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A group theoretical algorithm to calculate the number of independent force constants of a molecule at any given order has 
been extended to treat linear molecules in a fashion analogous to nonlinear molecules. Using this algorithm to determine 
the independent force constants and a finitedifference formalism to obtain higher-order force constants from low-order analytic 
geometric derivatives of the electronic energy, the anharmonic force field of C02 has been determined at the ab initio TZ2P 
SCF and QZ2P CCSD(T) levels. It is shown that accurate sextic force fields can be calculated from only analytic fmt derivatives 
if the wave function is tightly converged and the calculated forces are highly accurate. The calculated anharmonic force 
fields are compared to experimentally determined sextic force fields of C02, and uncertainties and discrepancies in the 
experimental fields are discussed. 

Introduction 
The present paper describes, to our best knowledge, the first 

quantum chemical calculation of the complete sextic force field 
of any molecule larger than diatomic. This study complements 
and extends several recent investigations'-8 which showed the 
unique value of ab initio calculations in the determination of 
molecular constants which characterize the vibration-rotation 
spectra of semirigidg molecules and the considerable accuracy of 
the underlying anharmonic molecular force fields. Some important 
results of these earlier studies are the following: (a) For most 
constants the self-consistent-field (SCF) cubic and quartic force 
fields show little variation with basis set extension; the values can 
be considered as converged using a basis set of triple-zeta plus 
double-polarization function (TZZP) quality. (In many cases, 
especially for molecules not having multiple bonds, the convergence 
at the SCF level is nearly achieved even at the rather low dou- 
blezeta plus polarization function (DZP) level.) (b) Particularly 
accurate values can be obtained using methods incorporating 
substantial part of the electron correlation energy; the improvement 
is especially pronounced for the quadratic part of the force field 
and becomes less and less important for higher-order constants. 
(c) A substantial part of the discrepancy between force constants 
calculated at theoretical stationary points and force constants 
obtained from experiments comes from differences in the un- 
derlying reference geometries; shifting the theoretical reference 
geometry close to the true equilibrium geometry results in force 
constants which are in dramatically better agreement with their 
experimental counterparts. These and some other important 
results are especially well reviewed in a paper by Allen and 
Cs&s~Ar.~ The accumulated knowledge about theoretical an- 
harmonic force fields provided confidence that the sextic force 
field of a molecule like C 0 2  determined using ab initio techniques 

should be accurate and thus can help to resolve existing uncer- 
tainties in the experimental anharmonic force fields of CO2.I*I2 

Carbon dioxide has been thoroughly studied by several ex- 
perimental groups.'*'s It is one of those few molecules for which 
the complete force field through sixth order has been determined 
experimentally.'OJ' By comparing the available sextic (and 
quartic) experimental force fields (see Table 111), one has to 
conclude that, partly due to the fact that different procedures were 
used to derive these force fields, deviations of unacceptable 
magnitude exist in these fields. It was hoped that a high-level 
theoretical study could result in anharmonic force constants whose 
accuracy allows improvement of the anharmonic force field of 
coz. 

Due to its highly symmetric geometric structure and the relative 
simplicity of its electronic structure, COz is a good candidate for 
theoretical studies as well. Thus, it is surprising to see that the 
first attemptlg to calculate the complete anharmonic force field 
(through fourth order) of C 0 2  by means of ab initio calculations 
was published only in 199QS3 In that paper the highest-quality 
quartic force fields of C 0 2  were determined at the TZZP SCF 
and TZZP CISD levels using the respective theoretical optimized 
geometries as references. The agreement between experiment and 
theory was impressive but may be not as good as one would like 
to see. Part of the deviations was thought to be connected to the 
choice of the reference geometry, since there were sizable dif- 
ferences between the theoretical and experimental r,(C=O) bond 
lengths. Thus, in this study the reference geometry was elected 
to correspond to the best experimental estimate of re(C=4)129'4 
to improve the quality of the theoretical force  constant^.^.^ 

To calculate the sextic force field of a molecule using ab initio 
methods, one would desirably have a program which calculates 
the analytic sixth derivatives of the electronic energy with respect 
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to geometry parameters. However, it is unlikely that theoretical 
methods of this complexity will be available even in the distant 
future. Analytic third- and fourth-derivative methods6*2*26 are 
becoming available at the Hartree-Fock level of theory, but for 
more sophisticated theoretical methods, ones which calculate 
substantial parts of the electron correlation energy, analytic first 
(and maybe second) derivatives are available at most.26 Thus, 
it is of special interest to investigate whether one can derive the 
complete sextic force field using only analytic gradients. Sur- 
face-fitting procedures proved too inaccurate to determine high- 
cr-order force an~stants;~3~3 thus, a cost-efficient fdtedifference 
procedure has to be employed to generate all force constants up 
to sixth order. For a finite-difference procedure it is necessary 
to determine all independent force constants of the given molecule. 
This is possible using an elegant group theoretical approach, first 
dtscribed by Watson29 and then by Zhou and P u l a ~ . ~ ~  This 
systematic procedure is m d i e d  in the next section to determine 
the number of independent force constants for linear molecules. 
Then details concerning the numerical differentiation scheme 
applied are given. After summary of the computational details 
the sextic force fields of C 0 2  obtained experimentally and theo- 
retically are compared, and important features of the calculated 
force fields are discussed. 

A Croup "beoretical Approach To Determine Independent 
Force Coastants 

For completely unsymmetrical molecules (point group C, )  the 
number of independent force constants in kth order can evidently 
be obtained according to the formula 

where n = 3N - 6 and N is the number of atoms in the molecule. 
In molecules having certain symmetry elements the number of 
independent force constants will be substantially less than can be 
determined from eq 1 .  

To devise a systematic, group theoretical approach for the 
determination of independent force constants, it is of fundamental 
importance to recall that all symmetry relations between molecular 
parameters follow from the following general principle: the vi- 
brational-rotational Hamiltonian must be invariant (Le., totally 
symmetric) under all the symmetry operations of the molecular 
symmetry (point) group. The Hamiltonian and the potential 
energy expression 

t 3N.6 

where V, are the forces, vi,, Vfjk, Kjk/, &jk/m! and v j k / m n  are ,the 
quadratic, cubic, quartic, quintic, and sextic force (potential) 
constants, respectively, and the summations are unrestricted, must 
therefore contain only those terms which are totally symmetric 
under all symmetry operations. Consequently, to determine 
whether a particular force constant can appear in the potential 
energy expansion, one has the following simple algorithm: (a) 
obtain the symmetry coordinates according to well-known rules," 
(b) calculate the necwary direct products of the symmetry species 
involved in the particular force constant term, and (c) only if the 
direct product transforms according to the totally symmetric 
irreducible representation of the point group will that term (force 
constant) appear in the potential energy expansion. Note that, 
as a consequence, the quadratic force constant matrix is always 
block-diagonal in symmetry coordinates. 

As shown below, a more elegant group theoretical approach 
can be devised to obtain the higher-order force constants. It is 
based on the fact that eq 2 contains products of symmetry co- 
ordinates s, (u = i, j ,  k,  ...) and that the constants S$B...S, and 
the ones obtained by any permutation of the indices are indis- 

tinguishable. Thus, the n-member products transform according 
to the permutation (symmetric) group Sn32-36 or in another, 
perhaps more appropriate, notation [r$~,2~ where [ r $ b ]  is the 
nth-order representation of the vibrational displacements of the 
molecule. Consequently, the number of independent force con- 
stants at any order is given by the number of times the totally 
symmetric representation is contained in the symmetric power of 
the vibrational representation at that order. In conclusion, for 
the determination of the independent force constants of molecules 
with symmetry one needs the character tables of two groups: the 
point group of the molecule's spatial symmetry and the permu- 
tation (symmetric) group of the order corresponding to the order 
of the force constants in question. 

Let xn(R) be the character of [ r i b ]  for the Rth symmetry 
operation of order n. As first shown, through fourth order, by 
T i ~ z a , ~ ~  the characters xn(R) of [ Iyib] can be obtained as follows: 

( 3 )  

( 4 )  

X4(R) = ( 1 / 2 4 )  x 
[ x W 4  + ~ X ( R ) ~ X ( R ~ )  + 8x(R)x(R3) + 6x(R4) + ~ x ( R ~ ) ~ I  

( 5 )  

Xs(R) = (1/120)[x(RY + 10X(R)'X(RZ) + 2ox(R)2x(R3) + 
3Ox(R)x(p)  + ~ ~ x ( R ) x ( R ~ ) ~  + 20x(R2)x(R3) + 24x(Rs)1 

(6)  

X 2 W  = ( 1  / 2 )  [ X W 2  + x(R2)1 

X3(R) = (1 /6 ) [x (R)3  + 3x(R)x(R2) + 2X(R3)1 

X 6 ( R )  = 
( 1 / 7 2 0 ) [ ~ ( R ) ~  + ~ S X ( R ) ~ X ( R ~ )  + 4 0 ~ ( R ) ~ x ( R ~ )  + 

9 0 ~ ( R ) ~ x ( R " )  + 4 5 ~ ( R ) ~ x ( R ~ ) ~  + 120x(R)x(R2)x(R3) + 
144x(R)x(Rs) + 120x(R6) + 9 0 x ( R 2 ) x ( p )  + 15x(R2)' + 

40X(R3)21 (7) 

X 7 W )  = 

2 1 0 ~ ( ~ ) 3 ~ ( ~ 4 )  + 1 0 5 ~ ( ~ ) 3 ~ ( ~ 2 ) 2  + ~ ~ O X ( R ) Z X ( R ~ ) X ( R S )  + 
( 1 / 5 0 4 0 ) [ ~ ( R ) ~  + 2 1 ~ ( R ) ~ x ( R ~ )  + 7 0 ~ ( R ) ~ x ( R ~ )  + 

5 0 4 ~ ( R ) ~ x ( R ~ )  + 840x(R)x(R6) + 630x(R)x(Rz)x(R') + 
1 0 5 ~ ( R ) x ( R ~ ) ~  + 2 8 0 ~ ( R ) x ( R ~ ) ~  + 504x(R2)x(RS) + 

~ ~ O X ( R ~ ) ~ X ( R ~ )  + 42Ox(R3)x(P) + 720x(R7)] ( 8 )  

X8(R) 
( 1 / 4 0 3 2 0 ) [ ~ ( R ) ~  + 2 8 ~ ( R ) ~ x ( R ~ )  + 1 l 2 ~ ( R ) ~ x ( R ~ )  + 

4 2 0 ~ ( R ) ~ x ( R ~ )  + 2 1 0 ~ ( R ) ~ x ( R ~ ) ~  + 
1 1 2 0 ~ ( R ) ~ x ( R ~ ) x ( R ' )  + 1 3 4 4 ~ ( R ) ~ x ( R ~ )  + 
3 3 6 0 ~ ( R ) ~ ~ ( R 6 )  + 252O~(R)~x(R~)x(R' )  + 

4032x(R)x(R2)x(Rs) + 1 6 8 0 x ( R ) ~ ( R ~ ) ~ x ( R ~ )  + 
3360x(R)x(R3)x(R4) + S760x(R)x(R7) + 5040x(R8) + 

1 2 6 0 ~ ( R ~ ) ~  + 1 2 6 0 ~ ( R ~ ) ~ x ( R ~ )  + 3360x(R2)x(R6) + 
1 ~ ~ O X ( R ~ ) X ( R ~ ) ~  + 2688x(R3)x(Rs) + 1 0 5 ~ ( R ~ ) ~ ]  ( 9 )  

The above formulas were obtained at order n by applying only 
the information given for the classes and orders of S,. Since 
permutation groups are not treated in standard chemistry text- 
books, classes and orders of the permutation groups S2 through 
S, are listed in Table I to assist the reader. The complete character 
tables of groups S2 through Sl0 can be obtained from ref 32. The 
same formulas can be obtained using recursive formulas. A simple 
one, an analog of Brioschi's formula,34 was presented by Zhou 
and Pulay30 in the form 

(10) 

4 2 0 X ( ~ y X ( ~ 2 ) 3  + 1 1 2 0 ~ ( ~ ) 2 ~ ( ~ 3 ) 2  + 

1 "  
Xn(R) = - X(Rk)Xn-k(R) 

nk-1 

where xo(R) = 1 and x , (R)  = x(R).  
Let us now briefly outline the group theoretical method one 

should use to obtain the number of independent force constants 
of a given molecule: ( 1 )  Determine the point group of the 
molecule. (2) Place a set of appropriately directed Cartesian 
coordinate vectors on each atom and obtain the characters of I'tot. 
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TABLE I Claws nod Orders of the Permutation Croups S2 through 
SB 

n 

3 2  

class order class order 
1 2  1 2 1 

s3 

class order class order 
1 3  1 3 2 
12 3 

S A  
class order class order 

1 4  1 
1 22 6 
13 8 

S.  

4 6 
22 3 

class order class order 
1 5  1 122 1 5  

132 10 23 20 
1 23 20 5 24 
14 30 

s 6  

class order class order 
1 6  1 1 5  144 

142 15 6 120 
1 )3 40 24 90 
1 24 90 22 15 

1222 45 32 40 
123 120 

S, 
~~ ~ ~~ 

class order class order 
1 7  1 124 630 

152 21 123 105 
1 43 70 1 32 280 
1'4 210 25 504 

1'22 105 223 210 
1223 420 34 420 

1 25 504 7 720 
16 840 

sa 
class order class order 

1s 
1 62 
1 53 
1 44 

1'23 
1'5 
1 26 

1 224 

1232 

1422 

1223 

1 
28 

112 
420 
210 

1120 
1344 
3360 
2520 
420 

1120 

125 
1 223 
134 

17 
8 

42 
224 
26 

232 
35 
24 

4032 
1680 
3360 
5760 
5040 
1260 
1260 
3360 
1120 
2688 

105 

(3) Obtain rvib by subtracting those symmetry species which 
correspond to translational (I'J and rotational (I',) motions.38 
(4) Obtain the characters of the symmetric powers of rYib up to 
the desired order using eqs 3-9 (or similar equations for higher 
orders). ( 5 )  Calculate, using standard methods, the number the 
totally symmetric irreducible representation appears in r v i b  and 
in its higher symmetric powers. 

This method can easily be used for nonlinear molecules, as 
shown by WatsonB for CH3X molecules and by Zhou and Pulay30 
for benzene. For the linear molecule C02, of Dmh symmetry, an 
additional difficulty arises: during reduction of the representations 
infinite sums appear due to the infinite nature of the linear point 
groups. Sophisticated algorithms exist in the literature to cir- 
cumvent this problem.36 On the other hand, a simple, elementary 
solution can be proposed as follows.39 It is knownM in the theory 
of molecular vibrations that the only irreducible representations 

TABLE lk Represcatations of Symmetric Powers of F* for C 0 , O  

representation E u, i c, species (D ,d  
rvib 4 2 -2 0 lE: + 2: + n, 
l r?ibl  10 4 4 2 32: + ... 
[ r i i b l  20 6 -6 0 32: + ... 
[r:ibl 35 9 9 3 6E: + ... 
[ r 8 i b l  84 16 

In Cartesian coordinates. The number of structural parameters 
and force constants at any given order is indicated by bold numbers. 

involved for point groups C,, and D,h are 2+, II and 2,+, II,, 
E"+, II,, respectively. This is an important observation since then 
only these few irreducible representations have to be considered 
for the reduction of r v i b  of linear molecules. Furthermore, only 
characters involving symmetry operations E, uv and E, uv, i ,  C2 
should be considered for point groups C,, and Dmh, respectively; 
thus, one can avoid algebraic problems during the reduction. The 
representations and characters obtained using this approach for 
C02 are collected in Table 11. Future use of this approach, 
providing a simple and easy way to deal with linear molecules, 
is recommended. As expected, C02 has 1 structural parameter 
and 3 quadratic, 3 cubic, 6 quartic, 6 quintic, and 10 sextic force 
constants. Symmetry classification of these force constants can 
be performed according to the procedure given by Watson.29 

A Numerical Differentiation Scheme to Obtain Force 
Constants up to Sixth Order 

The two basic methods for determining derivatives (in the 
present context forces and force constants) of functions (here 
electronic energy) numerically are least-squares fitting and use 
of finitedifference expressions. An excellent review of these 
numerical techniques for the calculation of theoretical force fields 
up to third order is provided in an article by Fogarasi and Pulay.4 
They emphasize the pitfalls associated with least-squares proce 
dures by giving several examples. Although they state that the 
more accurate finite-difference formulas are less economical, the 
cost associated with deriving these finitedifference formulas and 
obtaining the necessary quantum chemical information to evaluate 
them is well justified by the superior numerical accuracy ob- 
tainable. Indeed, in Table 1 of ref 3 Allen and co-workers show 
how accurate finite-difference formulas are by comparing the 
complete quartic force field of HCN calculated from analytic third 
derivatives to the field calculated from analytic first derivatives. 
All the deviations observed are just a fraction of 1%; in most c~ses 
they are even comparable to the formula errors associated with 
obtaining the quartic constants by finite differences of analytic 
third derivatives. 

Based on the proven success of this approach, finite-difference 
formulas were developed in this paper which allow obtaining the 
complete sextic force field of any symmetric linear XY2 triatomic 
molecule from calculated analytic derivatives in symmetry co- 
ordinates at appropriately distorted geometries. Similar finite- 
difference formulas can be developed to obtain anharmonic force 
fields simply from a number of energy points, but contributions 
of quintic and sextic terms to the electronic energy are so small 
that complete sextic force fields CaMOt be obtained this way. The 
symmetry coordinates for symmetric linear XY2 molecules are 
SI = 2-'i2 (r + r?, S2 = 2-'J2 (r - r?, S3 = a, and S, = d, where 
r and r' in our case correspond to the two CO bond lengths 
(describing the stretching motions) and a and a' to the OCO 
angles (describing the so-called in-plane and out-of-plane linear 
bending motions) of C02. The distorted geometries are centered 
around the reference geometry to assure maximum accuracy with 
minimum number of displacements and to simplify the finite- 
difference formulas. It is important to point out that the formulas 
obtained are unique in that they allow nonzero forces at the 
reference geometry. This means that if the reference geometry 
is not a stationary point at the level of theory applied to calculate 
the analytic derivatives (just like in the present study), one has 
to be careful in transforming the directly calculated Cartesian 

Ir:ib1 56 12 -12 0 6E: + ... 
16 4 102: + ... 
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analytic derivatives to derivatives in symmetry coordinates. This 
transformation is always linear for analytic first derivatives, but 
the general transformation is nonlinear between Cartesian and 
internal quadratic force constant matrices and becomes linear only 
when the forces at the reference geometry are z e r ~ . ~ . ~ ~  For 
highersrder derivatives the transformation equationss are always 
nonlinear and depend explicitly on lower-order derivatives (e.g., 
forces at the reference geometry). 

The finitedifference formulas necessary to obtain the complete 
sextic (or higher-order) force field can be obtained from a set of 
simple algebraic equations. To extract the force constants from 
these equations can be, however, rather involved, especially for 
higher-order derivatives. Consequently, the computer program 
(e.g., written in FORTRAN) which applies these equations can 
be somewhat tedious to write. On the other hand, the program 
package mat he ma tic^^^ provides an easy and elegant solution 
through its ability to handle symbolic mathematics. While the 
computer code written by the present author in FORTRAN to 
calculate the sextic force field from analytic gradients is more than 
lo00 lines long, the code written in Marhematica to perform the 
same task is less than 100 lines long and can be extended to handle 
highersrder constants or molecules with different point groups 
much more easily than its FORTRAN counterpart. Furthermore, 
if one uses Mathemarica, there is no need to solve sets of si- 
multaneous equations explicitly; it will be all handled by the 
program, decreasing substantially the possibilities of human error. 

To obtain all force constants up to sixth order for a symmetric 
linear XY2 molecule from analytic first derivatives (forces), it is 
necessary to make single, double, and triple displacements along 
each coordinate and simultaneous displacements along two or three 
coordinates. If higher-order analytic derivatives are available, 
the number of calculations at displaced geometries decreases 
considerably. (For example, the complete quartic force field can 
be calculated from just five analytic secondderivative calculations.) 

It is sometimes advantageous to transform the symmetry co- 
ordinate force constants (and forces) obtained to internal coor- 
dinates. The formulas necessary for this transformation, up to 
sixth order, are summarized in the Appendix. 

Finally, it should be pointed out that for linear molecules, due 
to the presence of degenerate linear bending motions, there are 
some dependent force constants which have to be included in the 
power series expansion: the quartic constantfaadd and the sextic 
constant fQaaQdd. These constants can be obtained from the 
following mathematical identities 

F 3 3 ~  = f a a d d  = (1/3)(F3333 + 4F33) ( 1 / 3 ) L a a  + 4faa) 
(11) 

and 

F333344 =fQaQQdd = (1/15)(3F333333 + 40F3333 + 112F33) 
(1/15)(3fQQQQQ, +40faaaa + 12fQQ) (12) 

Computational Details 
Two basis sets were chosen for this study: a triple-zeta plus 

double-polarization (TZ2P) and a quadruple-zeta plus double- 
polarization (QZ2P) quality. The TZ2P basis was chosen to be 
exactly the same as used in ref 3, i.e., the TZ basis is that of 
Huzinaga and Dunningt3 and may be designated as (9s5p/5s3p), 
and the exponents of the polarization functions are as follows: 
q ( C )  = 0.375, 1.50 and ad(0) = 0.425, 1.70. In accord with 
the choice of the polarization exponents the TZ2P basis is used 
in SCF level calculations. The QZ basis is that of Huzinaga and 

and may be designated as (lOs6p/Ss4p). The cor- 
relation-optimized exponents of the polarization functions were 
taken from Dunning,46 and they are as follows: q ( C )  = 0.3 18, 
1.097 and a d ( 0 )  = 0.645, 2.314. In all cases the polarization 
functions contain sets of six Cartesian d-type functions. 

The reference geometry for the force field calculations was 
chosen to be the same as the most reasonable estimate of the true 
equilibrium C - 0  bond length, 1.1600 A.’29’4 

Electronic wave functions were determined in this study by both 
the single-configuration, self-consistent-field, restricted Har- 
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tree-Fock (SCF) method and the single-reference coupled-cluster 
singles and doubles with a perturbational estimate of connected 
triple excitations (CCSD(T)) methods. In the QZ2P CCSD(T) 
calculations three core and three virtual orbitals were kept frozen. 
Analytic first4’*@ and second49 derivatives in Cartesian coordinates 
with respect to geometry parameters at the SCF and analytic first 
derivatives at the CCSD(T)So levels were computed with the aid 
of the PSIs’ and TITANs2 program packages, respectively. To 
ensure numerical accuracy, the wave functions were extremely 
tightly converged: convergence on the SCF density matrix was 
set to lO-I4, while during the calculation of the CCSD(T) wave 
function all convergence criteria were set to 10-l2. (For further 
details see the appropriate program  description^.^'*^^) For the 
generation of distorted geometries and for transformation of 
analytic derivatives in Cartesian coordinates to derivatives in 
symmetry coordinates, the program INTDERs3 was employed. 
The displacement sizes were chosen as follows: SI, S2 = 0.01 A 
and S3 = 0.02 rad. 

Anharmonic Force Field of C02 
The sextic force fields of C 0 2  in internal coordinates, obtained 

both experimentally and theoretically, are presented in Table 111. 
There are several important observations one can make from the 
data of Table I11 as detailed below. 

It is striking to observe that the higher the order of the force 
constants is, the larger the range of the experimental values’&I2 
for any individual constant becomes. The quadratic force constants 
obtained by the different experimental procedures agree with each 
other excellently; the deviations between the largest and smallest 
experimental values for the force constants are 0.3% forf, 2.3% 
for I,,, and 0.9% for fQQ; Le., the average deviation is only 1%. 
For the cubic constants these values are 2.5% forf,” 58% forfm,, 
and 2.0% for&., the average being 21%. For the quartic con- 
stants, except for fill” the experimental studies’*I2 yielded sub- 
stantially different values; for example, the value of &, varies 
between 0.81° and 122” aJ Ad. For the quintic and sextic con- 
stants, which give very little contribution to the total energy of 
the system, the discrepancies are even larger; in most cases even 
the sign of the force constant is different in the two studies 
available.I0J 

In clear contrast to these sizable variations, theory results in 
constants which agree considerably better with each other. 
Variations in the TZ2P SCF//TZZP SCF, TZ2P SCF//expt, 
and QZ2P CCSD(T)//expt force constants are never disturbingly 
large, confirming the known trend that most force constants for 
most closed-shell molecules can be calculated with considerable 
precision at the SCF level of theory. As expected, changing the 
reference c-0 bond length from the shorter TZ2P SCF optim- 
ized value (1.1349 A) to the longer experimental one ( 1.1600 A) 
decreases the appropriate TZ2P SCF force constants and thus 
improves agreement between SCF theory and experiment sub- 
stantially. For example, the deviation between SCF theory and 
the experimental constants of ChEdinlO decreases forLnJ,” and 
Lrrr from 19% to -3%, from 19% to 4%, and from 10% to -6%, 
respectively. Most off-diagonal force constants change rather little 
as a result of the change in the reference geometry, again in accord 
with expectations. Note also that forf,, change in the reference 
geometry did not improve substantially the large discrepancy 
between SCF theory and experiment: the TZ2P SCF//expt 
constant, 2.21 aJ A-2, is still almost twice as large as the well- 
established experimental constant, 1.25 aJ A-*. In ref 3 it was 
shown that including electron correlation by the configuration 
interaction with all single and double substitutions (CISD) ap- 
proach changed frrl only moderately; the TZ2P CISD//TZ2P 
CISD value is still too high at 1.75 aJ A-2. The QZ2P 
CCSD(T)//exptf, constant, 1.27 aJ A-2, calculated in the present 
study is finally very close to the available experimental values. 
Although the calculated constant might still be a little too high, 
its deviation from the experimental values is only about as large 
as the variation among the experimental constants. This and the 
substantial improvement olxierved for the value off, suggest above 
all that the QZ2P CCSD(T) force field derived in this study has 
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TABLE 111: Complete Sextic Force Fields for CO, in Internal Coordinates' 
theory experiment 

constant TZ2P SCF//TZZP SCFb TZ2P SCF/exptCid QZ2P CCSD(T)//exptC Lacy" Suzuki'2 Ch€dinIo 

f r y  19.067 15.754 (0) 16.224 15.976 16.022 16.017 
f r f  2.342 2.205 (0) 1.272 1.232 1.261 1.253 
f a ,  0.977 0.917 (0) 0.754 0.778 0.785 0.783 
f r r r  -138.6 -120.89 (0) -1 16.4 -1 16.8 -1 13.9 -1 16.1 
f r d  -2.9 17 -2.560 (0) -2.534 -2.48 -3.909 -2.913 
fra,  -1.232 -1.159 (0) -1.246 -1.218 -1.218 -1.194 
firm 750.1 641.2 (0) 693.2 638.9 630.0 656.1 
f i r , ,  4.125 4.284 (0) 3.975 75.24 22.06 8.332 
f r r f f  10.086 9.938 (0) 2.368 122.2 12.09 0.835 
/,,,a 0.066 -0.111 (0) 1.176 0.92 2.015 0.975 
f r f a ,  3.047 2.808 (0) 0.305 -0.72 3.740 2.816 
f".U 2.422 2.176 (0) 1.707 2.16 1.106 1.356 
frrrr ,  -3967 (1) -1 10.4 -2315.8 
f r r r . f  2.322 (40) -253.7 70.08 
f r r r f  f -2.240 (53) 372.8 -276.9 
firm -1.989 (52) -22.4 -3.950 
f r r f u o  -2.132 (3) -24.0 -1.218 
fro,,, -4.713 (59) 6.2 -3.113 
f r r r r n  27947 (10) 39406 -48871 
frrrrrf -590 (17) -34188 5756.0 
f r r r r f i  48.4 (12) -88739 9283.3 
f r r d f f  14.5 (43) -58921 5530.1 
firm 3.3 (76) 293 -454.8 
f r r r f  aa 21.9 (30) -3 1 .O -361.9 
f r r f i a o  14.1 (8) -101 1.7 -326.9 
f i raoaa -0.5 (44) 40.8 -6.84 
frr'aoau 22.0 (69) 250.1 -2.90 

fi 0.000 0.49256 (0) -0.10 101 

fnoomu -29.9 (1) -68 20.0 

"Units for the force constants are consistent with energy measured in attojoules, stretching coordinates ( r  and r') in angstroms, and bending 
coordinates (a) in radians. The designation / /  means "at the geometry or .  bReference 3. CThis study. The abbreviation "expt" means that the 
force field was calculated at the experimental geometry of rc0 = 1.1600 A. Therefore, nonzero theoretical forces VI) remain at the reference 
geometry. dThe values given in parentheses at the TZ2P SCF/expt level of theory are deviations of the results obtained using analytic first deriv- 
atives from the results obtained using analytic second derivatives. 

an accuracy unprecedented in previous studies and that similar 
(or higher) levels of theory can result in quantitatively accurate 
anharmonic force fields. The values determined for the quartic 
force field of COz at the QZ2P CCSD(T) level of theory clearly 
support most experimental anharmonic force constants. If one 
needs to make a choice among the three experimental studies 
available, the QZZP CCSD(T) constants seem to be in closest 
agreement with the constants obtained by ChEdin:1° the average 
deviation is only 2.1% and 5.8% for the quadratic and cubic 
constants, respectively. 

To ascertain the accuracy of the sextic force field of COz derived 
from analytic first derivatives, the complete force field was de- 
termined also from analytic second derivatives at the TZZP SCF 
level. As can be seen from Table 111, the deviations between the 
force constants determined from analytic first and second de- 
rivatives is negligible up to fourth order. Noticeable deviations 
can be observed for some quintic and sextic constants, but the 
discrepancies between the two sets of results are still acceptably 
small for all force constants but frrrr,, andf,,,,, for which one 
should accept the values obtained from the more accurate analytic 
second-derivative calculations. This result suggests that accurate 
sextic force fields can be derived from only analytic fmt derivatives 
if great care is exercised in converging the wave function and 
calculating its first geometric derivatives. 

The TZZP SCF quintic and sextic force constants do not clearly 
support the studies of either Lacy" or ChUin.lo All quintic 
constants, except frrrrr, are predicted to be rather small, which is 
in basic agreement with the results of Chain.  Since the TZZP 
SCF level of theory provides reasonably accurate off-diagonal 
stretchstretch interaction constants up to fourth order (up to this 
order the values can be compared to accurate QZ2P CCSD(T) 
values), it is expected that frrrr, should also be predicted with 
considerable accuracy and that consequently it is overestimated 
by Chtdin. The sextic diagonal stretching constant, frrrrrr, is 
predicted to be a large positive number by theory, as one would 
expect. Chtdin obtained an unexpected negative value for this 

constant. In the light of the present theoretical data this result 
might need to be reevaluated. Similarly to the quintic constants, 
most sextic constants are also calculated to be rather small, 
whereas both Lacy and ChEdin calculate sizable sextic stretch- 
stretch interaction constants (although their magnitude and sign 
is rather different in the two studies). Again, it would probably 
be beneficial to redetermine these constants experimentally to see 
whether their values are not indeed much smaller. The sextic 
bending constant, fa,,,,,, is calculated to be a negative value 
(-29.9 aJ rad") at the TZZP SCF level of theory, supporting the 
sign obtained by Lacy and not that of Chain.  For the other 
constants no meaningful comparison can be made between theory 
and experiment because of the considerable deviations between 
the two available experimental studies. 

Conclusions 
The several conclusions of this study can be summarized as 

follows: 
1. It is shown that a group theoretical procedure, given first 

by Watson,29 then by Zhou and Pulay30 and reformulated here 
again, can be modified using an elementary approach so that it 
can handle linear molecules in a fashion analogous to nonlinear 
molecules. In this approach, to avoid algebraic difficulties as- 
sociated with the infinite nature of the linear point groups, only 
characters involving symmetry operations E and uv, and E, uv, 
i ,  and C, should be considered for point groups C,, and D+ 
respectively, to determine the characters of the symmetric powers 
of rvib and during their reduction. 

2. It is found that finite-difference formulas are exceptionally 
well suited for programming in Mathematica$2 since using the 
symbolic mathematical capabilities of this package tedious explicit 
solutions of sets of linear equations can be avoided. Thus, use 
of Mathemarica is highly recommended for all similar studies in 
the future. 

3. Although sextic force fields cannot be derived simply from 
energy points, accurate anharmonic force fields (up to sixth order) 
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can be derived from only analytic first derivatives if the wave 
function is tightly converged and if its first geometric derivatives 
are calculated with high accuracy. 

4. It is shown again that by simply changing the reference 
geometry from the theoretical optimum to the experimental one 
one can obtain considerably improved force constants even at the 
SCF level of theory. Improvements are especially pronounced 
for the stretching constants affected most by the change in the 
underlying reference geometry. 

5. The QZ2P CCSD(T) quartic force field, obtained as part 
of this study, reproduces the corresponding experimental force 
fields with great accuracy, the deviations are 2% and 6% at the 
quadratic and cubic force constant levels, respectively. This 
suggests that quantitative accuracy can be achieved for anhar- 
monic force field studies at a computational level which can be 
made affordable for considerably larger systems than C02 in the 
near future. The force constants obtained at the QZ2P CCSD(T) 
level seem to be in closest agreement with the force field of C02 
obtained by Ch&Iin.lo 

Appendix 
Transformation Formulas between Internal and Symmetry 

Coordinate Sextic Force Comtmb for Symmetric Linear XY2 
M o k m k  In the pnsentation of the formulas below the following 
notation is adopted: symmetry coordinate force constants are 
denoted by Ftlk (such as F112233, based on symmetry coordinate 
definitions SI = 2-’i2 ( r  + r?, S2 = 2-‘12 ( r  - r?, S3 = CY, and S4 
= d,  where r and r’ describe the individual stretching motions 
and a and d the sa-called in-plane and out-of-plane linear bending 
motions), while internal coordinate force constants (employing 
individual stretches rand r’as opposed to their linear combina- 
tions) are denoted by fubl (e,g.,j&). 

fr = (21/2/2)F1; f r r  = 1/2(F11 + F22);  f r ,  = 

frrr = ( 2 1 / 2 / 4 ) ( F l l l  + 3FI22) ;  fir+ 

L r r r  = MFI I 1  I + F2222 + 6FI 122); Lrd = %(FI I I I - F2222); 

MFII - 4 2 ) ;  f u u  = F 3 3 ;  

( 2 1 / 2 / 4 ) ( F l l l  - Fl22) ;  fruu (21/2/2)F133;  

Lrf+ = y4(FIII1 + F2222 - 2F1122); hruu  y2(F l I33  + F2233); 

f d a u  = 1/2(FI133 - F2233); fuuuu = F3333; 

Lrrrr (21 /2 /8 ) (F l I111  + l O F i i i 2 2  + 5F12222); 

( 2 1 ’ 2 / 8 ) ( F ~ ~ l l l  + 2F11122 - 3F12222); 

f r r r f ,  = (21~2/8)(~11111 - 2F11122 + F12222); f rrruu = 

frrrr, 

(21 ’2 /4 ) (F l l133  + 3F12233); 

f r d u u  (21/2/8)(F11133 - F12233); f,uuuu = (%11’)F13333; 

Lrrrrr = ( Y M I I I I I I  + 1 5 F i i i 1 2 2  + 15F112222 + F222222); 

frrrrr+ = (%)(FIIIIII + 5F111122 - 5 F 1 1 2 2 2 2  - F222222); 

L r r r f f  = ~ ~ * ~ ~ ~ l l l l l l  - F111122 - F112222 + F222222); 

frrrftt = ( Y ~ F I I I I I I  - 3 F 1 1 1 1 2 2  + 3F112222  - F222222); 

frrrruu t/4(FI I I133 + 6FI 12233+ F222233); 

f r r t t u u  = y4(F111133 - 2FI12233 + F222233); 

&uu = 1/4(FI I 1133 - F222233); hruuuu 1/.(F113333 + F223333); 

frt‘aaau = )/2(F113333 - F223333); fuauuua = F333333 

References and Notes 
(1) (a) Pulay, P.; Lee, J.-G.; Boggs, J. E. J .  Chem. Phys. 1983,79, 3382. 

(b) Dunn, K. M.; Bow, J. E.; Pulay, P. J .  Chem. Phys. 1986,85, 5838. (c) 
Dunn, K. M.; Boggs, J. E.; Pulay, P. J .  Chem. Phys. 1987, 86, 5088. (d) 
Dunn, K. M. Chem. Phys. Lett. 1987. 139. 165. 

(2) Clabo, D. A., Jr.; Allen, W. D.; Remington. R. B.; Yamaguchi, Y.; 
Schaefer, H. F. 111 Chem. Phys. 1988, 123, 187. 

The Journal of Physical Chemistry, Vol. 96, No. 20, 1992 7903 

(3) Allen, W. D.; Yamaguchi. Y.; CsHszBr, A. G.; Clabo, D. A., Jr.; 
Remington, R. B.; Schaefer, H. F. 111 Chem. Phys. 1990, 145,427. 

(4) Fogarasi, G.; Pulay, P. In Vibrational Spectra and Structure; Durig, 
J. R., Ed.; Elsevier: Amsterdam, 1985; Vol. 14, pp 125-219. 

(5) Allen, W. D.; Cdsf i r ,  A. G. J. Chem. Phys., submitted for publication. 
(6) (a) Gaw, J. F.; Handy, N. C. Chem. Phys. Lett. 1985,121, 321. (b) 

Gaw, J. F.; Handy, N. C. Chem. Phys. Lerr. 1986,128, 182. (c) Handy, N. 
C.; Gaw, J. F.; Simandiras, E. D. J.  Chem. Soc., Faraday Trans. 2 1987,83, 
1577. (d) Simandiras, E. D.; Gaw, J. F.; Handy, N. C. Chem. Phys. Lett. 
1987, 141, 166. (e) Amos, R. D.; Gaw, J. F.; Handy, N. C.; Carter, S. J .  
Chem. SOC., Faraday Trans. 2 1988, 84, 1247. (0 Lee, T. J.; Willets, A,; 
Gaw, J. F.; Handy, N. C. J .  Chem. Phys. 1989,90,4330. (g) Green, W. H.; 
Jayatilaka, D.; Willets, A.; Amos, R. D.; Handy, N. C. J.  Chem. Phys. 1990, 
93, 4965. 

(7) (a) Botschwina, P.; Zilch, A.; Rosmus, P.; Werner, H.-J.; Reinsch, 
E.-A. J.  Chem. Phys. 1986,84, 1683. (b) Botschwina, P.; Zilch, A,; Werner, 
H.-J.; Rosmus, P.; Reinsch, E.-A. J.  Chem. Phys. 1986, 85, 5107. (c) Bot- 
schwina, P. J .  Chem. Phys. 1989, 90, 4301. 

(8) (a) Xie, Y.; Boggs, J. E. J. Chem. Phys. 1989, 90, 4320. (b) Xie, Y.; 
Boggs, J. E. J .  Chem. Phys. 1989, 91, 1066. 

(9) Aliev, M. R.; Watson, J. K. G. In Molecular Spectroscopy: Modern 
Research; Rao, K. N., Ed.; Academic Press: New York, 1985; Vol. 3, pp 
1-67. 

(10) Chain,  A. J .  Mol. Spectrosc. 1979, 76, 430. 
( 1 1 )  Lacy, M. Mol. Phys. 1982.45, 253. 
(12) Suzuki, I. J .  Mol. Spectrosc. 1968, 25, 479. 
(13) Fermi, E. Z. Phys. (Munich) 1931, 71, 250. 
(14) Gershikov, A. G.; Spiridonov, V. P. J .  Mol. Struct. 1982, 96, 141. 
(15) Wattson, R. B.; Rothman, L. S. J .  Mol. Spectrosc. 1986, 119, 83. 
(16) Smith, M. A. H.; Rinsland, C. P.; Fridovich, B.; Narahari Rao, K. 

In Molecular Spectroscopy: Modern Research; Rao, K. N., Ed.; Academic 
Press: New York, 1985; Vol. 3. 

(17) Bailly, D.; Farrenq, R.; Guelachvili, G.; Rossetti, C. J.  Mol. Spectrosc. 
1981, 90, 74. 

(18) Chain ,  A.; Teffo, J.-L. J .  Mol. Spectrosc. 1984, 107, 333. 
(19) Note that Steele et al. published in 1981 (Steele, D.; Person, W. B.; 

Brown, K. G. J .  Phys. Chem. 1981,85,2007) a paper in which part of the 
quartic force field of C 0 2  was determined at the 4-31G SCF level. 

(20) Pulay, P. J.  Chem. Phys. 1983, 78, 5043. 
(21) Gaw, J. F.; Yamaguchi, Y.; Schaefer, H. F. 111 J.  Chem. Phys. 1984, 

81, 6395. 
(22) Gaw, J. F.; Yamaguchi, Y.; Schaefer, H. F. 111, Handy, N. C. J. 

Chem. Phys. 1986,85, 5132. 
(23) Gaw, J. F.; Yamaguchi, Y.; Remington, R. B.; Osamura, Y.; 

Schaefer, H. F. I11 Chem. Phys. 1986, 109, 237. 
(24) Duran, M.; Yamaguchi, Y.; Osamura, Y.; Schaefer, H. F. 111 J.  Mol. 

Struct. 1988, 163, 389. 
(25) Colwell, S. M.; Jayatilaka, D.; Maslen, P. E.; Amos, R. D.; Handy, 

N. C. Int. J .  Quantum Chem. 1991, 40, 179. 
(26) Jmgensen, P., Simons, J., Eds. Geometrical Deriuatiues of Energy 

Surfaces and Molecular Properties; Reidel: Dordrecht, 1986. 
(27) (a) Bartlett, R. J.; Shavitt, I.; Purvis, G. D. 111 J.  Chem. Phys. 1979, 

71,281. (b) Kraemer, W. P.; Roos, B. 0.; Siegbahn, P. E. M. Chem. Phys. 
1982, 69, 305. 

(28) Meyer, W.; Rosmus, P. J .  Chem. Phys. 1975,63, 2356. 
(29) Watson, J. K. G. J. Mol. Specrrosc. 1972, 41, 229. 
(30) Zhou, X-F.; Pulay, P. J. Comput. Chem. 1989, 10, 935. 
(31) Wilson, E. B., Jr.; Decius, J. C.; Cross, P. C. Molecular Vibrations; 

(32) Littlewood, D. E. The Theory of Group Characters, 2nd ed.; Oxford 

(33) Hamermesh, M. Group Theory and Its Applications to Physical 

(34) Lederman, W. Introduction to Group Characters; Cambridge Univ- 

(35) Chen, J.-Q. Group Representation Theory for Physicists; World 

(36) Wigner, E. P. Group Theory; Academic Press: New York, 1959. 
(37) T i m ,  L. 2. Phys. (Munich) 1933, 82, 48. 
(38) Evidently, the number the totally symmetric irreducable representa- 

tion appears in I’db is equal to the number of independent geometry prameters 
of the molecule, since only combinations of displacements along the totally 
symmetric coordinates are allowed in structural  variation^.^^ 

(39) The author thanks Prof. Peter Pulay for initiating this solution. 
(40) (a) Henry, L.; Amat, G. J .  Mol. Spectrosc. 1965, 15, 168. (b) 

Schlfer, L.; Cyvin, S. J.  Chem. Educ. 1971, 48, 295. 
(41) Pulay, P. In Modern Theoretical Chemistry; Schaefer, H. F. 111, Ed.; 

Plenum: New York, 1977; Vol. 4, pp 153-185. 
(42) (a) Wolfram, S. Mathemotica: A System for Doing Mathematics 

by Computer, 2nd 4 . ;  Addison-Wesley: Redwood City, 1991. (b) Mathe- 
matica Version 2.0.2, Wolfram Research, Inc., 1991. 

(43) Huzinaga, S. J. Chem. Phys. 1965.42, 1293. (b) Dunning, T. H. J .  
Chem. Phys. 1970, 53, 2823. (c) Dunning, T. H.; Hay, P. J. In Modern 
Theoretical Chemistry; Schaefer, H. F. 111, Ed.; Plenum: New York, 1977; 

(44) Huzinaga, S. Approximate Atomic Functions, Department of Chem- 
istry Report: University of Alberta, 1971; Vol. 2. 

(45) Dunning, T. H.  J .  Chem. Phys. 1971, 55, 716. 
(46) Dunning, T. H., Jr. J .  Chem. Phys. 1989, 90, 1007. 
(47) Pulay, P. Mol. Phys. 1969, 17, 197; 1970, 18, 473. 

Dover: New York, 1980. 

Press: Oxford, 1958. 

Problems; Addison- Wesley: Reading, MA, 1964. 

ersity Press: Cambridge, 1987; p 123. 

Scientific: Singapore, 1989. 

Vol. 3, pp 1-27. 



7904 J.  Phys. Chem. 1992, 96, 7904-7908 

(48) (a) Saxe, P.; Yamaguchi, Y.; Schaefer, H. F. 111 J .  Chem. Phys. 1982, 
77,5647. (b) Osamura, Y.; Yamaguchi, Y.; Saxe, P.; Vincent, M. A.; Gaw, 
J .  F.; Schaefer, H. F. 111 Chem. Phys. 1982, 72, 131. 

(49) (a) Osamura, Y.; Yamaguchi, Y.; Saxe, P.; Fox, D. J.; Vincent, M. 
A.; Schaefer, H. F. J .  Mol. Strucr. 19113, 103, 183. (b) Handy, N. C.; 
Schaefer, H. F. J .  Chem. Phys. 1984, 81, 5031. 

(50) (a) Rendell, A. P.; r#, T. J. J.  Ch" Phys. 1991,946219. (b) Lee, 

(51) PSI 1.0, 1989, PSITECH, Inc., Watkinsvilk, GA. 
(52) TITAN is a set of electronic structure programs written by T. J. Lee, 

(53) Allen, W. D. Program INTDER, Stanford University, Stanford, CA. 

T. J.; Rendell. A. P. J .  Chem. Phys. 1991,91, 6229. 

A. P. Rendell, and J.  E. Rice. 

Radlatlonless Decay of the S2 States of Azulene and Related Compounds: Solvent 
Dependence and the Energy Gap Law 
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The UV-visible absorption spectra, S2 lifetimes, and S2 - SO fluorescence quantum yields of azulene, azulene-d8, 1,3-di- 
chloroazulene, 1,3-dibromoazulene, 4,6,8-trimethylazulene, and 1,4-dimethyl-7-isopropylazulene (guaiazulene) have each 
been measured accurately in six solvents. The S2-Sl electronic energy spacings of each solute vary by ca. 500 cm-' in these 
solvents. The variations in the S2 nonradiative relaxation rates with electronic energy spacing are interpreted within the 
framework of the energy gap law of radiationless transition theory. S2 -- S1 internal conversion dominates the nonradiative 
decay in azulene and azulene-d8, but intersystem crossing (likely S2 -- TJ is important in the halogenated derivatives. 
The alkyl-substituted compounds exhibit anomalous behavior and demonstrate that factors other than the electronic energy 
spacing are involved in determining the rates of their radiationless relaxation. Previous energy gap law correlations based 
on data from a series of structurally different compounds must be reinterpreted. 

Introduction 
Azulene is the first-discovered and best-known example of a 

closed-shell polyatomic molecule which exhibits "anomalous" S2 - So fluorescence in condensed Although the number 
of compounds which are known to radiate efficiently and react 
chemically from upper electronic excited states is now rather 
large,I*l2 azulene and its derivatives continue to be the focus of 
considerable attention and to be quoted as the "classical 
examples". I3-l5 

In preparation for studies of the dynamic behavior of the 
short-lived SI states of azulene and other compounds in condensed 
media by two-photon, pumpprobe methods,16 we conducted a 
thorough review of the literature on this subject. To our surprise, 
we discovered that there is a remarkable degree of disagreement 
on the values of the quantum yields of S2 - So fluorescence and 
the lifetimes of the S2 states of azulene, azulened8, and its closely 
related derivatives in various condensed media. Moreover, al- 
though azulene and other nonalternant hydrocarbons and their 
derivatives clearly exhibit "slow" S2 nomdiative decay rates owing 
to their large S2-Sl (or perhaps S2-T,J electronic energy spacings, 
none of the previous attemptseg to measure and correlate these 
rates quantitatively within the framework of the energy gap law" 
of radiationless transition theory has been completely successful. 

Murata et al.495 measured the quantum yields of Sz - So 
fluorescence, +f, of azulene and thirteen of its derivatives but did 
not measure the S2 lifetimes directly. Instead they calculated the 
radiative rate constants, k, from the absorption spectra using the 
Strickler-Berg formalism,I8 calculated the lifetimes via T = &/k,, 
and then obtained the nonradiative rate constants from Ck, ,  = 
(1 - 4f ) /T .  A linear relationship between log (Zknr) and U ( S 2  
- SI)  for the 14 compounds led them to conclude that S2 -- 
SI internal conversion constituted the major S2 radiationless decay 
process. Later Eber et a1.6 measured both qbf and T but adopted 
Murata et al.'s4" value of & = 0.031 for azulene in ethanol as 
a secondary fluorescence standard. (Neither group applied the 
required "nZn refractive index correction in the measurement of 
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the quantum yields.I9) Eber et al. concluded that log (Ck,) was 
not a linear function of U(S2 - SI), that the brominated and 
chlorinated derivatives exhibited a "heavy atom" effectla and that 
intersystem crossing played an important role in Sis radiationless 
decay. However, Gillespie and Li" reevaluated the data from 
the previous two studies in terms of Siebrand's extended theory 
of radiationless transitions2* and concluded that intersystem 
crossing from S, to T, was not signifcant. Most recently Griesser 
and measured T(S~)  of azulene, azulene-d8, and four 
derivatives in both 3-methylpentane and ethanol at 77 K. They 
obtained Ck, by subtracting k, from i1 but calculated k, from 
the room temperature solution-phase absorption spectrum using 
the Stricklederg relation~hip,'~ assuming that k, was independent 
of both temperature and solvent. Use of the latter procedure does 
not introduce very large errors into C k ,  even though the values 
of k, so obtained may not be particularly accurate. The largest 
experimental error in Griesser and Wild's data is therefore as- 
sociated with their measurements of T .  However, their use of a 
wide variety of azulene derivatives to test the energy gap law of 
S2 radiationless decay mechanism remains problematic because 
the structural changes used to vary the electronic energy spacing 
(Cl, Br, and alkyl substitution) will also change (i) the magnitudes 
of the matrix elements coupling S2 to all lower states, and (ii) the 
numbers and/or energies of all vibrational modes in the molecule. 

We have accurately remeasured the S2 - So fluorescence 
quantum yields and the S2 lifetimes of azulene, azulene-d8, and 
four of its derivatives using current standards of experimental 
practice. Variations in the electronic energy gaps of each com- 
pound have been introduced by changing only the nature of the 
solvent. The results of these measurements and attempted cor- 
relations of the S2 nonradiative decay rates with electronic energy 
gap are presented in this paper. 

Experigest.l Section 
Azulene (AZ) and guaiazulene (GAZ, 1 ,Cdimethyl-7-iso- 

propyldene), both from Aldrich, were used a received. Samples 
of highly purified AZ and azulene-d8 were kindly supplied by Jh. 
B. Nickel. 1,3-Dichloroazulene (DCAZ) and 1 , 3 d i b r o m d e n e  
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