.4875 

Experiment 

- 
1.2033 ‘) 
1.0605 *) 
l.la24b) 
D,,= 1.627(6) cd) 
5.232( 1) =) 
4.6996( 5) e, 

*) Ref. [al]. b, Ref. 1851. =) Ref. [a9]. 
d, Do is the quartic centrifugal distortion constant, 0,. in the around vibrational state. =) Refs. [ 84,871. 

Table 28 
Theoretical (SCF) and experimental harmonic vibrational frequencies, vibrational anharmonic constants, and fundamental vibrational 
frequencies for C,H, 

Basis set DZ TZ DZP TZP TZ2P Experiment 

w (cm-‘) 3132.3 
u2 2167.6 
w3 3622.2 
m 842.7 

w5 887.1 

3681.6 3676.7 3673.4 3665.8 3495.1 .’ 
2179.0 2203.4 2219.2 2211.3 2007.6 a) 
3557.4 3571.3 3558.6 3554.1 3415.2” 

909.2 766.7 820.0 177.3 624.0 .’ 
901.1 858.2 877.4 859.9 146.7 .’ 

xl1 (cm-‘) -25.51 

Xl2 -9.87 
XI3 - 104.76 

XI4 - 13.02 

XI5 -9.46 

x22 -5.25 

x23 -4.97 

x24 -9.35 
X2> 1.73 

x33 - 27.06 

X34 -8.12 

X35 -9.69 
XU 0.47 

X45 -4.22 
X55 - 1.29 

Xid4 1.65 

X&Is 6.57 

Xld, 3.34 
r45 -6.02 

- 22.95 -23.40 
-9.60 -9.38 

-93.11 -96.91 
- 13.36 - 10.25 
- 10.90 - a.22 

-5.56 -5.43 
-5.07 -4.62 
-8.77 - 10.30 

2.26 1.96 
-23.17 -25.13 

- 7.67 -5.00 
-8.46 -8.02 
- 8.07 2.48 

- 10.44 -6.11 
-3.44 -2.15 

4.69 1.16 
6.91 6.77 
4.29 3.71 

-13.12 -7.31 

- 23.09 - 24.02 
-9.33 -9.74 

-94.30 -99.11 
- 10.79 -11.40 
- 10.04 - 10.03 

- 5.61 - 5.61 
- 5.20 -5.55 
-9.67 - 9.66 

1.71 1.91 
- 24.26 -25.31 

-5.96 -5.10 
-8.31 -8.72 

1.50 15.60 
- 7.48 - 3.04 
-2.50 -1.79 

1.41 -3.36 
6.55 6.66 
3.81 3.57 

-9.96 - 3.63 

VI (a-') 3601.5 3560.1 3558.3 3554.6 3541.9 
V2 2142.1 2154.0 2177.2 2192.6 2184.6 
v3 3495.4 3445.8 3457.3 3446.0 3437.9 
V4 826.3 864.4 756.4 805.2 804.6 
V5 873.6 876.1 842.3 857.9 846.6 

A, (cm-‘) 
42 

A3 

4 

4 

- 130.8 
-25.5 

- 126.8 
-16.4 
-13.5 

-121.5 -118.4 
-25.0 -26.2 

-111.5 -114.0 
-44.8 -10.3 
-25.0 - 16.0 

-1 la.8 
-26.6 

-112.5 
- 14.8 
-19.5 

- 123.9 
-26.7 

- 116.8 
27.3 

-13.3 

- 18.57 .I, - 26.20 b, 
- 13.09 .), - 12.61 b, 

- 102.39 *), - 104.8 b, 
- 16.54 l ), - 15.67 b, 
- lo.85 a), - l0.85b) 

-5.17 a), -7.87 b) 
-2.82*), -6.11b1 

-12.70*‘, -12.4ab’ 
- 1.38 a), - 1.574b’ 

-30.95 l ), -26.20 b, 
-8.22.), -imob) 
- 8.68 a), - lo.88 b) 

3.072 “, 3.082(15) =) 
- 2.406 l ‘, -2.406( 14) =) 
- 2.334 “, -2.335(6) ‘) 

0.156 ‘), 0.759(21) =) 
6.539 “, 6.541(14) =) 
3.492 l ), 3.490(a) c) 

-6.239 .‘, -6.238(5) 5) 

3312.9 b’ 
1974.3 b) 
3288.4 b) 

612.9 b’ 
730.3 b) 

- 122.2 d) 
-33.3 *’ 

- 126.8 *) 
-11.1.l) 
- 16.4*’ 

‘) Ref. [al]. b, Ref. [89]. c, Ref. [83]. 
d, Calculated using the harmonic frequencies of ref. [ 8 11 and the fundamental frequencies of ref. [ 891. 
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Table 29 

Theoretical (CISD) and experimental harmonic vibrational frequencies for C2H2 

Basis set DZ TZ DZP TZP TZZP Experiment *) 

w, (cm-‘) 3531.3 3485.3 3572.9 3588.8 3566.6 3495.1 

Wt 2005.9 2023.8 2072.1 2101.5 2091.4 2007.6 

W:, 3431.7 3373.2 3478.1 3477.5 3466.7 3415.2 

W4 678.6 675.6 610.7 664.5 604.8 624.0 

W5 749.7 741.1 760.5 792.7 770.3 746.7 

‘) Ref. [81]. 

Table 30 

Theoretical (SCF) and experimental vibration-rotation interaction constants, rotational constants, centrifugal distortion constants, and 

rotational l-type doubling constants for CsD, 

Basis set DZ 

cr,X lo3 (cm-‘) 5.53 

CQX 10’ 2.43 

(Y,x 103 4.29 

a,x lo3 -1.25 

a,x 103 - 1.66 

TZ DZP 

5.47 5.45 

2.55 2.39 

4.11 4.20 

- 1.24 - 1.90 

- 1.77 -1.93 

TZP TZ2P 

5.52 5.63 

2.53 2.58 

4.24 4.35 

-1.61 -1.69 

- 1.85 -1.95 

Experiment 

5.53 l ) 

3.03 l ’ 

4.51 a) 

-2.01 *) 

- 2.05 a’ 

Be (cm-‘) 0.8567 0.8693 0.8612 0.8743 0.8768 0.8507 b’ 

BO 0.8535 0.8663 0.8590 0.8716 0.8742 0.8479 =) 

D,x 10’ (cm-‘) 6.8612 7.1293 6.8048 7.0597 7.1593 D,=8.0(7) Gd) 

H,x 10” 5.20 5.39 5.14 5.26 5.34 

qIxlO”(cm-L) 2.5782 2.5539 2.7722 2.7360 2.8489 3.2 =’ 

q:x1os - 1.028 -0.949 - 1.379 - 1.214 - 1.364 

q:x 10s 0.900 0.807 I .245 1.072 1.220 

q; X IO3 (cm-‘) 2.8288 2.9110 2.9307 2.9874 3.0409 5.0 C), 3.17 =) 

dx108 - 1.275 - 1.333 - 1.425 - 1.414 - 1.506 

q:x1os 1.093 1.128 1.232 1.205 1.295 

‘) Ref. [81]. w Ref. [85]. c, Ref. [90]. d, Do is the ground vibrational state quartic centrifugal distortion constant, 0,. 
‘) Calculated from an experimental force field in ref. [ 8 11. 

Table 3 1 

Theoretical (CISD) and experimental rotational constants, centrifugal distortion constants, and rotational f-type doubling constants for 

CrDz 

Basis set DZ TZ DZP TZP TZZP 

B. (cm-‘) 0.8215 0.8399 0.8370 0.8558 0.8598 
0,x 10’ (cm-‘) 6.9512 7.3406 6.9107 7.2365 7.4028 
q1 x lo3 (cm-‘) 2.9433 3.1190 3.1166 3.0534 3.3101 

qC,xlO’(cm-‘) 2.7926 2.9341 3.0134 3.0688 3.1572 

‘) Ref. [85]. b, Ref. [90]. ‘) D, is the ground vibrational state quark centrifugal distortion constant, 0,. 
‘) Calculated from an experimental force field in ref. [ 8 11. 

Experiment 

0.8507 ‘) 
D,,=8.0(7) b,c) 

3.2 b, 

S.Ob’, 3.17d’ 
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Table 32 
Theoretical (SCF) and experimental harmonic vibrational frequencies, vibrational anharmonic constants, and thndamental vibrational 
fkequencies for CzD2 

Basis set DZ 

WI (cm_‘) 2989.2 
wz 1914.5 
03 2659.5 
04 702.5 
f% 651.3 

-11.87 - 10.67 - 10.65 - 10.43 - 10.77 - 10.87 ” 
- 15.09 - 15.04 -15.18 -15.64 - 16.10 - 20.20 a’ 
-45.63 -41.52 -42.65 -41.09 - 43.04 -47.26 ” 
- 13.36 - 13.17 - 12.48 - 12.67 - 13.29 - 15.92 ‘) 

-7.42 -7.64 -6.69 - 7.28 -7.15 - 8.22 l ) 
- 3.34 -3.38 -3.33 -3.38 - 3.43 -4.61 a) 

- 12.59 - 12.35 - 12.93 - 13.45 - 14.23 - 13.60 l ) 
-1.34 0.06 - 1.05 -0.64 -0.93 - 3.89 *’ 

3.65 3.48 3.93 3.38 3.47 1.64.’ 
- 14.30 - 12.22 - 13.28 - 12.81 -13.37 - 14.51 a) 

-4.39 -4.06 -2.53 - 3.09 -2.59 - 4.93 *’ 
- 5.25 -4.48 -4.28 -4.50 -4.71 - 5.25 ” 
-0.28 -6.50 1.10 0.40 10.33 1.48.’ 
-2.89 -6.68 -4.04 -4.88 -2.17 -8.55 ” 
-0.92 - 2.07 -1.39 - 1.58 - 1.20 -1.70.’ 

1.36 3.76 1.03 1.25 -2.18 0.76 l ’ 
3.36 3.58 3.48 3.35 3.41 3.32 hb) 
2.03 2.52 2.24 2.29 2.16 -0.10.’ 

-3.39 -7.76 -4.23 -5.81 - 1.95 - 3.03 0) 

Y, (cm-‘) 2913.3 2885.3 2888.4 2894.7 2883.4 2703.6 =’ 
v1 1896.3 1903.0 1919.6 1927.1 1921.0 1764.7 =) 
V3 2591.1 2552.0 2561.0 2552.3 2547.3 2439.1 =) 
V4 690.6 727.9 632.5 674.2 667.5 511.4C’ 
V5 643.2 646.9 620.6 632.7 623.5 538.7 =) 

Al (cm-‘) -15.9 - 70.4 -69.4 -69.2 -71.5 - 78.0 *I 
42 -18.2 - 16.9 -17.8 - 18.6 - 19.5 - 28.4 *’ 
A3 -68.3 -59.9 -61.2 -60.5 -62.7 - 68.8 d’ 
64 -11.9 -31.0 -7.7 - 10.6 18.2 - 17.1 d) 
A5 -8.1 - 14.7 -9.5 -11.5 -7.8 - 19.3 *’ 

TZ DZP TZP 

2955.7 2957.8 2963.9 
1919.9 1937.4 1945.6 
2611.9 2622.2 2612.8 

758.9 640.2 684.9 
661.6 630.1 644.2 

TZZP Experiment 

2954.9 2781.6” 
1940.5 1793.1.) 
2609.9 2507.9” 

649.3 528.5 ” 
631.3 558.0 .’ 

‘)Ref. [81]. b~Calculatedfromtheexperimentalforcefieldinref. [81]. “‘Ref. [86]. 
‘) Calculated using the harmonic frequencies of ref. [ 8 1 ] and the fundamental frequencies of ref. [ 861. 

Table 33 
Theoretical (CISD) and experimental harmonic vibrational frequencies for C2D2 

Basis set DZ TZ DZP TZP TZ2P Experiment a) 

0, (cm-‘) 2806.5 2777.4 2843.4 2866.2 2847.5 2781.6 
w 1785.3 1796.5 1841.8 1861.3 1853.0 1793.1 
w3 2519.7 2476.7 2553.7 2553.3 2545.3 2507.9 
w4 550.5 544.1 509.3 554.4 504.6 528.5 
w5 565.2 563.5 558.4 582.0 565.6 558.0 

‘) Ref. [81]. 
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Table 34 
Complete quartic force fields for CzH2 ‘) 

In internal coordinates 

constant theory expt. b, 

In normal coordinates 

constant theory expt. b, constant theory constant theory 

k(CH) 6.926 
; -0.082 0.004 

f_(CC) 19.907 

2, 0.345 0.104 
;z, - -0.011 38.35 

k -0.012 0.397 

?z - 109.23 -0.193 

f ma - 0.202 

$1:. - 0.007 0.038 
-0.802 

0.346 

6.370( 10) 
-0.019(5) 
-0.095( 10) 
16.341(50) 
0.2510(5) 
0.0925( 5) 

-34.82( 190) 
0.60(21) 

-0.36(47) 
-0.60(84) 

0.71(129) 
-97.77(643) 
-0.67(4) 
-0.02(l) 
-0.52(4) 
-0.34(3) 

0.27(l) 

196.0 161.5(352) w, 
-0.191 101 wz 

0.242 ru1 w3 

- 2.663 101 04 
0.004 ru1 a$ 

- 1.287 3.4(71) @III 
- 0.079 101 @ 112 
-0.675 [Ol @ 122 
536.2 436( 136) 9133 

0.242 5.19(66) @I44 
-0.159 101 Q 155 

0.095 101 @222 

- 0.042 101 @233 

0.072 101 @244 
-0.025 1.07(49) @255 

- 0.054 101 @us 
0.009 101 
0.137 -3.36(81) 
0.436 101 
1.752 1.418(43) 

-0.389 101 
0.227 0.160( 17) 
0.13 101 

3665.8 
2211.3 
3554.7 

777.3 

859.9 
- 1253.0 

-384.8 

121.0 
- 1363.4 

804.2 
839.8 

-517.4 
-327.3 

112.3 
156.9 

-839.6 

456.8 
102.8 
42.5 

482.8 
-454.3 
-470.2 

-38.6 
115.4 

- 77.7 
- 108.7 

473.6 
110.2 
26.1 

-46.9 
-23.3 
100.6 
517.4 

-456.7 
- 503.2 

840.2 
217.8 
216.3 
653.3 

‘) The theoretical constants were obtained at the SCF level using the TZ2P basis set. The normal coordinate force constants refer to 
“C2H2. For units see footnote to table 10. The internal coordinates were chosen to be exactly the same as those in ref. [ 811, i.e. the 
magnitude of the bending coordinate is defined as cx=sin(@), where 68 is the true C-C-H linear bending angle. Note that this choice 
differs from the ck68 relation used for the other molecules in this study. Only two constants in this table are affected by this change 
of definition: fpLm =fe+ 4fw and fm-, =fm +fm. Finally, cylindrical symmetry relationships for the quartic bending con- 
stants (eqs. (4c)-( 4f) of ref. [ 8 ) have been imposed to reduce the number of independent constants listed in the table. 

b, Ref. [81]. 

stants for C2H2 are listed in table 34. We are not aware of any previous theoretical determination of the complete 
quartic force field of acetylene, and thus the current results are of particular significance. 

The theoretical bond lengths of acetylene show characteristics similar to those observed for the triatomic 
molecules, specifically, a general trend for bond length contraction upon basis set enlargement. This trend is 
most evident at the CISD level and most important for the CC bond. Fortuitously, at the SCF level the length 
of the CC bond is best approximated at the DZ level. At the CISD level, as repeatedly observed in this study, 
the DZP and TZP values bracket the experimental results. At the TZ2P CISD level, the CC and CH lengths are 
predicted to be only 0.008 and 0.003 A too short, respectively. 

Values obtained for D,, the quartic centrifugal distortion constant, show a steady improvement with extension 
of the polarized basis sets (from DZP to TZZP). The TZZP SCF and CISD results for C2H2 ( C2D2) deviate 
from the experimental Do value by 10.6 ( lOS)% and 6.8 (7.5)%, respectively. The sextic centrifugal distortion 
constants, H,, of C2H2 and CzD2 are predicted with remarkable internal consistency at the SCF level. Unfortu- 
nately, to the best of our knowledge, no experimental data are available for comparison. 

Most of the theoretical vibration-rotation interaction constants (aj, i= 1, 5) appear to underestimate the 
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magnitude of the corresponding experimental values, but only by a few percent. The average errors at the TZ2P 
SCF level are only 7.4% and 8.2%, respectively, for &Hz and C2D2. The least satisfactory agreement is found 
for-the constant involving the CC stretch, a2, for which the TZZP SCF results for CzH2 and C2Dz lie 19.3% and 
14.9%,. respectively, below experiment. As observed for all the triatomic molecules, the small correction term 
based on the (Yi constants, Be-B,,, is predicted with high accuracy; the TZZP SCF results for C2H2 and C2D2, 
0.0053 and 0.0026 cm-‘, respectively, compare favorably with the measured values of 0.0058 and 0.0028 cm-‘. 

The general trend in the rotational f-type doubling constants of &Hz and C2Dz is that the theoretical constants 
improve with basis set enlargement. The TZ2P SCF results for q; and q: of C2H2 are 11.5% and 7.7% below 
experiment [ 84,87,90], respectively. However, the corresponding CISD values are considerably closer to the 
experimental results. At the TZ2P CISD level the average deviation for q: and q; is only 3.4% for C2H2. The 
analogous error for q: of CzD2 is also 3.4%. For q; of CzD2, there is a large deviation between the TZ2P CISD 
prediction and the measured [ 901 value (table 3 1)) suggesting that the true equilibrium value of this constant 
is probably around 3.2 x 10e3 cm-‘, the value calculated from the experimental force field of Strey and Mills 
[ 8 11. The predicted values for qi and q< of CzHz deviate considerably from the measured values, as observed 
for some of the triatomic molecules, but these constants do not show large variations with level of theory. 

In general, the harmonic vibrational frequencies of C2H2 ( CzD2) are reproduced with the expected accuracy 
both by the SCF and CISD methods. Excluding o,, the trans bending frequency, the TZ2P SCF and CISD 
predictions for &Hz (C,D,) are on average 8.6 (7.9)% and 2.7 (2.1 )W, respectively, above experiment. In the 
DZ CISD case this average is only 0.5 (0.8)%, revealing a particularly striking cancellation of errors. On the 
other hand, the TZZP SCF value for o4 of &Hz (C,D,) is 24.6 (22.9)% too large while the analogous TZSP 
CISD result is 3.1 (4.5)O/o too small. Thus, peculiar difficulties are encountered in the theoretical description of 
the trans bending frequency, a fact which has been documented previously [ 9 11. In particular, the curvature of 
the potential surface along this mode is very sensitive to basis set. 

The vibrational anharmonic constants for CzHz and C2D2 obtained at the SCF level are for the most part in 
very good agreement with the experimentally observed values. For example, the xlds and xIsh values for CzHz do 
not change much as the basis set is varied, and the TZZP SCF results are in almost perfect agreement with 
experiment. Other examples include xl3 for C2HZ, and xi, and xz3 for C2D2. Nevertheless, difftculties are appar- 
ent in both the CzHz and CzD2 cases for the following constants: xz5, x44, x45, and E.,,,. Note that x25 of C2H2 has 
a different sign than experiment at all levels of theory, while the disparity for C2D2 is not one of sign but rather 
magnitude. The x44 constant for C2H2 has a value of - 8.1 cm-’ at the TZ level but 15.6 cm-’ with the TZZP 
basis. The strikingly inaccurate TZ2P SCF values of x44 for both C2H2 and C2D2 even give rise to an erroneous 
predicted sign of the total vibrational anharmonicity A4 at this level of theory. Thus, it appears that the peculiar- 
ities encountered previously [ 9 1 ] in the prediction of the harmonic frequency o4 also carry over to the theoret- 
ical determination of the anharmonic constants for this trans bending mode. For x,,/, of C2H2, the theoretical 
values range from -3.4 (TZZP) to 4.7 cm-’ (TZ), and forx45 the range is from -3.0 (TZ2P) to - 10.4 cm-’ 
(TZ). Hence, in neither case is there satisfactory convergence with level of theory, and only in the latter case is 
the best theoretical prediction in accord with experiment. 

By appending the TZZP SCF total anharmonicities to the TZZP CISD harmonic frequencies, one arrives at 
the following fundamental frequency predictions (in cm-‘) for C2H2 (C2D2): V, ~3443 (2776), ~~~2065 
(1834), v3=3350 (2483), v4=632 (523), and v5=757 (558). These resultsforC2H2 (C2D2) overestimate the 
experimentalvaluesforv,,~~,~~,~~,andv,by2.l (2.7)%,4.6 (3.9)%, 1.9 (1.8)%,3.1 (2.2)%,and3.7 (3.6)%, 
respectively. The good agreement for v4 is fortuitous because of the underestimation of 0, and the incorrect sign 
of A4 in the theoretical results, but the excellent agreement for the other modes must be considered a success of 
theory in predicting fundamental frequencies ab initio. 

The values obtained for the vibrational I-type doubling constant , r 45, are seen to scatter considerably for both 
C2H2 and C2D2, and concomitantly they exhibit only modest agreement with experiment. This behavior is sim- 
ilar to that observed for some of the x,* constants which involve the trans bending mode, and the reliability of 
analogous theoretical predictions for vibrational f-type doubling constants of this type is thereby vitiated. 



W.D. Allen et al. /Molecular vibrational anharmonicity 463 

5. Conclusions 

This paper describes a continuation of research on the use of ab initio derivative methods (in particular 
analytic SCF third derivatives) for predicting anharmonic constants of polyatomic molecules [ 9 1. The proce- 
dure involves the determination of the full quartic force field of the molecule using its respective equilibrium 
geometry as the reference, followed by an application of standard perturbation theory to obtain the various 
spectroscopic constants from the unadjusted force field. Many of the known vibration-rotation and anharmonic 
vibrational constants have been included in the present study, but some remain for possible ab initio studies in 
the future. Among the latter are some constants for which explicit formulas have already been derived, such as 
those describing the vibrational dependence of Fermi resonance (denoted as d,,,. and d:,. [ 921 for triatomic 
molecules) or the vibrational dependence of the quartic centrifugal distortion constant (denoted as pi, i= 1, 3 
[ 931 for triatomic molecules). For other constants, detailed formulas are not yet available [ 1,231. 

Although the representation of the anharmonic force fields in dimensionless normal coordinates is generally 
not preferred over representation in curvilinear internal coordinates (only the latter representation is isotopi- 
tally invariant and allows useful physical interpretation), the present study indicates that the comparison of 
theoretical and experimental force fields is enhanced using normal coordinates, because both sets of force con- 
stants tend to be more uniform in this representation. The agreement between the present theoretical results and 
the previously determined experimental normal coordinate force fields of the molecules studied is very satisfac- 
tory, with the possible exception of N20. The average deviation between the theoretical and experimental con- 
stants is less than 10% at the highest level of theory (TZ2P CISD). Although the SCF errors are somewhat higher 
than their CISD counterparts, at the TZZP SCF level the average deviation between theory and experiment is 
still only about 15%. 

As shown in the respective data tables, the different vibration-rotation interaction constants (ai) may have 
different signs. In all cases the constants associated with stretching motions (cr, and cr3 for triatomic molecules, 
and aI, a2 and a3 for C2H2) are positive, while the constants corresponding to the degenerate bending modes 
( cy2 for the triatomic molecules, and a4 and (Y~ for C2H2) are negative. The overall agreement of the theoretical 
(Y~ constants with the experimentally determined ones is quite satisfactory. In most cases the CISD results agree 
substantially better with experiment than the SCF results, as indicated by the fact that the median TZZP SCF 
and CISD errors for all the molecules studied here are 10.9% and 5.0%, respectively. 

One of the most successfully predicted quantities of the present study is the small correction term leading 
from B, to Bo. At all levels of theory, this correction term is calculated with considerable consistency. Although 
the TZZP CISD values are somewhat better than the TZZP SCF values, the predictive power of this latter theo- 
retical level is nonetheless very impressive (TZ2P SCF versus experimental values, all data in cm-‘): 0.0057 
versus 0.0065 for HCN, 0.0038 versus 0.0042 for DCN, 0.00 13 versus 0.0014 for C02, 0.0024 versus 0.002 1 for 
N20, 0.0053 versus 0.0058 for C2H2, and 0.0026 versus 0.0028 for C2D2. 

For the quartic centrifugal distortion constant, D,, of a linear molecule there is a simple upper limit formula, 
Dy” = 4Bz/W&,, where amin is the lowest stretching frequency, and B, is the equilibrium rotational constant. 
The experimental results are typically very close to this upper bound. Consequently, the theoretical D,, constants 
of the present study are not particularly informative about the details of the underlying quadratic force fields. 
Since the present ab initio calculations usually overestimate the harmonic frequencies, the predicted values of 
D_, are usually somewhat low, the typical error being less than 10%. Naturally, this underestimation is less pro- 
nounced at the CISD level. The sextic centrifugal distortion constants, H,, are predicted somewhat less accu- 
rately, although it should also be noted that in some cases the experimental determinations of these extremely 
small constants involve substantial errors, thus hindering the comparison between the theoretical and experi- 
mental results. 

The otherwise degenerate bending vibrational levels l,= f 1 become split upon excitation, a separation of 
q,J(J+ 1) occurring in the v,= 1 vibrational state. Some of the f-type doubling constants qr (e.g., q5 for triatomic 
molecules, and q2 and q$ for C2H2 and C2D2) are of the same order of magnitude as the vibration-rotation 
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interaction constants Cri. These q’ values, which depend only on the quadratic part of the force field, are pre- 
dicted with high accuracy by the present ab initio calculations. The TZZP CISD calculations underestimate the 
experimental values usually by less than 5%. Although the errors at the SCF level are somewhat larger, they are 
still acceptable (usually 7-8% at the TZ2P SCF level). The accuracy in predicting the higher-order 4’: constants 
is substantially smaller, the errors remaining around 20% even at the highest levels of theory. Since the anhar- 
manic force fields determined in this study are generally of high quality, this problem might not be solely a 
consequence of deficiencies in the theory. Differences in the experimental analysis of the l-type doubling inter- 
action (e.g., neglect of the term including the qf constant and inclusion of another term in the experimental fit) 
as compared to that used in this study might be responsible for at least part of the disparity. This question is left 
open for future investigations. 

In most cases the vibrational anharmonic constants, xrs, are predicted with considerable accuracy (the average 
deviation between the TZZP CISD and the experimental results is less than 10%). On the other hand it should 
be emphasized that this agreement can be obtained only if the effects of possible Fermi resonances are treated 
in a fashion similar to the experimental analyses used for comparison. Recognizing the high quality of the pre- 
dicted vibrational anharmonic constants, it is perhaps not surprising that the differences between the harmonic 
and ground-state vibrational fundamentals are predicted reliably, even at the SCF level. The average error of 
these differences is 20% at the TZ2P SCF level, and 14% at the TZZP CISD level. Thus the two methods have 
comparable accuracy. In general, the anharmonicities at both the SCF and CISD levels are determined with 
enough accuracy to make the errors in the theoretical fundamental frequencies Vi arise almost solely from the 
deficiencies in the harmonic wavenumber predictions. 

The results of the present research should further increase confidence in the quality of anharmonic force fields 
determined by ab initio methods, despite some cases such as NzO which are not very amenable to facile and 
reliable predictions. As demonstrated repeatedly in this study, the vibration-rotation constants determined at 
the SCF level of theory can be of considerable quality, if large enough basis sets (including polarization func- 
tions) are used. The highest theoretical level applied in this study, TZ2P CISD, provides in most cases firm, 
quantitative predictions, which is very encouraging since these (and even higher level) theoretical calculations 
are becoming more routine. Therefore, it is hoped that the increasing availability of full ab initio quartic force 
fields will continue not only to allow assessment of the reliability of experimental molecular constants and to 
provide trustworthy predictions for unknown quantities, but also to provide motivation for further development 
of the theory of high-resolution molecular spectroscopy. 
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