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Several complementary analyses have been performed in an investigation of the use of 
reference geometric structures which are not stationary at a given level of theory in the 
prediction of improved equilibrium anharmonic molecular force fields. Diatomic 
paradigms for the procedure were established by constructing empirical potential energy 
functions for the nitrogen and fluorine molecules which not only reproduce the available 
Rydberg-Klein-Rees data but also provide reliable derivatives through fourth order for 
ranges of 0.4 A or greater around the equilibrium bond distance. For comparison, analogous 
curves were determined at the double-c plus polarization (DZP) restricted Hartree-Fock 
(RHF) level of theory, and the quartic force fields for Nz and F, were also obtained at the 
experimental r, structures using a (Ss5p3d2flg) basis set and the coupled-cluster singles and 
doubles method augmented by a perturbative contribution from connected triple excitations 
[CCSD(T)]. The results substantiate the ability of RHF theory to predict correlation-quality, 
higher-order force constants if an accurate reference geometry from experiment or a higher 
level of theory is employed. The theoretical foundations of this technique as applied to poly- 
atomic molecular systems have been systematically explored. Mechanisms were analyzed 
which address the nonzero force dilemma by using various choices of internal coordinates to 
shift the equilibrium point of theoretical potential energy surfaces. Examples are presented in 
which the variations in predicted spectroscopic constants arising from different shift coordi- 
nate sets are non-negligible. A Cartesian projection scheme for higher-order force fields was 
developed and implemented to ~avert internal-coordinate dependences; formulas for higher- 
order projection matrices and higher-order derivatives of the external variables of a molecular 
system were concurrently derived. A formalism for the transformation of force fields between 
internal and Cartesian representations was also constructed which is applicable to arbitrary 
order. In addition to N2 and F2, case studies were performed on the F20 and NzO molecules, 
for which electron correlation effects are of unusual importance. Quartic force fields are re- 
ported for F,O and N20 at the DZP and TZ (2dlf) CCSD (T) levels of theory, respectively, 
which provide the best data sets currently available and facilitate the assessment of experi- 
mental force constants. The CCSD(T) results are reproduced remarkably well by RHF pre- 
dictions at the experimental equilibrium structures of these molecules but not at the corre- 
sponding RHF optimum geometries. Finally, practical recommendations are made for 
predictions of higher-order force constants at nonstationary points. 

I. DIATOMIC PARADIGMS 

The theoretical determination of harmonic and anhar- 
manic molecular force fields by ab initio methods has be- 
come one of the most common and successful applications 
of computational quantum chemistry.‘-” There are several 
factors which influence the quality of these theoretical pre- 
dictions,‘,2*9-‘2 the choice of the reference geometry being 
one of the most vexing but poorly appreciated consider- 
ations. Since the inception of computational quantum 
chemistry, a controversy has persisted as to whether force 
constants should be evaluated at optimized theoretical ge- 
ometries or at experimental equilibrium structures. In fact, 
in the opinion of Pulay et al.,” “the choice of reference 
geometry is the most difficult problem confronting the sys- 
tematic ab initio calculation of force constants.” Ostensibly 
the evaluation of force constants in a theoretical vibra- 
tional analysis at a point other than the optimized theoret- 
ical structure is unphysical in that nonzero forces are gen- 

erally present on all the atoms and the system is not at 
equilibrium. Nevertheless, as discussed below, the selection 
of nonstationary reference geometries has considerable 
merit provided that appropriate procedures are imple- 
mented to circumvent the nonzero force dilemma. In this 
preview (Sec. I) a novel analysis of this topic is presented 
for the diatomic molecules N, and F, in order to highlight 
pertinent issues and to establish paradigms for the investi- 
gation of polyatomic systems. 

In 1966 Schwendeman” was one of the first to observe 
that ab initio force constants for diatomic molecules tend 
to lie significantly closer to their experimental counterparts 
if they are evaluated at experimental equilibrium bond dis- 
tances. Consequently, it was argued that theoretical pre- 
dictions of force constants should be carried out whenever 
feasible at experimental r, structures, which are generally 
known for the low-lying electronic states of common di- 
atomic molecules. It is possible to elaborate on this argu- 
ment extensively using the voluminous theoretical and ex- 
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perimental data now available for the N2 and F, molecules. 
The strategy employed here for this purpose is to find an 
analytic representation of experimental, Rydberg-Klein- 
Rees” (RKR) and theoretical [double-[ plus polarization 
(DZP) restricted Hartree-Fock ( RHF>]20 potential 
curves via a fit to a number of energy points, and subse- 
quently to determine force constants analytically through 
fourth order as a function of bond distance. Thus, at any 
particular bond length within a given range, DZP RHF 
predictions for the potential energy derivatives of various 
orders can be compared to “exact” experimental values. 
The N, and F, examples are chosen not only because pre- 
cise empirical data are available but also because they ex- 
hibit very different levels of agreement between theoretical 
and experimental equilibrium structures. Specifically, for 
the nitrogen molecule the DZP RHF equilibrium distance 
is 0.015 A too short, which is an acceptable disparity, 
whereas for F2 this difference is 0.077 A, which is anoma- 
lously large for this standard level of theory. 

In the empirical RKR potentials of the ground elec- 
tronic states of the nitrogen21 and fluorinez2 molecules, the 
classical turning points for each quantized vibrational level 
are given up to v=22 and v=23 for N2 and Fz, respec- 
tively. These data points span the ranges 
r(N,)e(0.887,1.559) A and r(F&( 1.165,2.786) A, the 
most notable separations therein appearing as 0.091 and 
0.125 A gaps about the respective r, values of 1.0977. and 
1.4119 &23 The task of constructing potential functions 
not only to fit the RKR data points but also to provide 
reliable derivatives through fourth order is replete with 
pitfalls. Spline function techniques are clearly incapable of 
generating curves with smooth higher derivatives. Altema- 
tively, numerous analytic forms for diatomic potentials 
have been developed for global fits to experimental data, 
and enlightening comparative studies exist for several of 
them.24*25 However, extensive preliminary testing here of 
Morse and Varshni functions and modifications thereof re- 
vealed that commonly used reference potentials containing 
three to five parameters are not sufficiently flexible to yield 
higher-order derivatives whose accuracy is maintained 
over extended bond-length intervals. Attempts were made 
to ameliorate this problem by augmenting these reference 
potentials with unconstrained polynomial expansions in 
the variable c=exp( p) - 1, where p is the Simons-Parr- 
Finlan coordinate (r-re)/r.26 Such polynomial fitting pro- 
cedures only gave rise to erratic higher-order force con- 
stants as a consequence of the uncertainty in the RKR 
points. 

The optimal procedure which was formulated for ex- 
tracting potential energy derivatives from the RKR data 
involved the transformation relation (in atomic units): 

V(r)=E,(r)+$=A+B tan-‘[Z(r)]+:, (1) 

where E,(r) denotes the molecular electronic energy, g is 
the atomic number of the nuclear centers, and Z(r) is a 
dimensionless, monotonic function satisfying the boundary 
conditions lim,, ,Z( r) = + CO and lim,,, Z(r) = - CO. 
For both N2 and F2 the constants A and B in Eq. ( 1) were 

(a) r(A) 
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FIG. 1. Plots of the E,(r) and Z(r) representations of the experimental 
RKR data for (a) N, and (b) F,. 

selected to give the exact separated-atom energy2’ at infi- 
nite distance and the correlated, relativistic united-atom 
electronic energy2* at r=O. The transformation of the 
RKR data for V(r) yields the E,(r) and Z(r) points plot- 
ted in Figs. 1 (a) and 1 (b) for N, and F,, respectively. The 
linearity of the RKR data sets in the Z(r) representation is 
striking, indicating that the expansion of Z(r) about r, 
converges rapidly. For the range of intermediate bond dis- 
tances of concern here, Z(r) can thus be written as 

K 

Z(r) =zo+q(r--Ye) + C M-ire)“t 
n=2 

(2) 

in which the z. and z1 coefficients are found to be at least an 
order of magnitude greater than their higher-order analogs 
if r is expressed in A (see Table I below). Nevertheless, to 
satisfactorily fit the RKR data out to r(N,).= 1.6 A and 
r(F2) =2.4 A, the upper limit K in Eq. (2) must be ex- 
tended to 7 and 11 for N2 and F2, respectively. 

Extensive spectroscopic studies have firmly established 
the dissociation energies, equilibrium bond lengths, and 
quadratic force constants of N2 and F2,21-23 thus providing 
values for E,,( r,), EL (r,,), and EI ( re) and allowing z,, zl, 
and z2 to be ascertained unequivocally. In addition, the 
observed a, and WJ, constantsz3 for N2 yield V”‘(r,) 
=- 169.6 aJ8LM3 and V”“(r,)=997.6 aJ Am4, values 
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TABLE I. V(r) parameters for Nz and Fpn 

A  
B  
re 
=0 

=I 
=2 

=3 

4 

=s 
=fJ 
-3 
3 
29 

=I0 

ZII 

N2 F2 

DZP RHF RKR DZP RHF RKR 

- 199.295 94b - 199.565 8’ -365.323 62b - 364.503 9’ 
180.748 4(~-‘)~ 180.748 4(~-‘)= , 329.790 6(r-‘)b 329.790 6(7-r-‘)’ 

1.082 707d 1.097 685e 1.334 980d 1.411 930e 
2.258 028 37 2.258 029 34’ 3.353 860 00 3.353 86120f 
2.344 700 20 2.281 151 14 2.806 25 1 88 2.508 708 05 
0.237 794 0.127 367 0.172 260 0.009 460 

-0.046 999 -0.099 744 -0.013 602 -0.039 633 
-0.031 175 -0.026 538 0.008 768 0.017 855 [S] 

0.034 47 1 0.047 202 [3] -0.020 785 0.027 784 [S] 
-0.023 815 [l] 0.012 127 [4] 0.048 361 [5] -0.010 575 [9] 

0.049 402 [l] 0.020 027 [4] -0.034 520 [5] -0.078 191 [9] 
0.030 502 [2] . . . -0.006 187 [6] -0.094 601 [lo] 

-0.081 551 [2] . . . 0.010 441 [6] 0.215 908 [lo] 
. . . 1.. -0.000 380 [7] 0.116726 [ll] 
. . . . . . o.ooo 808 [7] -0.181 962 [ll] 

Intervals of fit, r (A): 
[l] (0.85, 1.45) [2] (0.85,1.56) [3] (0.88,1.38) [4] (0.88, 1.56) 
[5] (1.09, 1.83) [6] ( 1.09,2.06) [7] (1.09,2.26) [S] (1.25, 1.73) 
[9] (1.25, 1.91) [lo] (1.25,2.08) [ll] (1.25,2.33) 

‘The functional form of the V(r) potentials is given in Eqs. (1) and (2). Units: A  and B  in hartree, r, in 
A, and z,, parameters in A-“. The unconstrained z, quantities were determined from least-squares fits to 
RKR and DZP RHF energy points as described in the text using the intervals enumerated in brackets 
adjacent to each entry. The z,, constants listed without brackets were evaluated from energy and derivative 
data for each potential curve at the corresponding equilibrium distance, these data being determined 
directly in the DZP RHF case and by means of the a, and 0,~~ spectroscopic constants of Refs. 21,22, and 
23 in the RKR case. 

bathe B  parameters for the DZP RHF potentials were set to the corresponding RKR values, and the A  
constants in these potentials were subsequently selected as eight-digit values which reproduce the analogous 
RKR z, paranieters within roundoff error. 

The A  and B  parameters for the RKR curves were chosen to reproduce the correlated, relativistic electronic 
energies for the separated-atom (Ref. 27) and united-atom (Ref. 28) limits. 

dPrecisely determined r, values obtained from RHF analytic gradients. 
‘Spectroscopic values from Ref. 23. 
‘The *. values in the RKR curves were ascertained from the empirically derived (Refs. 21-23) dissociation 
energies (in hartree) D,(N2) =0.3640 and D,(F,) =0.060 945: 

which are in excellent agreement with theoretical predic- 
tions of - 170.5 aJ Am3 and 1005.0 aJ Am4, respectively, 
obtained herez9 with a large basis set denoted as 
PZ( 3d2f lg) used in conjunction with the coupled-cluster 
singles and doubles method augmented by a perturbative 
contribution from connected triple excitations 
[CCSD(T)].” By constraining the third and fourth deriv- 
atives of the RKR potential curve for N2 to the empirical 
values arising from ae and w&, the corresponding z3 and 
z4 coefficients in Eq. (2) were determined. In the case of 
F,, Y”(re)=-36.39aJAL-3and V”“(r,)=231.0aJAL-4 
are given by the experimental a, and ape constants.22 The 
former value was confirmed by subsequent PZ( 3d2flg) 
CCSD(T) predictions, but the latter value was brought 
into question.30 Accordingly, z, for F, was evaluated from 
the empirically deduced V”’ (r,) value while z4 was left as 
an adjustable parameter. 

The unconstrained z, parameters in Eq. (2) were 
found via least-squares fits to the residuals remaining after 
deflation of the dominant, fixed lower-order terms in Z(Y) . 
To ascertain derivatives of the RKR potential curves ac- 
curately, the fits must be performed sequentially rather 
than simultaneously to ensure that the z, * n! values are 

approximations to the r derivatives of Z  and not merely 
phenomenological constants. By analysis of model Varshni 
potential functions for N2 and F,, a cutoff interval. for each 
order was estimated about r, within which the associated z, 
term contributes less than 20 cm- ’ to V(r) . These cutoff 
intervals were utilized in a fitting procedure involving suc- 
cessively larger ranges of r, in which the various z,, con- 
stants were found either individually or in pairs by fixing 
all previously determined, lower-order constants in Eq. (2) 
and then fitting the selected terms to the RKR points lying 
inside the ensuing cutoff interval for the next higher-order 
contribution. The RKR points for small internuclear dis- 
tances in both molecules are somewhat uncertain, and in 
the case of Fz it was necessary to exclude the points for 
r(F2) < 1.25 A because the scatter contained therein3’ de- 
teriorated the fits of the higher-order z,, coefficients. 

All parameters involved in the RKR potential func- 
tions for N2 and F2 are listed in Table I along with the 
intervals employed in the fitting procedure. For compari- 
son with the RKR curves, DZP RHF potential energy 
functions were constructed analogously by computing and 
then fitting energy points around the theoretical equilib- 
rium geometry using the same intervals as in the RKR 
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FIG. 2. Plots of the fitted RKR potential curves and the difference func- 
tion W(r) = VRH&) - VRKR(r) for (a) N, and (b) F,. 

analyses. The final DZP RHF parameters for N, and F, 
are also given in Table I along with their RKR counter- 
parts. Prior to the fit, the values of the A, B, r,, zo, and zr 
constants listed in Table I were selected to amend the V(r) 
functional form to describe the RHF potential curves. An- 
alytic third-derivative techniques32V35 were then used to 
precisely determine the DZP RHF quintic force fields of 
N, and F, at the theoretical r, distances via numerical 
differentiation, and these force constants were used to con- 
strain the values of ~2-25.~~ The validity of the V(r) repre- 
sentations was confirmed by tests of DZP RHF higher- 
order derivative predictions at representative points. For 
example, for N2 at r=0.92 A, V”‘, VI”‘, and Y”“’ are 
predicted by Eqs. ( 1) and (2) to be - 511.9 aJ Am3, 3048 
aJ Ae4, and - 1.95 X lo4 aJ Ap5, in order, as compared to 
- 511.5, 3035, and - 1.91 X lo4 from direct evaluation by 
RHF analytic derivative methods. In addition, for F2 at 
r=1.55 A, V”‘=-17.11 aJAW3, V”“=95.10 aIAB4, 
and V”“‘= -474 aJ AA5 are given by Eqs. ( 1) and (2) 
vs - 17.10, 94.82, and -479 by direct evaluation. This 
high level of agreement bolsters confidence in the analo- 
gous RKR derivative predictions, even though the accu- 
racy of the RKR results is surely somewhat diminished by 
the uncertainty of the input data and the smaller number of 
reliable constraints. 

Plots of the RKR potential curves as well as those of 
W(r), defined as V,,,(r) - VRKR( r), appear in Figs. 2(a) 
and 2 (b) for N2 and F2, respectively. In Figs. 3 (a)-3 (d) 
the first through fourth derivatives of the RKR functions 
for E,(r) and V(r) are plotted, and in Figs. 4(a) and 4(b) 
the percent errors in the DZP RHF electronic energy de- 
rivatives for Nz and F, are shown as functions of the in- 
ternuclear distance. Finally, numerical comparisons of 
RKR and DZP RHF derivatives of E,(r) and V(r) are 
presented at both the theoretical and experimental r, bond 
distances in Tables II and III, wherein the aforementioned 
PZ( 3d2flg) CCSD(T) predictions are also given for ref- 
erence. 

There are several salient points which are elucidated by 
the analysis of the N2 and F2 potential energy curves: 
(I) Because the total energy is a sum of two parts, viz., the 
electronic energy and the nuclear-nuclear repulsion energy 
(Vn), all derivatives of V(r) are comprised of two sizeable 
terms, which happen to be opposite in sign. The data in 
Tables II and III clearly exemplify this generalization. The 
theoretical prediction of force constants is thus seen to be 
a rather unbalanced procedure vis-&is cancellation of er- 
rors, because the V, contribution and its derivatives are 
obtained exactly while the E, term and its derivatives are 
determined only approximately. A delicate balance of the 
two terms of opposite sign may thus arise, in which case 
the associated force constant predictions depend strongly 
on the level of theory. 
(2) The E, and V’ contributions to the quadratic force con- 
stants nearly cancel each other, but for the higher-order 
force constants the contributions of the derivatives of V, 
become increasingly dominant. Note from the data in Ta- 
bles II and III that for N2 at the experimental geometry, 
E;/V:, = -1.00, E;/V;; = -0.87, E;/V; = -0.63, 
and Ei”‘/Vt” = -0.38, whereas in the F2 case these 
ratios are - 1.00, -0.96, -0.87, and -0.74, respectively. 
Inspection of the plots in Figs. 3(a)-3 (d) reveals that this 
behavior is-not restricted to the experimental bond distance 
alone. In particular, the V(r) derivative curves shift away 
from the r axis as the order of the derivative is increased, 
indicating a relative aggrandizement of the Vn contribu- 
tions. It can thus be inferred that higher-order bond 
stretching derivatives depend strongly on core-core nu- 
clear repulsions and that the cancellation of the E, and V, 
derivative terms decreases substantially in higher order. 
This conclusion is in accord with the original data reported 
by Schwendeman, 18(a) who listed the ratios of electronic to 
nuclear-repulsion contributions to quadratic, cubic, and 
quartic force constants of 13 diatomic molecules. In related 
work, Schwendeman 18(b) also argued that the cancellation 
of Er and VG terms can be interpreted as causing the error 
in RHF theoretical bond lengths to be pseudo-first-order 
rather than second order, as would have been expected 
otherwise. 
(3) By all accounts the accuracy of the DZP RHFpredic- 
tions for the electronic energy derivatives of both Nz and F, 
is remarkable on a percentage basis; however, the theoretical 
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FIG. 3. RKR derivative functions for N2 and F,: (a) first, (b) second, (c) third, and (d) fourth. 

predictions for the second derivatives of V(r) are much less 
accurate than those of E,(r), a disparity which becomes 
smaller for higher-order derivatives. As shown in Figs. 4 (a) 
and 4(b), the errors in the DZP RHF derivatives of E,,(r) 
through fourth order are well under 10% for both N2 and 
F2 over bond-length intervals of 0.5 A or greater encom- 
passing r,. Because the errors in EI, Ey, and I$“’ are 
comparable, the fact that the V” predictions are much 
poorer than the V”’ and V”” results is a direct conse- 
quence of the aforementioned cancellation of nuclear re- 
pulsion and electronic energy terms. Note as a specific ex- 
ample that the theoretical Ey value for Nz is in error by 
only 3.0% at the experimental r, distance, but the corre- 
sponding discrepancy for V” is 19.4% (see Table II); in 
contrast, Ei”’ and V”” for N, are predicted to compara- 
ble accuracies of 5.6 and 3.9%, respectively. These obser- 
vations are consistent with those of Pulay, Meyer, and 
Boggs,37 who have reported correlation contributions of 
less than 1% to the cubic and quartic constants of several 
diatomic hydrides. It seems clear that the E,(r) function 
and its derivatives and not the corresponding V(r) curves 
should be considered the best measure of theoretical per- 
formance. 
(4) While correlation effects are most prominent m  deter- 

mining the first derivatives of V(r) and consequently opti- 
mum bond lengths, it should not be construed from this fact 
that the correlation contribution to Ei is in a relative sense 
greater than the analogous contributions to the higher de- 
rivatives. Because RHF potential curves typically dissoci- 
ate to products which are erroneously high in energy, the 
correlation energy usually becomes much larger as bond 
distances are elongated. Moreover, uncorrelated optimum 
bond lengths are usually too short (at least for molecules 
involving first-row atoms) and correlation contributions to 
higher-order derivatives are generally small on a percent- 
age basis. As a result, the conventional view’,38 on this 
issue has been that the correlation energy can be well ap- 
proximated as a linear function of r with positive slope for 
intermediate bond distances near r,. Exceptions do exist, 
however; M ichalska et al. 38 showed that for LiH and Liz 
the optimum bond lengths predicted at the 6-31 lG** 
RHF level of theory are longer than the experimental val- 
ues and the correlation energy is actually a decreasing 
function of r near the equilibrium distance. In the partic- 
ular cases of N2 and F,, the first derivative of the correla- 
tion energy, W ’ (r) ,39 is clearly positive near r,, as seen in 
Figs. 2(a) and 2(b), and the curvature of W(r) is much 
smaller than that of V(r). The linear approximation is 
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FIG. 4. Percent error curves for the DZP RHF electronic energy deriv- 
atives of (a) N, and (b) Fz as referenced to the analogous RKR func- 
tions. The experimental data do not determine the RKR third and fourth 
derivatives to better than 1%; hence, some of the structure in the percent 
error curves at third and fourth order may be artifactual. 

particularly good for bond distances greater than 1.2 A in 
these molecules, even though for smaller distances W ”(r) 
cannot be neglected, as highlighted by the fact that W(r) 
for Nz actually goes through a m inimum near r= 1.0 A. 
This conclusion notwithstanding, the plots in Fig. 4 reveal 
that in the case of Fz the percentage errors in the DZP 
RHF values for Ei are comparable to those for Er, Er, 
and Ei”’ over a wide range of bond distances and in the N, 
example are actually much smaller. Thus, at the RHF level 

“-~~~ _- .  

the EL predictions are not inherently less accurate on a 
percentage basis than their higher-order analogs, but 
rather the cancellation of the VN and Ee derivative terms 
causes the absolute error in EL to be of greater significance 
in the determination of the total energy derivative than in 
higher-order cases. 
(5) If theoretical derivatives of the total energy are com- 
pared to experimental values ai the same geometry, despite 
cancellation problems in the V, and E, terms, RHF theory 
is quite successful in predicting force constants. Note in Ta- 
ble III that for l?? the “pure’‘-theoretical quadratic force 
constant of 8.82 a.I Am2 is 87% larger than the empirical 
value of 4.70 aJ AM2jm but the error comes almost exclu- 
sively from the drastically different reference geometries on 
which the force constants are based. A direct comparison 
at the experimental r, structure reveals a much smaller 
error of 14.1%, and at the theoretical r, distance the dis- 
parity is only 7.3%. The agreement for V”’ and V”” is 
even better, provided once again that a direct comparison 
of quantities at the same geometry is made. For example, 
at the experimental r, structure, the DZP RHF cubic force 
constant for F2 ( -36.18 aJ Ae3> differs from the experi- 
mental value (-36.39 aJ Am3) by only 0.6%. Because F, 
is recognized as a pathological case for computational 
quantum chemistry, a it is remarkable that the errors in the 
second, third, and fourth derivatives of E,(r) are consid- 
erably smaller for F, than for N, [cf. Figs. 4(a) and 4(b)]! 
This comparison serves to emphasize that the choice of 
reference geometry is critical in the ab initio prediction of 
high-order force constants. 

From the analysis of the RKR and DZP RHF poten- 
tial energy curves of N2 and F,, it is clear that there are 
merits to the selection of nonstationary reference geome- 
tries in force field predictions. However, this approach in- 

TABLE II. A  comparison of DZP RHF theoretical and RKR experimental data for the electronic (E,) and 
total ( V) energies of N, and their geometric derivatives through fourth order.a 

At r,(DZP RHF) = 1.082 707 8, At r,(expt)b= 1.097 685 A  

%  %  PZ( 3d2flg) 
DZP RHF RKR error DZP RHF RKR error CCSD(T)’ 

E,(N,) -132.907 896 - 133.503 919 -0.45 - 132.580 357 - 133.177 747 -0.45 - 133.029 426 
E: 96.437 96.074 0.38 94.255 93.823 0.46 91766 
EJ - 147.88 - 152.54 -3.1 - 143.55 - 148.01 -3.0 - 147.63 
ET 294.1 308.4 -4.4 283.9 297.6 -4.6 296.7 
E”” - e -692.1 -733.8 -5.7 -665.5 -704.9 5.6 -697.5 

VW,) - 108.958 964 - 109.554 988 -0.54 - 108.958 210 - 109.555 600 -0.55 - 109.407 271 
V’ 0.00 -0.3632 ... 0.4315 0.00 ... -0.0556 
V” 30.26 25.60 18.2 27.40 22.94 19.4 23.31 
V”’ - 199.5 - 185.2 7.7 -183.3 - 169.6 8.1 - 170.5 
v”” 1131.4 1089.8 3.8 1037.0 997.6 3.9 1005.0 

The DZP RHF and RKR results were extracted from the potential-energy functions detailed in Table I. All 
energies are given in hartree, whereas all derivatives correspond to energies measured in aJ and distances 
in A. The percent errors are given as lOO(RHF/RKR- 1). 

bReference 23. 
‘Highly correlated theoretical predictions. See Sec. IV for details. 
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TABLE III. A  comparison of DZP RHF theoretical and RKR experimental data for the electronic (E,) 
and total (V) energies of Fz and their geometric derivatives through fourth order.” 

At r,(DZP RHF) = 1.334 980 A  At r,(expt) = 1.411 930 A  

%  %  PZ(3d2flg) 
DZP RHF RKR error DZP RHF RKR error CCSD(T) 

EJF,) -230.847 255 -231.773 494 -0.40 -229.092 257 -230.027 524 -0.41 -229.724 951 
F 
g 

104.859 104.371 0.47 94.277 93.741 0.57 93.735 
- 148.28 - 148.98 -0.5 - 127.42 - 128.08 -0.5 -128.00 

E; 298.1 296.8 0.4 245.9 245.7 0.08 247.1 
E"" e -755.4 -745.8 1.3 -604.6 -588.0 2.8 - 622.5 

V(F2) - 198.739 402 - 199.665 641 -0.46 - 198.734 278 - 199.669 545 -0.47 - 199.366 961 
V' 0.00 -0.4873 . . * 0.5365 0.00 ... --0.0044 
V" 8.818 8.217 7.3 5.365 4.703 14.1 4.778 
V'" -54.95 -56.24 -2.3 -36.18 - 36.39 -0.6 - 34.99 
V"" 302.3 311.9 -3.1 194.7 211.3 -7.9 176.8 

‘See footnotes a-c of Table II. 

traduces new problems in ab initio determinations of force 
constants, which is the subject of the remainder of this 
article. 

II. REVIEW: SELECTION OF REFERENCE GEOMETRY 

In theoretical predictions of molecular force fields ap- 
pearing in the literature, various choices have been imple- 
mented for the reference geometric structure: (a) the op- 
timum geometry at the level of theory used in the force 
constant evaluation, (b) an experimental r,, ro, r, r, r,, rp 
r,, or r, structure>i (c) an optimum geometry from a 
higher level of theory, or (d) an empirically corrected the- 
oretical geometry. Additional possibilities are prescribed, 
standard geometries4* or empirically corrected experimen- 
tal geometries, e.g., an experimental r, structure to which 
corrections have been added to better approximate r, pa- 
rameters.43 While option (a) is preferred conceptually and 
is the most common choice by far, there are several bond 
types known for which moderate levels of theory, even 
ones including extensive treatments of electron correlation, 
yield optimum geometric parameters containing substan- 
tial errors. In these cases the corresponding force constant 
predictions are deteriorated merely as a consequence of 
deficient reference geometries, as exemplified by the case of 
F2 above. Such considerations led to the recommendation 
of choice (b) in the early work of Schwendeman,‘* but for 
many polyatomic molecules of interest, precise experimen- 
tal geometries are simply not available. An additional com- 
plication apparent from the analysis in Sec. I is that size- 
able variations in predicted bond stretching force constants 
can arise even from the small differences between empirical 
r, parameters and various vibrationally averaged analogs, 
thus hindering systematic comparisons of force fields based 
on phenomenologically different reference structures. 

The selection of the reference geometry according to 
option (c) or (d) generally improves the accuracy of the 
theoretical force field without establishing a dependence on 
experimental structure determinations for the particular 
compound under investigation. A notable example of the 
efficacy of option (c) is contained in the analysis of vibra- 

tional anharmonicity in the HOF and F20 molecules by 
Thiel et a1.,13 in which RHF cubic force constants deter- 
m ined at CCSD optimum geometries were found to be in 
remarkable agreement with their CCSD counterparts. The 
viability of option (d) was established in the 1970s by 
Blom and Altona’ and Pulay and co-workers.g”0’44 In this 
approach, which is predicated on the occurrence of system- 
atic errors in theoretical structural predictions, empirical 
offset values for specific bond types are appended to opti- 
m ized internal coordinates obtained at a standard level of 
theory in order to approximate true r, structures. Standard 
offset values at both self-consistent-field (SCF) and corre- 
lated levels of theory have been proposed on the basis of 
several quantum chemical investigations,g*45-52 the most 
extensive list being constructed for SCF studies with the 
4-2 1 G basis set.g~10*4547 In more recent applications, Pulay 
and co-workers53 have modified the original procedure by 
employing standard offset forces for specific bond types 
rather than shifts in the structural parameters themselves. 
Naturally, the use of option (d) may be ill-advised for 
unusually bonded chemical systems. 

In effect, shifting the reference geometry from a local 
m inimum to a nonstationary point is equivalent2*‘3 to mod- 
ifying the original theoretical surface V(s) to 

phift(s;g) = v(S) -gshift. (~-~Wt), (3) 

where 5% denotes a complete set of internal coordinates 
perhaps distinct from s, Bshift is comprised of the values of 
these coordinates at the shifted reference geometry, and 
g shift is the corresponding gradient vector at sshift given by 
the particular level of theory. Since this procedure can be 
accomplished with any complete and nonredundant set of 
internal coordinates, the shifted surface is not uniquely 
defined, and for this reason an implicit dependence of Shift 
on W  is indicated in Eq. (3). This dependence is elucidated 
when the various choices of the shift term are expanded in 
Cartesian coordinates, leading to identical first-order terms 
in the Cartesian space but different higher-order terms. For 
example, in the N2 and F, cases discussed above, each DZP 
RHF potential curve could be modified to have a m inimum 
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at the experimental r, distance by adding a shift term 
which is linear in any one of the geometrical coordinates 
mentioned in Sec. I, namely r, p= (r-r,)/r, or 
,$=exp( p) - 1. Each choice would give rise to different 
quadratic, cubic, and quartic force constants with respect 
to r because p and 6 are nonlinear functions of the bond 
distance. Although this problem is not widely appreciated, 
it has been recognized previously by Pulayll* as it pertains 
to quadratic force constants; however, no attempt has been 
made to study it systematically, to show the analogous 
effect on higher-order force constants, or to ascertain quan- 
titatively the magnitude of the problem. Thus, the purpose 
of the present paper is to provide a thorough analysis of the 
selection of nonstationary reference geometries in theoret- 
ical determinations of higher-order force constants by in- 
vestigating both the analytical foundations of the proce- 
dure and numerical results for representative molecules. 

Ill. THEORETICAL FOUNDATIONS 

A. Geometric derivative relations 

The basis for analytical considerations of the shifted 
molecular potential energy surface in Eq. (3) is the depen- 
dence of the associated internal coordinate sets on the Car- 
tesian coordinates of the nuclear centers. Let {&; 
a=1 2 , ,...,3N} represent a complete and nonredundant set 
of curvilinear displacement variables defined with respect 
to an arbitrary reference configuration of an N-atom mol- 
ecule,5k57 including both the set of internal displacement 
coordinates {s,; p=1,2,...,M} and the external displace- 
ment variables (~~7; v= 1,2,...,L}. For nonlinear and linear 
molecules, (L&f) = (6,3N-6) and (5,3N- 5), respec- 
tively. The space of generalized external variables is gen- 
erated by the mapping 7;1(x) =7;(q), where T;(X) repre- 
sents a canonical set of translational and rotational 
coordinates which are orthogonal to the internal variables 
at the reference configuration, and q=ux denotes a set of 
rectilinear coordinates resulting from an arbitrary linear 
transformation (u) of rank 3N of the Cartesian variables x. 
To maintain consistency in the following analysis, the in- 
dices utilized to enumerate the various types of coordinates 
are {p,q}, internal; {q,w}, external; {i,Ja}, Cartesian; and 
Ca,B,r,&El, general. 

The displacement coordinates & can be represented by 
an expansion in the set of rectilinear Cartesian displace- 
ment variables {xi} according to 

ca= T BcX;,+i z B~i2Xi,Xilf~ ,z B’. .X.X.X. 

4 
‘1’2’3 ‘1 ‘2 ‘3 

‘1’2 ‘1’2’3 

3N 

C . qi2i3i4Xi,xi2xi3xi4 + . . - T (4) 
‘1’2’3’4 

where the various B$+, coefficients for the internal and 
external spaces are defined by 

(5) 

and 

Bh-~in~ ( a,,,~~~.~xi.J 9 (6) 

both sets of geometric derivatives being evaluated at the 
reference configuration. A complementary expansion can 
be developed for Xi in terms of the set {&}: 

xi= ;A&+; ; Af&-i~~+~ ?t A&L&&y 
a UP dv 

+A a&&&&t+~*-~ 
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(7) 

Substitution of Eq. (7) into Eq. (4) yields the first- 
order condition 

$ ByA;=Sao, (8) 

in which By can be partitioned by defining (Bl),i= Bf and 
(B,),i= By for the internal and external spaces, respec- 
tively. The quantities (Bi),[ are elements of the familiar B 
matrix of Eliashevich and Wilson,54,55 for which simple 
formulas are known for all commonly used sets of internal 
coordinates. The matrix formulation of Eq. (8) is 

[;jL% A21=[;:;: ;;:]=[‘; p,1, (9) 

where (Al ) ip =A: and (A,) i?7 ~ A f refer to internal and ex- 
ternal partitions of the inverse B matrix, and IM and IL are 
M- and L-dimensional identity matrices, respectively. For 
canonical sets of external variables T;(X), the elements of 
BZBT are identically equal to zero, i.e., the first-order or- 
thogonality relation 

F B;;“B$‘l ~0 (10) 
4 

holds at the reference configuration (see Appendix A). For 
the space of generalized external variables T~( x), B2 
=B$-‘, and hence the associated orthogonality condition 
is 

(B,uB;) =O. (11) 
As a consequence of Eq. ( 11)) the composite A matrix in 
Eq. (9) can be constructed from the expressions 

AI=uBf-(B,uBT)-’ (12) 

and 

A,=u=B;(B,dB;) -I. (13) 

These partitions also yield the left inverse of B. Specifically, 
after defining 

Bl Y=AB=[Al AZ] B2 =A,BI+A2B2, [ 1 (14) 

the following system of equations arises after successive 
projections on Y with B, and B2: 

(15) 

J. Chem. Phys., Vol. 98, No. 4, 15 February 1993 
Downloaded 19 May 2006 to 157.181.190.84. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



If the set of internal and external variables is complete and 
nonredundant, then the partitioned B matrix in Eq. ( 15) 
has a unique inverse, and Y is thus equivalent to the 3N 
X3N identity matrix IsW 

The standard body-fixed axis system employed in the 
separation of molecular vibration and rotation is deter- 
mined by the Sayvetz conditions,56,58V59 which can be in- 
voked by using external variables for which u is a diagonal 
matrix containing triads of the reciprocal atomic 
masses.‘*9@ This choice is necessitated in applications in- 
volving the transformation of tensor quantities from Car- 
tesian to internal coordinate representations, as in trans- 
formations of dipole-moment or polarizability derivatives. 
However, in analogous transformations of scalar molecular 
properties, such as potential energy derivatives, the choice 
of the body-fixed system is not restricted. In these cases it 
is desirable to select a canonical set of external variables 
such that II in Eqs. (12) and (13) is the identity matrix in 
order to simplify the mathematical transformations of con- 
cern. 

The analogs of Eq. (8) through fourth order arising 
from the reciprocality of Eqs. (4) and (7) are 
3N 3N 

3N 3N 
2 BEAjys+ C B~i2Ai’“UY,‘) 
4 il iz 

{PI, P2P3} 3 
{PI, P2P3P4) 4 

(17) c PI P29 P3 P43 6 
{PI, PZPJP4PS3 5 
{P,hP,Pd’d 10 
c PI P2 P3, P4 Ps3 10 
{pl, P2P3P4PsP63 6 
{ pl P29 P3 P4 P5 P63 15 
{PlPZP3,P4P5P6) 20 
{PI P2 P3 P49 p5 P63 15 

u”1142 

3N 

2 B;-$jras + 
4 

~ B~iPili’~~~,~} + ~ B~i2Ai”ZCP~,S~} 
il iz ili2 

and 

3N 
+ C B,qi2iPi’i’i’~y,~,~~ 

i, i2i3 

+ ; B;i2i,i,A;A;A;A2=0, 
ili2i& 
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TABLE IV. Number of terms represented by the brace notation’ for the 
quantities Ailhin, BplP~Ptt, ~1424n, and w414P4n. 

G% L321 1 

CPiP7P33 1 
cm, 833 3 
UC 82 P33 1 
cPIP2p3P4~ 1 

CPdu% P43 ‘ 4 
CPI& B3B4j4) 3 
i&P29 P3, P43 6 
-@I9 P2, P3, 041 1 
i&Pzp3P4.w 1 
gl;&pJ$s~ 5 

dP22 P4, k3 

10 
10 

CBl821 P,P4? PSI 15 
CPIP2, P3, P4r85) 10 
CD,, B2, P3, P4, P53 1 
-@l~83&&~6} 1 
-8i&k?3&& p61 6 

-8Itifi3p44r &061 15 

@16#3, h&cj61 20 
{&&83p4, & p61 15 
@I&k?31 && 861 60 
@I&,$, fi44, & B63 20 
@,p2, &p4> &. fl6) 90 
@,fl2, fl3, p4, &T fl63 15 
@I, p21 fl3r P4r @S, @61 1 

w91 

CPU P2P39 P4Ps3 15 
{ PI> P2 P3 P41 PS P63 60 
{ PI P2, P3 P41 PS P63 45 

(18) “The number of unique combinations of indices arising in the notation of 
Eq. (19) is given. The index & represents either a Cartesian-coordinate 
index in or an internal-coordinate index pn. Because the superscripts in 
Eq. (19) can be interchanged in the equations of the text, permutations 
of the indices in the table are not unique. Moreover, reordering of the 
index partitions does not give distinct contributions in the A’I’p$ 
Bpi~.+, and 0ie2’7n cases but does so for the W+‘7n terms. Thus, the 
number of terms for W’1{p,p2,pg,3 is twice that for Aili2{p,p2,pjP43, for 
example. 

which are applicable regardless of whether the indices a, fi, 
y, 6, and E represent internal or external variables. In Eqs. 
( 17) and ( 18), the following general notation has been 
introduced: 

Xa’a2-yplyl . . . . &yp ..)...) &y,...) 

( 19) 

where X is an arbitrary quantity, JV enumerates all unique 
combinations Ce,,- of a given composite list of indices, and 

Xala2-.an [Ply1 . . . . p2y2 . . . . ...) &J,...] 

-qyl...qyz,: - *Jq&..: 
For example, in Eq. ( 17) 

Aili2CPy,S}3Aili2[P~,~] +Aili2[@3,y] +A’+S,p] 

&&2+A;h&+A;h& (21) 

The notation summarized in Eqs. ( 19) and (20) is also 
used in numerous expressions involving B~,i2,i, derivatives 
given below; in each case the number of terms represented 
by the braces in Eq. ( 19) is listed in Table IV. 
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if the explicit form of A’l’2wy,S) is employed. In brief, 
after determination of the elements Azy via Eq. (25), the 
higher-order coefficients Azys can be evaluated from Eq. 
(29) by explicitly inverting only the first-order B matrix. 
This approach illustrates the general, sequential procedure 
by which A&...p,, coefficients can be efficaciously deter- 
mined from lower-order counterparts and B&+, deriva- 
tives. 

2992 W. Allen and A. CsBszBr: Higher-order force constants 

Expressions for the higher-order internal-coordinate 
derivatives B&2, BT,i2i3, and Bf,i2i3i4 can be derived via di- 
rect, albeit tedious, differentiation of the basic functional 
forms for the various types of internal coordinates in com- 
mon usage, specifically, bond distances, Simons-Parr- 
Finlan variables, valence bond angles, linear-bending coor- 
dinates, out-of-plane bending angles, and dihedral torsional 
angles.6164 All of the corresponding equations have been 
derived independently in this study and coded in the pro- 
gram INTDER;65 many of these expressions have been tab- 
ulated elsewhere.56962V63,6Mg 

The A&, A&,, and Abors quantities in Eq. (7) are 
generally not amenable to direct evaluation, but these 
higher-order expansion coefficients may be determined in- 
directly from the complementary B$+, derivatives using 
Eqs. (16)-( 18). In manipulations involving these equa- 
tions, it is useful to define the following notation: 

G,&...pns . fi. B~i2..i/jP$;**Ajn (22) 
‘*‘p.ln 

B. Force constant transformations between internal 
and Cartesian spaces 

The marked curvilinearity of the internal coordinates 
of a molecular system causes the general transformation of 
potential energy derivatives between internal and Cartesian 
spaces to be decidedly nonlinear, a consequence which is 
paramount to the analysis of Eq. (3). To facilitate the 
specification of the resulting transformation equations, su- 
perscripts and subscripts are used to denote internal- and 
Cartesian-coordinate derivatives, respectively. For exam- 
ple, Vi refers to the ith component of the Cartesian gradi- 
ent, and V’If’2”3 corresponds to the cubic force constant 
involving internal coordinates pl, p2, and p3. Because the 
molecular potential energy surface does not depend on the 
external variables of the system, the components of the 
Cartesian gradient can be determined via a linear transfor- 
mation of the internal forces alone: 

Subsequently, Eq. (16) can be written in matrix form as 

, (23) 

where the vector components ( ADr) o, ( 4y),, and (4y) 7l 
are equated with the elements A&, C& and C&, respec- 
tively. By inverting Eq. (23) using Eqs. ( 12) and ( 13)) it 
is found that 

ADy= -A,cfy-A2gy, (24) 

or in expanded, component form 
3N 

Aiy;= - C A~A~(F~i,~2+ Gei,i2), (25) 
i, i2 

where 

Fci,+...t,~ TAp”Bfl+..in (26) 
P 

and 

Gcri,+.i,G i AcB{i+,,* (27) 
?I 

In an analogous fashion, Eq. ( 17) can be inverted to yield 

qys+ T B~i2Ai1i2CRy,‘I 3 (28) 
ili2 

which upon rearrangement gives 

A&= - F (A~A~~+A~A~~+A$A~y) (J’gi,i2+Gg~l~2) 
il i2 

-E (29) 
il i2i3 

A~A~A$(F~ili2i3+G,i,i2i3) 

(30) 

The inversion of this first-order expression using Eq. (8) 
yields 

VP= E Vi(Al)b 9 (31) 
i 

in which V” is invariant to the choice of u in Eq. ( 12) .” By 
direct differentiation of Eq. (30), the following expression 
is found for the quadratic force constant matrix in Carte- 
sian coordinates: 

2 

Vj,i2’ 2 VP’ $& 
PI ( ) ‘I ‘z 

+ ; vw3y;Bf: 
PIP2 

M M 

= c vpqi2+ c v”w$~~~. 
PI PIP2 

(32) 

Upon multiplication of Eq. (32) by the product AXA: and 
summation over i, and i2, the constant V41’72 is isolated on 
the right-hand side, and after rearrangement and reindex- 
ing an expression for the quadratic force constant matrix in 
internal coordinates is obtained, viz., 

3N M 

Vplp2 = x Vi,i2A2LA22- C v”q,p,* 
ili2 Q 

(33) 

The primary significance of Eqs. (32) and (33) is that the 
Cartesian and internal quadratic force constant matrices 
cannot be interconverted by a linear transformation alone 
because qrri2 and hence qIp2 are generally nonzero for 
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curvilinear internal coordinates. However, if the forces at 
the reference geometry are zero, as in case (a) of Sec. II, 
the transformation in fact becomes linear, as pointed out 
by Pulay.2 

An expression for the cubic force constant matrix in 
Cartesian coordinates arises by direct differentiation of Eq. 
(32). Specifically, 

Vi,i2i,= F vPlBPl{ili2i~}+ g VP1P2BpIP2{ili2,ix} 
Pl PIP2 

M  

+ C Vp~p~~Bp~P~~Cil,i2,il), 
PlP2P3 

(34) 

where the brace notation of Eq. ( 19) has been invoked (see 
Table IV). Manipulations analogous to those leading to 
Eq. (33) provide an equation for the internal-coordinate 
third derivatives: 

3N M  
V”~‘= C Vil~2~3~i1i2i3CP~,p~,p3)- C W ’CPI,PZP~} 

il izi3 9 

- fi v4cTiP,39 (35) 
Q 

in which the brace notation in the second term refers to the 
quantity 

Wn’a2-.a, [&yo . . . . p, y, . ..) &y2 . . . . . . . . Pg,... ] 

E ~1”2...Qn13,Y~..~“1 c”’ @  P,r*... P2rz”’ PJ,...’ (36) 

As shown by Eqs. (34) and (35), a direct linear transfor- 
mation between the Cartesian and internal cubic force con- 
stant matrices is never valid, even if the ab initio force field 
is determined at a stationary point and all the VQ deriva- 
tives are zero. 

The analogous fourth-order transformation equations 
are 

vi,i2i3i4= 5 VPIBpI{ili2i3i4}+ z VPl”[ BPlP2{ili2i&} 
PI PIP2 

+ BP~P2{ili2,i3i4}] 

I 

M  

+ C VPlP~3BplP~3{ili2,i3,i4) 
PlP2P3 

M  

+ C VPlP~~4Bp1P~~4{il,i2,i3,i4} 
PlP2P3P4 

and 

(37) 

3N 

VPiP2hP4= c v. 

ili#ji.+ 
r,i2i3i4Ai’i2i3i4CPl~P~P2,P~} 

- f? 1 wq1’tP1~P2p3p4~+ wq1{Pl?)2~P~4)l 
I1 

- ! ~q1q2~1q2~p~2,p~4~- 2 v”1$p2pg4 
41q2 41 

(38) 

Thus, to determine Cartesian derivatives through fourth 
order from internal-coordinate force constants, Eqs. (30), 
(32)) (34)) and (37) are utilized directly. In contrast, to 
determine quartic force fields in internal coordinates from 
Cartesian derivatives, Eqs. (3 1)) (33 ), (35 ), and (38) are 
applied in succession, at each step using the lower-order 
results given by the previous transformation. Note that by 
sequential forward and backward transformations through 
intermediate Cartesian representations, Eqs. (30)-( 38) fa- 
cilitate general nonlinear transformations of molecular 
force fields between different internal coordinate sets. 

As illustrated above, the general procedure for gener- 
ating the set of nth-order transformation equations begins 
with the direct differentiation of the (n - 1) th-order Car- 
tesian derivative expression, thus allowing Vi,iz,,i, to be 
evaluated from the internal-coordinate derivatives 
{VPIP~-PK;K = 1,2,...,n}. By multiplying the result by 
Az,A:2...A;n and summing over il,i2,...i,,, a relationship be- 
tween particular v41q2..qn constants and the set { Vili2.,i,} is 
found which involves the lower-order derivatives 
{ VP’P2-PK;K = 1,2,..., n - 1). Rearrangement and reindex- 
ing yields the final form for the internal derivatives 
VJ’IP~-P~. With the aid of several new definitions, the gen- 
eral transformation equations can be written in the follow- 
ing abstract form: 

YJKn) 
z BpIp2.pKc~~~~‘(ili~..in)} 

I .Y=l 
(39) 

V~IP~‘.‘P~, E Vi,i,.,.i,A”“..‘n{P,,P2,...,Pn)- ~ Vq1c13:P,., p 
n-1 

. n- K-2 ; ybTn) v4’q~..qKC{~~~)(p~~..pn)} 
. . ‘,Q..Jn 41 q,qp..q‘y I I’.= 1 

J+‘q’q2-‘-‘{~~_Ki=) (p$+pn)} . 1 (40) 
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TABLE V. Number of partitions [YJK,n), Yb(K,n), .YJK,n)] in the sums of Eqs. (39) and (40) for quintic through octic transformations. 

n\K 2 3 4 5 6 I 

5 C&1,3) c7-,0,1) ( LW) . . . . . . . . . 
6 (X&4) C&1,2) Gw,0) (LW) . . . . . . 
7 (32S) (4,134) (3,0,1) w40) (LW) . . . 
8 (433 (4,176) (5,V) (3,0,0) wwN (LW) 

The related operators .PirF ,,. LQ) for y=a, b, and c partition lists of n elements into K segments under the restriction that the 
initial lexical ordering is maintained. In symbolic form 

pF;“’ r ” (ala>.. % I = (ffiffz.~~~jl~~jl+*~jl~2...~j2~...~~jK~2+*~jK~2+i.~~~jK~l~~jK~l+i~~~~jK)~ (41) 

where the upper segment boundaries are indexed as ( j,, j,, j,,..., j,- ,, jK), the corresponding segment lengths are (I& 
= j2- j,, I,= j3- j2, . . . . I,= j,- j,-, ), and j,=n. The particular partitions included in each summation over N are 
governed by sets of rules which apply for the different cases y=a, b, and c. If y=a, then N enumerates all partition 
operators for which the segment lengths sequentially decrease, i.e., ll>Iz>* ** >I,,. The operators included for y=b are the 
same as those for y=a except that all instances in which a segment length of 1 appears are excluded. For y=c, the 
segment-length rules are &I,>. . . >I, and I,+1 for i>2; I, is unrestricted. In Table V the number of partitions in each 
sum, Y,(K,n), is given for n=5,6,7,8 and K=2,3 ,..., n- 1. 

Because the ab initio determination of complete sextic force fields is becoming increasingly realistic,” it is worthwhile 
to report the explicit forms of the sextic transformation equations as illustrative applications of Eqs. (39) and (40). 
Specifically, 

Vili2i3i4i5i6=; 5 Vf’*@‘l{ili2i3i4i&}+ z VJ’@2[ BPIP2{’ . . ’ . 1112y4&) + Bf”J’2{ili2i3i4,i&} + Bp*p~{ili2i3,i4isi~}] 
Pl PIP2 

+ ;- vplP2P3[ BpIP2P3{. . 1112i3i4,i5,i6} + BP~P~~{ili2i3,i4is,is) + BP’P2J’3{ili2,i3i4,isi6)1 
PlP2P3 

M  

+ 2 VP*P~3p4[ Bp~p~~~p4(ili2i3,i&,i6) + Bp*p2p3p4Cili2,i3i4,is,i6)] 
PlP2P3P4 

M  M  

+ c VpIpflp@5 Bp~p~~~~(ili2,i3,i4,i5,i6) + 1 Vp~p~~~~6Bp’~~~~6~il,i2,i3,i4,i~,i~} (42) 
PlP2P3P4P5 P1P2p3p4p9’6 

and 

VPlPsmPsP6, V~l~2~3~4~s~6~i’i2i3i4isi6cpI~P2~P3~P4~P~~P~}~ E Vq’q:pflgg+,b- f? vlq2 i ~1q2b?%P3&@~6) 
i l i2i$& 41 4142 

+ ~1q2~P~~~4@~6~ I- ? 

M  

p ‘q2q3c4’q2q3~P~2~P~4,P5p6)- 2 [ wq’-h&h?k?~63 
414243 41 

+ ~q1-hh&h?~6~+ ~q1-hk?33~P@r963+ wq1-h2P~4#@6}1 

. 

- : [ ~1q2{Pl,P~f14~P~6),+ wq1q2ih2~P~4~P~6~1 f 
4142 

(43) 

in which the nonvanishing terms arising as the index K in C. Selection of shift coordinates 
Eqs. (39) and (40) increases are listed in order. The 
clearly discernible structure of Eqs. (42) and (43) belies The key principle embodied in the nonlinear transfor- 

the complexity therein; for example, the mation equations of the preceding section is that the non- 
wq1q2{pl,p~&,p&} contribution alone involves a total of vanishing internal gradients which arise when an ab initio 
60 distinct terms. Indeed, the plethora of individual terms force field is computed at a nonstationary reference geom- 
in the sextic transformation equations is a hindrance to 
their practical implementation. 

etry in fact contribute to all higher-order derivatives in 
alternate Cartesian- and internal-coordinate representa- 
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tions. Consequently, an improper choice of shift coordi- 
nates in Eq. (3) can engender anomalous higher-order 
force constants in a given representation, thus warranting 
considerations of the analytical underpinnings of the selec- 
tion of the shift coordinates. 

The choice of Cartesian coordinates for the shift term 
in Eq. (3) leads to spurious characteristics of the shifted 
surface. Consider the expansion 

V(X)= VO+ T Vi,Xi,+i E Vi,i2Xi,Xj2 
4 ‘1’2 

1 3N 
+z ,&. vili2i3xi,xi2xi3 

‘1’2’3 

+A . z. vi,i2i3i4xi,xizxi3xi4+ * *‘*. (4-4) 
rl’2’3z4 

While V(x) must remain unchanged upon an arbitrary 
rotation of the entire molecular system, the individual 
terms in Eq. (44) are not rotationally invariant on an order 
by order basis. Therefore, the application of the shift term 
using Cartesian coordinates, i.e., mere neglect of the linear 
term in Eq. (44), must be considered invalid because this 
shift term contains rotational dependence and thus the re- 
sulting shifted surface does also. One manifestation of this 
rotational dependence arises whenever the harmonic ap- 
proximation is used to determine the vibrational normal 
modes of a molecule via diagonalization of the mass- 
weighted Cartesian Hessian at a nonstationary point. The 
eigenvalues for the rectilinear translational modes are rig- 
orously zero, regardless of the choice of reference geome- 
try. 55156 However, the eigenvalues corresponding to curvi- 
linear rotational motions are equal to zero only if the 
quadratic force field is computed at a stationary point, 
because the presence of any rotational variable which has 
the same symmetry as a vibrational coordinate will effect 
coupling of rotations to internal modes if nonzero forces 
exist. The resulting rotational “frequencies” may be as 
much as a few hundred cm-’ in magnitude, and if low- 
frequency vibrations are present in the molecule, the 
vibration-rotation mixing may be considerable. In the 
present context the existence of spurious rotational fre- 
quencies is attributed to the rotational dependence of the 
underlying shifted potential energy surface on which the 
vibrational analysis is formally based. 

The most obvious procedure for circumventing the 
coupling of vibrations to rotations at a nonstationary point 
involves the transformation of the Cartesian derivatives to 
some set of internal coordinates according to Eqs. (3 1) 
and (33) followed by the utilization of the FG matrix 
method*’ to determine the vibrational frequencies and nor- 
mal modes of the molecule in the internal space. In es- 
sence, this approach amounts to the application of the shift 
term in Eq. (3) using the working set of internal coordi- 
nates because the internal forces in this representation are 
completely neglected in solving the vibrational secular 
problem. Therefore, the final vibrational frequencies are 
not unique, as discussed in the Sec. II above. For example, 

at the DZP RHF level of theory,” the predictions for the 
w1 (a, ) , w2 (a, ) , and w3 ( b2) harmonic vibrational frequen- 
cies of ozone obtained at the experimental geometry72 are 
1221, 726, and 747 cm-‘, respectively, if the two O-O 
bond distances and the O-O-O valence bond angle are 
used as the internal coordinates but 1282, 768, and 709 
cm-’ if the nonbonded O-O distance and the two nonva- 
lence O-O-O angles are employed. 

The effects of various shift terms are elucidated by 
appropriate expansions of the shifted potential energy sur- 
face. Consider the expansion of 9 in Eq. (3) in terms of an 
intermediate set of Cartesian coordinates: 

~p-~s)sfift= ~ Bf,Xi, +i ~ B~,i2Xi,Xi2 
4 11’2 

1 3N 
+z ,z, BT,i2i3xi,xi2xi3 + * * * . (45) 

‘1’2’3 

By employing Eq. (45) in conjunction with Eq. (3 1)) it is 
found that73 

1 3N 
+z ,z, ui,i2i3xi,xi2xi3+ * * ‘7 

[1*2’3 

in which 
(46) 

Ui,i,...in=GT(B,BT) -lDiliZ...in . (47) 

In Eq. (47) the pth element of the M-dimensional vector 
Di,iz,,i, is simply B~,i2,i,, and the internal gradient vector G 
is equal to Bib, where h contains the Cartesian gradient of 
the potential energy function at the reference geometry. By 
subtracting Eq. (46) from Eq. (44) and transforming the 
resulting surface to a representation involving a general set 
of internal coordinates ‘{s,}, one obtains 

1 M 
P’fi(s;9) = vo+z c i7P’P’sp,.sp2 

PIP2 

1 M 
+; 2 i7P’~~3sp,sp2sp3+~~ *, 

PIP2P3 

(48) 

where the transformed force constants are given by 
3N 

?p:pIp2= C ( Vi,i2- Ui,i2)Ai1i2(P1&Q, 
i, i2 

(49) 

3N 

FPIP~J= C (Vi,i2i3- Ui,i2i3)Ai'i2i3CP~,P,,p3) 
il i2i3 

M 

- c WPbP2p317 
4 

(50) 

and higher-order analogs arising from Eq. (40)) assuming 
the quantity Wr is constructed according to Eq. (36) using 
the Vplp2 coefficients. Therefore, the shift term in Eq. (3) is 
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seen to remove the first-order term from Eq. (48) for all 
choices of coordinate sets {S?‘,} and {s,}, but the higher- 
order terms in the expansion of Shift in the set {s,) are 
concomitantly dependent on the selection of (~2~3. 

It is apparent from Bqs. (47), (49), and (50) that the 
contribution of the shift term to the higher-order force 
constants in Eq. (48) may become anomalously large if 
one or more of the following conditions are met: (a) the 
Cartesian gradient h is large in magnitude; (b ) the internal 
coordinate set {L%“‘,) is -highly curvilinear whence the 
Dili~..i, vectors are sizeable; and (c) the set CL%‘,) is nearly 
redundant and B,BT is almost singular. This last circum- 
stance can be particularly insidious, and a diagnostic for 
the linear independence of the set of coordinates used to 
form the shift term in Eq. (3) is thus desirable. In this 
regard note that the Uili2..i, quantities in Eq. (47) are in- 
variant to scaling of the individual internal coordinates. To 
gauge the relative importance of the (BIB:) -I factor 
therein, it is useful to employ a set of normalized internal 
coordinates for which the diagonal elements of B,Br are 
unity. The appearance of one or more small eigenvalues of 
the normalized BiBT matrix indicates a near redundance 
in the set {S?‘,) and predicts anomalously large Uili+, 
elements. In brief, it is not advisable to choose a set of shift 
internal coordinates which exhibits a singularity in BiB[ 
anywhere in the nuclear configuration space of concern. 
The set of standard internal coordinates for various molec- 
ular fragments recommended by Pulay et aZ.9ps3 is generally 
sufficient for the purpose of averting singularities. How- 
ever, it is clearly desirable to develop procedures for the 
construction of rotationally invariant shifted potential en- 
ergy surfaces without reference to any particular set of 
internal coordinates. 

D. Cartesian projection scheme 

A formalism whereby rotationally invariant shifted po- 
tential energy surfaces are obtained by implementing a pro- 
jection scheme directly in the Cartesian space would allow 
any implicit internal coordinate dependence of the associ- 
ated force fields to be circumvented. Consider an arbitrary, 
collective displacement of the Cartesian variables of the 
system which engenders both internal coordinate displace- 
ments according to 

3N 3N 

sp= C Bf,Xi,+i & Be. 
1 3N 

+ 4 ‘1’2 q~2Xt1X~2 3 ,T, Bf,i2i3xi,xi2xi3 
‘1’2’3 

1 3N 

+- 
24 

C 
i, i2i& 

Bf,i2i3j4xjlxi2xj3xj4+ * . . (51) 

as well as changes in the translational and rotational vari- 
ables TV The projection of the Cartesian displacement x 
onto the internal space can be performed to all orders by 
neglecting the associated changes in the external variables 
and substituting the internal coordinate variations given by 
Eq. (51) into Eq. (7). The relationship between the pro- 

jected displacement x* and its antecedent vector x thus 
becomes 

3N 

X,* = C  Pmilxi, +!j 

4 

1 3N 

. C  pcr+i2i3i4xi,xi2xi3xi4 + ’ * ’ 7 
‘1’2z314 

where 

PO;, = f Ai, BT,,’ 
Pl 

(53) 

Pgi,i2 = 5 AFlBT,,i2 + 2 A~,p2~1P2Cil,i23, 
PI PlP2 

(54) 

M  M  

p . ..= 
‘=1’2’3 

c A;, ~~~~~~ + c A~lp2Bp1p2C4h,id 
Pl PIP2 

M  

+ 1 A,q,,Bp1p~3Cil,i2,i33, 
PlP2P3 

(55) 

and 
M M  

Poili2i3i4= C AP”I B~~i2i3i4+ C Ap4p2 [ Bp,p2CV&A3 
PI PIP2 

+ Bp,p2{ili2,i3i4)] 
M 

+- c A~,,~,Bplp*3(i~i2,i3,i43 
PlP2P3 

M  

+ c A~lp,,4Bp1p**4Ci~,i2,i3,i43~ 
PIP2P3P4 

(56) 

Note that Pgi, is an element of the conventional first-order 
projection matrix onto the internal space,74*75 i.e., P=A,B, 
=uBT(BluBT);’ B,. The sums in Eqs. (53)-(56) run 
over the particular set of internal coordinates employed for 
the projection in Eq. (5 1); however, it is shown in Appen- 
dix A that Poi, and its higher-order counterparts are inde- 
pendent of the chosen set {sp3 and can actually be computed 
without reference to internal coordinates. 

A shift term in projected Cartesian coordinates can 
now be defined: 

3N 

f(x*> c vc& 

3N , 3N 4 3N 
= C  vi,xi, +i 2 Ci,i2xi,xi2+~ .x, ci,i2i3xi,xi2xi3 

4 11’2 lIl2’3 

+$ . E. ci1i2i3i4xi,xi2xi3xi4+ * ’ ’ 
v2i3’4 

(57) 

in which the form of the linear term in x is a consequence 
of the matrix relation B,P=B,, and the expansion coeffi- 
cients are determined by 

(58) 
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The use of f(x*) as the shift term in Eq. (3) removes the 
dependence of phift on 9 and effectively modifies the orig- 
inal Cartesian force constants to V+. 

Alternate forms of Eq. (58) can be derived which 
make the c- . I,,?..i, quantities more facile to computation and 
more amenable to interpretation. In the particular case of 
Ci,i2, substitution into Eq. (58) of V, from Eq. (30) and 
Poi,i2 from Eq. (54) yields 

ciliz=; P’[ ; ( $%544BG2 

M  I 3N \ ‘I 

+ z3 ( ; % ‘Ab)8~B:]* (59) 

The first term in parentheses can be reduced via Eq. (8), 
and the second term in parentheses can be replaced accord- 
ing to Eq. ( 16)) thus giving 

M  

cili2= 1 VP’ Bti2- 
PI ( 

T~B~j2J’jlilJ’j2i2) 
id2 

(60) 

A final form for Ci,iZ is obtained by replacement of the last 
factor in parentheses in Eq. (60) using Eq. (32) : 

ci,i2= F (sj,i2sj2i2-pj,ilpj2i2) 
jlj2 

( 
M  

X Vjlj2- C VP’P’B4’ BP2 
PIP2 

Jl j2 

= vili2- F vjl j2pjli,pj2i2 * 
Ah 

(61) 

Note therein that the terms involving Vp,p2 cancel once 
B,P=B, is employed as before. As a consequence of Eq. 
(61), the projected, quadratic Cartesian force constants 
resulting from the shift term f(x*) in Eq. (57) are given 
by 

3N 

qi2= Vi,i2-cili2= C  vj,j2pjlilpj2i2 * 
jlj2 

(62) 

This projection formula has been utilized in previous stud- 
ies74 and arises directly from the fact that to first order 
x* = Px. The purpose for presenting the derivation of Eq. 
(62) here is to illustrate the formalism by which the pro- 

jection formulas for Cartesian force constants of all orders 
are obtained. 

The manipulations required to derive the third- and 
fourth-order analogs of Eq. (62) are tedious and thus are 
not detailed here. The first step ensuing from Eq. (58) 
involves the replacement of V, P~;,i2i3~ and Pofli2i3i4 by the 
expressions in Eqs. (30), (55), and (56), respectively. In 
turn the first terms in Eqs. (55) and (56) give rise to 
factors involving the internal force ( VP) contributions in 
Eq. (34) and (37), thus facilitating substitutions which 
ultimately allow all terms involving first derivatives to be 
eliminated. After extensive rearrangements all quantities 
involving internal coordinate derivatives can be cancelled 
to provide forms containing only higher-order Cartesian 
force constants. The final results for the projected cubic 
and quartic Cartesian force constants are 

3N 

= C  vjl j2j3pjlilpj2i2pj3i3 i- 
ilhh 

+ pjli2pj2ili3 + pjli3pj2ili2 1 (63) 

and 

3N 

C 
Ai2 

vj, j2 (pjli,pj2i2i3 

3N 3N 

=cv jl j2j3 j4pj,ilpj2i2pj3i3pj4i4+ C  
jhhj4 jl j2A 

vj, j2j3 ~pj,ilpj2i2pj~i~i4+pjlilpj2i3pj3i2i~+pjlilpj2i4pj3i2i3 +pjli2pj2i3pj3i,i4 

3N 

+pjli2pj2i4pj3ili3 +pjli3pj2i4pj3ili2) + C  vj, j2~pjlilpj2i2i3i4+pj,i2pj2ili3i4+pj,i3pj2i,i2i4+~j,i4~j2~,i2i3 
id2 

+pjli,i2pj2i3i4+pjli,i3pj2i2i4 +pjli,i4pj2i2i3> * (64) 

In examining Eqs. (62)-( 64)) two salient features become apparent: (a) The projected Cartesian derivatives of order 
n can be determined by utilizing projection matrices only through order n - 1. Thus, by reducing the various cases of Eq. 
(58) to Eqs. (62)-(64), the computation of the nth-order projection matrix is obviated in the determination of the 
projected nth-order force constant matrix. For example, Eq. (64) allows V$2i3i4 to be determined by using PO;,* Po;,i2y and 
P~i,i2i3 without P, i i i , 2 3 $. (b) The leading contributions to the projected nth-order Cartesian derivatives merely arise from 
a linear transformation of the corresponding unprojected derivatives via the first-order projection matrix P. However, to 
obtain the projected higher-order force fields properly, this linear transformation alone is not sufficient, as contributions 
involving lower-order force constants and higher-order projection matrices must be included, 
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Replacement of ci1i2, ci,i2i3, and ci,i2i~i4 in Eqs. (62)-( 64) according to Eq. (58) provides translational and rotational 
invariance relationships among the Cartesian force constants of various orders: 

3N 3N 

Vi,$- C vj,jzpj,ilpjzi2= C  vj,pjlili2 7 

id2 il 

(65) 

3N 3N 

Vi,i2i3- Vjl j2j3pjlilpj2i,pj,i~~ C  vjlpjlili2i3 + C  vjl j2(pjli,pj2i2i3 +pjli2pj2ili3 +pjli3pj2ili2) 3 (66) 
i&.i> il ili2 

and 
3N 

vili2i,i4- C  vjlj2j3j4pjli~pj~i?pili3pj4i4 
jlj2kj4 

These results reveal that for every n greater than 1, a re- 
lationship exists between the Cartesian force constants of 
order n and all Cartesian lower-order derivatives of order 1 
to n - 1. The origin of these invariance relationships is elu- 
cidated if Eq. (7) is substituted into Eq. (44) and it is 
recognized that all terms involving each power of the ex- 
ternal displacement coordinates {rq} must sum to zero. 
Alternatively, by exploiting the equivalence of the expan- 
sion of V(x) in projected and unprojected Cartesian vari- 
ables, 

V(X) = nzl f . C  Viliy.inxi1xi2~*-xin 
* q+.i, 

= nz, i . C  Vili2..inx~xx$*~~x~~ 
* qr,...i, 

(68) 

these invariance conditions can be extracted using Eq. 
(52). It is noteworthy that Eq. (68) and the invariance 
conditions ensuing from it provide a straightforward ap- 
proach to the regeneration of Eqs. (62)-(64) for the pro- 
jected Cartesian force constants on the basis of Eq. (58). 
In Appendix D an outline is given of the relationship be- 
tween Eqs. (65)-( 67) and the translational and rotational 
invariance conditions utilized by others76 for analytic de- 
rivative evaluations in electronic structure calculations. 

IV. COMPUTATIONAL DETAILS 

Ab initio results for the FZ, NZ, F,O, and N20 mole- 
cules are reported in various parts of this paper as repre- 
sentative numerical case studies of the determination of 
anharmonic molecular force fields at nonstationary refer- 
ence geometries. The atomic-orbital basis sets employed for 
nitrogen, oxygen, and fluorine are denoted as DZP, 
TZ(2dlf), and PZ( 3d2flg). The double-c sp sets in the 
DZP basis for each atom were comprised of the (9s5p) 
Gaussian primitives of Huzinaga” as contracted to (4~2~) 

I 

by Dunning;78 similarly, the sp functions of the TZ( 2dlf) 
sets consisted of Huzinaga-Dunning ( lOs6p/5s3p) con- 
tractions.““’ In the “penta’‘-g PZ(3d2flg) case the sp 
sets were constructed from ( 13s8p/Ss5p) contractions of 
the primitives of Partridge” according to (6,1,1,1,1,1,1,1) 
and (4,1,1,1,1) schemes for the s and p functions, respec- 
tively. The polarization functions complementing the sp 
core of the DZP basis set involved single sets of d-type 
functions with the exponents a,(N) =0.80, ad(O) =0.85, 
and CQ( F) = 1.00, which are representative optimal expo- 
nents for uncorrelated wave functions.8’ For the 
TZ( 2dlf) and PZ( 3d2flg) basis sets, correlation- 
optimized polarization function exponents were employed, 
as given by Dunning.82 The exponents for the 2d, 3d, 1 f, 
2 f, and lg sets are, in order: nitrogen, (0.469, 1.654), 
(0.335,0.968, 2.837), 1.093, (0.685, 2.027), 1.427; oxygen, 
(0.645, 2.314), (0.444, 1.300, 3.775), 1.428, (0.859, 
2.666), 1.846; and fluorine, (0.855, 3.107), (0.586, 1.725, 
5.014), 1.917, (1.148, 3.562), 2.376. In the DZP basis the 
d sets contained six Cartesian components, while the po- 
larization functions in the TZ( 2dl f) and PZ( 3d2f lg) ba- 
sis sets consisted of real combinations of only the true 
spherical harmonics for 1=2, 3, and 4. 

Reference electronic wave functions were determined 
in this study by the single-configuration, self-consistent- 
field, restricted Hartree-Fock (RHF) method.3*83V84 Dy- 
namical electron correlation was accounted for by the 
coupled-cluster singles and doubles method (CCSD) ,85-go 
augmented in most cases by the addition of a perturbative 
contribution from connected triple excitations 
[CCSD(T)].g1,92 In all correlation treatments the 1s core 
orbitals were excluded from the active space. Likewise, the 
highest-lying Is* virtual orbital for each atom was frozen 
in the correlation procedures, all of these orbitals lying 
higher than 20 a.u. in the DZP and TZ( 2dl f) computa- 
tions and above 150 a.u. in the PZ(3d2f lg) determina- 
tions. The electronic structure computations reported here 
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were performed by various implementations of the pro- 
gram packages TITAN93 and PSI.94 

The evaluation of quartic force fields was facilitated by 
analytic gradient techniques for the CCSD(T) method95 
and by analytic derivative methods from first through third 
order for RHF wave functions.2t6p7*34Y9”99 All DZP RHF 
cubic and lower-order force constants were determined an- 
alytically, whereas the corresponding quartic force con- 
stants were found numerically from finite differences of 
analytic third derivatives using internal-coordinate dis- 
placements sizes of *to.005 A or *O.Ol rad. For F20 the 
DZP CCSD(T) quartic force field was evaluated with the 
aid of carefully constructed higher-order difference formu- 
laslcc using analytic gradient data computed for 10 single 
and 8 double internal-coordinate displacements. The accu- 
racy of this approach has been demonstrated previously in 
computational studies involving RHF and CISD anhar- 
manic force fields of several small polyatomic mole- 
cules.“‘12 For the linear NzO molecule, 10 single, 12 dou- 
ble, and 2 triple internal-coordinate displacements100 
sufficed to determine the complete quartic force fields at 
the CCSD and CCSD(T) levels of theory from energy 
points computed to high precision (lo-” a.u. or better). 
The step sizes employed to generate the grid of energy and 
gradient data for F20 and N20 were 0.01 A and 0.02 rad. 

The nonlinear transformation equations of Sec. III B 
were implemented to fourth order in the program 
INTDER,~~ which performs both forward and backward 
transformations among internal- and Cartesian-coordinate 
force constants and thus provides for the representation of 
a given force field in any alternate coordinate set. The 
Cartesian projection scheme detailed in Sec. III D and Ap- 
pendixes A-C was also coded in INTDER. Results for the 
projected Cartesian derivatives were tested by first trans- 
forming selected Cartesian force fields at nonstationary 
points to arbitrary internal coordinate representations 
while neglecting the Cartesian gradients and then trans- 
forming the internal derivatives back to the Cartesian 
space. Such sequential transformations effectively elimi- 
nate the rotationally variant parts of the Cartesian force 
field arising when the Cartesian gradients are discarded, 
thus constituting a circuitous route to the force constants 
given directly by the Cartesian projection scheme. Most 
quartic force fields were also transformed to reduced nor- 
mal coordinate representations, after which vibrational an- 
harmonic constants (Xii) and vibration-rotation interac- 
tion constants (o$) were determined using formulas”’ 
derived from second-order perturbation theory as applied 
to the standard vibration-rotation Hamiltonian57~101-1W for 
semirigid molecules. The utility of such vibrational analy- 
ses has been investigated extensively in the systematic stud- 
ies of vibrational anharmonicity in linear and asymmetric 
top molecules by Allen and co-workers.““’ 

V. CASE STUDIES 

A. Diatomic molecules-N, and F2 

In Sec. III C theoretical considerations were presented 
concerning the choice of internal coordinates used to ob- 

TABLE VI. Analytic results for the expansion coefficients in the diatomic 
shift term.= 

Shift coordiriate 

r !5 P W u 

C, 1 1 1 1 1 
err 0 -r;’ -2r;’ -P 0 

cm 0 -2 
re 6rL2 P’ -2a* 

crrrr 0 -3 
re -24rL3 4’ 0 

‘See Eq. (69) of the text. 
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tain the shifted potential energy surface in Eq. (3). It is 
instructive to briefly revisit the N2 and F2 paradigms in 
order to clarify the issues of relevance. As shown in Eq. 
(47), the degree of curvilinearity in the internal coordi- 
nates, which governs the magnitude of the Dili2...i, vectors, 
has important ramifications concerning the effect of the 
shift term on higher-order derivatives. To investigate this 
effect, five coordinates (L??) are considered here for the 
shift term: the simple bond distance r, the Simons-Parr- 
Finlan coordinate p= (r-r,)/r, the Morse coordinate 
w = 1 -exp[ -fi( r- r,)], and two alternative coordinates 
c=exp(p)-1 and u=tan-‘[&r-r,>]. The Cartesian pro- 
jection scheme is equivalent to the selection of simple bond 
distances for the shift term in the case of diatomic mole- 
cules. The shift contribution for each of the coordinates of 
concern can be expanded about r, to provide a power series 
representation of the shifted potential energy curve in 
terms of the bond distance r and the corresponding gradi- 
ent f,: 

Yhift(r;9) = V(r) -f, c,(r-r,) +2 (r-r,)* 
1 

C*t-t. C Wi- 
+- (r-re)3+- (r-re)4+*.* 6 24 1 

=$ (r-rJ*++ (r-re)3 

(69) 

In Table VI analytic results are given for the c,., c, c, and 
C rrrr coefficients. In Table VII numerical values for the 
modified force constants f*, f*&, and f*,,,, are listed along 
with associated spectroscopic constants for N2 and F2 for 
the various choices of the shift coordinate. The fi parame- 
ters appearing in the Morse coordinate were determined 
from the experimental f,, and D, values according to 
~=[frp42w1’2; 
=2.9749 A-1.1o5 

hence, B(N2) =2.6884 and B(F2) 

The equilibrium bond lengths of diatomic molecules 
are typically predicted to be too short at the RHF level of 
theory, which means that the first derivative f r in Eq. (69) 
is generally positive at the exact equilibrium bond length r,. 
As indicated by the analytic results in Table VI, if the 
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TABLE VII. Force constants and spectroscopic constants for the DZP RHF shifted potential-energy curves 
of N2 and Fz.’ 

Shift coordinate 

r P W u(a= 1) u(a= 10) Expt.b 

N2 

27 - 183.30 27.398 - 183.65 27.79 1 - 185.45 28.184 - 186.42 28.558 - 182.43 27.398 -96.99 27.398 - 169.6 22.94 

f” 1037.0 1036.7 1044.8 1045.4 1037.0 1037.0 997.6 In-r 
% 2577.1 2595.6 2613.8 2631.1 2577.1 2577.1 2358.6 
%-G 11.06 10.68 10.56 10.36 10.85 -5.11 14.32 
a, 13.46 13.09 12.90 12.64 13.35 2.74 17.32 

F2 

5 - 36.45 5.745 -37.79 6.125 -40.93 6.961 -35.11 5.365 71.12 5.365 -36.39 4.703 
rrr 

-36.18 5.365 

P 194.94 194.75 199.52 209.07 194.94 194.94 ‘.. .-C-r 
we 979.1 1013.2 1046.1 1115.2 979.1 979.1 916.6 
we% 8.75 7.36 5.85 6.12 7.77 56.9 11.24 
a, 10.56 9.32 8.65 7.53 10.10 -3.52 13.85 

%ee Eq. (69) and the associated text. The reference bond lengths are the exptrimental r, values appearing 
in Table I. The force constants correspond to energies in aJ and distances in A; the o, and osx, values are 

. 

in cm-‘, and the a, values are in lo-’ cm-‘. 
bReferences 21-23. 

coordinates p and w are utilized, the effect of the shift term 
is then to increase the magnitudes of the fr,., f,,, and f,,,, 
constants. If c is used instead, the magnitudes of f,, and 
f rrr are increased but that off rrtr is decreased. Finally, the 
shift coordinate u has the intriguing property that the even- 
order force constants are not altered while the magnitudes 
of odd-order force constants are concomitantly reduced. 
Recognizing that representative ranges of r, and fi are l.O- 
2.5 A and 2-3 A-‘, respectively, the results in Table VI 
also reveal that for p and w there is a numerical aggran- 
dizement of the shift-term contribution to the force con- 
stants as one proceeds to higher order if aJ A-” units are 
used. In the case of coordinate U, a similar effect is seen for 
the odd-order force constants. In contrast, for c the shift- 
term effect decreases numerically as the order of the deriv- 
ative is increased. Perhaps the most salient result in Table 
VI is that for coordinates w and u the effect of the shift 
term can be made arbitrarily large by increasing the mag- 
nitude of the parameters p and a, which enhances the cur- 
vilinearity of the shift coordinate and gives rise to anoma- 
lously large Diliz.,i, vectors in Eq. (47). 

The numerical results in Table VII reveal substantial 
variations in the energy derivatives and spectroscopic con- 
stants derived from the various choices of shift coordinate. 
For N, and F, the original DZP RHF f rT derivatives at the 
experimental geometry are too large in magnitude, and 
thus by shifting these quantities to larger values, the p, c, 
and w choices diminish the agreement with experiment. 
The Morse coordinate is the most extreme in this regard, 
as w, is shifted from 2577 to 2631 cm-’ for N2 and from 
979 to 1115 cm-’ for F,. On the other hand, the shifts in 
w, for the f coordinate are much less significant. The same 
trends are observed for the anharmonic constants of the 
two molecules, i.e., the agreement with experiment be- 

comes successively poorer as the shift coordinate is chosen 
in the series r+ c + p --* w. Particularly striking is the fact 
that in going from r--i w the errors in w$, and a, for Fz 
increase from 22% to 46% and 24% to 46%, respectively. 
The data listed in Table VII also include two columns 
obtained from different choices of the coordinate v, one in 
which the parameter a= 1 A-’ and the other in which 
a=10 A-‘. It is noteworthy that in the first case the ac- 
curacy of the predicted constants is generally better than 
that for either p, 6, or w. However, by increasing param- 
eter a to 10 A-‘, unphysical values of f,,, wse, and ae 
result merely as a consequence of the high curvilinearity of 
the shift coordinate. For example, for F2 it is found that 
f,,,=71.12 aJAW3, a,=-3.52><10e3 cm-‘, and wp, 
=56.9 cm-‘, the first two constants being of the wrong 
sign and the last value a factor of five too large! In sum- 
mary, the data presented in this section show that the qual- 
ity of the theoretical force constants is not improved by 
choosing variants of the simple bond-distance coordinate r 
for the shift term. Indeed, substantial deterioration of the 
predictions may be engendered if the curvilinearity of the 
shift coordinate is large. 

6. F20 

It is well known that electron correlation is unusually 
important in describing molecules with O-F bonds,i°C1i2 
as indicated by the severe underestimation of equilibrium 
O-F distances typically observed in applying Hartree- 
Fock theory. For such molecules substantial improvements 
in predictions of force fields at the RHF level are thus 
anticipated by shifting the reference geometry to a nonsta- 
tionary point. Indeed, as shown in this subsection, the ox- 
ygen difluoride molecule constitutes a remarkable example 
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TABLE VIII. Theoretical predictions of the quartic force field of F20. 

Derivative 

R 
e 
RR 
RR' 
Re 
ee 
RRR 
RRR' 
RRe 
RR'8 
Ree 
eee 
RRRR 
RRRR' 
RRRe 
RRR'R' 
RRR'e 
RRee 
RR'BB 
Reee 
eeee 

DZP RHF//DZP RHF 

4 V 

[- 125.351 O.CQO 
[-35.011 0.000 

[ - 147.041 7.510 
r-31.491 0.840 
[- 12.671 0.380 
[-47.771 2.055 

[262.95] -46.495 
[34.16] - 1.979 

[-ll.Ol] - 1.917 
[27.67] -0.880 
[15.19] -3.381 
[71.97] -4.528 

[ -625.301 262.20 
[-18.111 16.99 

[57.62] 5.38 
[-79.841 -7.18 
[-27.811 4.11 

[37.43] 5.80 
[-51.591 7.72 
[ - 18.791 9.72 

[- 155.901 20.23 

DZP RHF//expt DZP CCSD(T)//exptb 

4 V VpW 4 V jmd Expt. 

[-113.271 0.4558 0.000 [-113.621 -0.1018 o.ooo .** 
[ -33.401 0.0369 0.000 [-33.441 0.0002 o.ooa **. 

[- 128.661 4.826 4.848 [- 128.951 4.537 4.530 4.1045 
[-27.361 0.614 0.591 [-27.171 0.802 0.809 0.8595 
r-11.641 0.232 0.219 [-11.661 0.209 0.209 0.2209 
[-45.931 1.663 1.984 r-46.091 1.498 1.427 1.4709 

[223.15] -31.344 -31.368 [222.92] -31.570 -31.56 -29.256 
[28.33] - 1.450 - 1.442 [28.12] - 1.667 - 1.670 -2.096 

[-9.291 - 1.389 - 1.390 [ -9.271 - 1.367 - 1.364 - 1.501 
[24.29] -0.463 -0.461 [24.33] -0.424 -0.427 -0.462 
[ 14.281 -2.613 -2.499 [14.08] -2.812 -2.840 - 2.6843 
[69.75] -3.428 -3.418 [69.62] -3.554 -3.554 -3.5837 

[-525.771 169.38 169.41 [-521.451 173.7(22) 173.6 187.97 
[- 16.331 11.16 11.16 [-23.891 3.6(5) 3.6 . . . 

[47.48] 4.28 4.29 [47.20] 4.0(2) 4.0 . . . 
[-61.771 -4.68 -4.69 [-55.391 1.7(9) 1.7 . . . 
[-23.931 2.43 2.43 [--23.611 2.75(6) 2.76 . . . 

[31.88] 4.38 4.33 [31.10] 3.6(2) 3.7 (4.60) 
E-45.771 5.71 5.76 [-44.881 6.6(2) 6.6 . . . 
[- 18.631 7.34 7.34 [- 18.491 7.48( 1) 7.48 . . . 

[ - 152.981 15.65 15.57 [-159.931 16.20( 1) 16.22 (16.10) 

‘Derivatives of the electronic energy E, are given in brackets along with the derivatives of the total energy V. The column headings are denoted as 
(method)//(geometry). The entries under VP”” are constants obtained from the:omplete quartic force field by application of the Cartesian projection 
scheme described i! the text. Units are consistent with energy in aJ, distances in A, and angles in radians. The experimental geometry is the r, structure 
R(O-F) = 1.4087 A  and e(F-O-F) = 103.32”. 

bNumerical uncertainties arising in the quartic force constants at the DZP CCSD(T) level are given in parentheses. 
‘See Ref. 118. Values in parentheses were constrained to the ab initio results of Ref. 13. 

in which higher-order force constants determined using 
highly correlated methods are essentially reproduced by 
RHF predictions at shifted geometries. 

M icrowave studies by Pierce, DiCianni, and Jackson1’3 
in 1963 and by Morino and Saito114 in 1966 of F,O in 
several low-lying vibrational states established the ro, r, 
and r, structures of this C,,symmetry molecule; in partic- 
ular, R,(O-F) = 1.4053 ..& and f3,(F-O-F) = 103.07”.‘14 
Early low-resolution infrared work* l5 has largely been sup- 
planted by recent high-resolution IR studies’16,“7 of the v2, 
Y], and 2~~ bands, the latter two of which are involved in a 
strong Fermi resonance. The fundamental vibrational fre- 
quencies of F,O are currently accepted as vl(aI) =92&l 
cm-‘, v2(al) =460.6 cm-‘, and lrs(b2) =831 cm-1.“61”7 
The most recent experimental analysis of the vibrational 
spectrum and potential energy surface of F20 was per- 
formed by Saarinen, Kauppi, and Halonen”’ in 1990, in 
which a partial quartic force field was obtained. In a 1988 
paper by Thiel et al. l3 the first state-of-the-art ab initio 

investigation of the anharmonic force field of F20 was re- 
ported. Therein the TZP RHF level of theory was shown 
to yield &(0-F) = 1.3428 A (a 0.06 A underestimation), 
whereas the analogous length at the TZP CCSD level was 
found to be 1.4085 A (within 0.004 A of experiment). 
Consequently, the most reliable force field obtained by 
Thiel et al. involved a m ixture of TZP CCSD quadratic 

and cubic force constants with TZP RHF quartic constants 
determined at the TZP CCSD geometry. In the present 
analysis the force field of Thiel et al. is improved by deter- 
m ining a full quartic force field at the DZP CCSD (T) level 
using the experimental structure114 R,,( O-F) = 1.4087 A 
and 8,,(F-O-F) = 103.32” as the reference geometry. In 
brief, not only is the accuracy of RHF predictions at non- 
stationary reference geometries investigated, but also cor- 
related force fields of F20 of the highest quality yet deter- 
m ined are presented, providing data on anharmonic force 
constants not readily determined in parallel experimental 
efforts. 

In Table VIII three separate predictions of the quartic 
force field of F,O are tabulated, as expressed in terms of 
the valence bond distances R (O-F) and R’(O-F) and the 
valence bond angle f3( F-O-F). The first set of data (DZP 
RHF//DZP RHF) is comprised of DZP RHF derivatives 
computed at the corresponding optimum geometry, viz., 
R,(O-F) = 1.3416 A and 8,(F-O-F) = 103.43”.13 In the 
second set of predictions (DZP RHF//expt), the DZP 
RHF level of theory is used to evaluate the force constants 
at the experimental r, structure. These constants are to be 
compared with the third set of predictions (DZP 
CCSD (T) //expt ) determined at the same experimental 
geometry with the highly correlated CCSD(T) method. 
For each’ theoretical procedure the derivatives of the elec- 
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tronic energy E, (in brackets) and the derivatives of the 
total energy V are tabulated, the electronic energy being 
related rather simply in atomic units to the total energy as 

TABLE IX. DZP RHF force constants of F,O in dimensionless normal 
coordinates determined at the experimental geometry by various proce- 
dures.” 

72 72 
V(R,R’,B) =E,(R,R’,B) +F+R’ 

Shift term in internal coordinatesb Cartesian 
projection 

Parameter (2 stre, 1 bend)’ (3 stre)d (1 stre, 2 bend)’ scheme 

81 
+(R2+Rf2-2RR’ cos f3)1’2 * (70) 

For the two procedures involving nonstationary reference 
geometries, additional sets of derivatives (VP’“‘) are listed 
in Table VIII as given by the Cartesian projection scheme 
of Sec. III D followed by a curvilinear transformation of 
the projected Cartesian force constants into the internal 
coordinate representation. Note that the projected first de- 
rivatives are rigorously zero by construction but that the 
higher-order vP“‘i constants are quite similar to the corre- 
sponding V derivatives, the significance of which is dis- 
cussed below. Experimentally derived force constants, 
where known, also appear in the table. 

The results in Table VIII demonstrate in a vivid 
fashion that most of the “correlation error” in the DZP 
RHF//DZP RHF derivatives is, in fact, a consequence of 
the geometry shift. If the change in the derivatives of the 
total energy V in going from DZP RHF//DZP RHF to 
DZP CCSD(T)//expt is considered to be the “correlation 
contribution” to the force constants, then in the case of 
fRR, fRRR, and fRRRR, 90.3%, 101.5%, and 104.9% of 
this contribution, respectively, is recovered merely by shift- 
ing the reference geometry of the RHF analysis to a non- 
stationary point. Perhaps even more striking is the fact that 
this degree of improvement is not restricted to the bond 
stretching derivatives of V alone, even though the geome- 
try shift is primarily an O-F bond length expansion with 
little change,in the F-O-F angle. For example, the percent 
of the “correlation contribution” to fee, feee, and fees0 

recovered by shifting the reference geometry is 70.4%, 
112.9%, and 113.6%, respectively. Similarly, in the case of 
the f RB, f RRB, and f RRRe series these percentages are found 
to be 86.6%, 96.0%, and 79.7%, respectively. The only 
total energy derivatives at the DZP CCSD(T) level which 
are not well reproduced by the DZP RHF//expt proce- 
dure are the three off-diagonal stretching constants fRRt, 

f RRRR’, and fRRR’R’. Finally, in comparing the 
DZP CCSD(T) force constants at the shifted geometry 
with those values which are known experimentally, it is 
seen that the agreement is excellent, and hence the entire 
force field at this level of theory must be considered very 
reliable. 

*I 991.95 995.43 1041.41 1010.54 
02 496.67 498.75 519.70 533.31 
03 962.33 960.65 938.93 967.50 
hII -229.5 -228.1 -210.6 -220.5 

2: 
-48.3 -49.8 -65.2 -57.4 
- 18.4 - 18.6 -22.5 -22.4 

2: 
-85.1 -85.5 -91.3 -82.4 

-276.4 -276.0 - 270.1 - 268.8 

k 
- 55.2 -57.6 -85.6 -74.1 

35.1 34.4 27.0 30.7 
42111 22.8 23.0 24.5 23.7 
42211 -3.2 -2.9 1.2 -0.3 
42221 7.3 7.1 5.5 5.7 

2:: 
19.6 19.7 20.8 18.5 
68.4 68.2 64.6 65.4 

43321 16.4 17.1 23.9 20.7 
43322 - 13.6 - 13.2 - 8.2 -9.8 
4 3333 43.9 44.1 45.8 43.6 

‘All values in cm-‘. Geometry: Rc(O-F)=1.4087 A and 6J,-,(F-G-F) 
= 103.32” (Ref. 114). The positive phases of normal coordinates 1 and 2 
are selected to correspond to increasing O-F bond lengths and an in- 
creasing F-G-F bond angle, respectively. 

t’The internal coordinates are defined assuming the numbering of the 
atoms is F,-G,-F,. 

‘A valence internal coordinate set comprised of the tw.o bond distances 
R( l-2) and R( l-3) and the bond angle 6(2-l-3). 

dA set comprised of the three internuclear distances R( l-2), R( l-3), and 
R(2-3). 

‘Comprised of the internuclear distance R(2-3) and the angles 6( l-2-3) 
and 0( l-3-2). 

for the diagonal bending constants is similar but less pro- 
nounced, the corresponding ratios being -0.999, -0.965, 
-0.953, and -0.869. In brief, it is clear that the balance of 
E, and V, terms is a key issue not only in the evaluation of 
stretching force contants but also in the prediction of di- 
agonal and off-diagonal constants involving the bending 
coordinate. In this regard it is remarkable that there is an 
essential reproduction of the DZP CCSD(T) electronic 
energy derivatives at the experimental geometry by the 
DZP RHF wave functions for all cases except the quartic 
RRRR’ and RRR’R’ constants. The mean absolute per- 
centage error in the DZP RHF//expt values of EF is only 
0.36%, and that for Ey only 0.47%. Excluding the two 
aforementioned spurious quartic constants, the corre- 
sponding error for EL”’ is a mere 1.77%. 

For every force constant in Table VIII, the magnitude 
of the electronic energy derivative is immense in compari- 
son to that of the total energy derivative, once again illus- 
trating the delicate cancellation of E, and V, terms dis- 
cussed in Sec. I. In the DZP RHF//expt case, the ratios 
EL/Vi, Ez/VG, ET/V;‘, and Ei”‘/Vt” for the diagonal 
stretching constants are -0.996, -0.964, -0.877, and 
-0.756, respectively, which is in accord with the observa- 
tion made previously for N2 and F, that the V, terms 
become increasingly dominant in higher order. The trend 

With the success of the DZP RHF//expt predictions 
in Table VIII, a careful investigation of the coordinate 
dependence of the resulting shifted potential energy sur- 
faces is necessitated. In Table IX DZP RHF//,expt quartic 
force fields in dimensionless normal coordinates are pre- 
sented as obtained by four different procedures. In the first 
set of results (2 stre, 1 bend), the shift term is applied 
using the standard valence internal coordinate set (R, R’, 
f3), whereas the second (3 stre) and third (1 stre, 2 bend) 
sets involve alternate choices of the shift coordinates (see 
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TABLE X. DZP RHF fundamental vibrational frequencies (vi), total 
anharmonicities (A,), vibration-rotation interaction constants (a!), and 
vibrational anharmonic constants (xii) of F20 determined at the experi- 
mental geometry by various procedures.’ 

Shift term in internal coordinates Cartesi;hn 
projection 

Parameter (2 stre, 1 bend) (3 stre) (1 stre, 2 bend) scheme 

VI 975.26 978.77 
v2 490.32 492.37 
v3 940.32 938.64 
Al - 16.69 - 16.66 
A2 -6.35 -6.38 
A3 -22.01 - 22.01 
4 0.535 0.864 
d -22.564 - 22.254 
4 19.623 9.129 
4 2.356 2.359 
a! 2.581 2.614 
4 3.522 3.527 
aF 1.122 1.135 
a2” 1.781 1.809 
4 2.456 2.451 
XII -3.906 -3.893 
x21 -4.274 -4.274 
x22 -0.344 -0.346 
x31 - 13.465 - 13.480 
x32 -7.040 -7.107 
Yn -5.879 -5.857 _--- 

‘All values in cm-’ extent the a! constants, which are in 10m3 cm-‘. For 
a description of the different procedures see footnotes a-e of Table IX. In 
all schemes the 20,--w, Fermi resonance term has been excluded in the 
perturbation theory analysis. 

the variations among the total anharmonicities is greater 
than 1 cm-‘. The variations in the vibration-rotation in- 
teraction constants in Table X are much greater, however, 
particularly for a:, a$, a$, af, and a$ The sensitivity of 
these constants to the shift term is disturbing in that the 
observed changes are at least as large as the errors expected 
a priori of DZP RHF a: values (on the order of 10% ) . “*** 

1024.84 993.89 While caution is thus dictated as to the effect of sundry 
512.70 527.24 shift terms on higher-order force constants, much of the 
916.71 945.93 

- 16.57 - 16.09 
fluctuation in the a: values may be related once again to 

-7.09’ -6.07 changes in the associated Wi frequencies. For example, with 
-22.22 -21.57 regard to the anomalous a? entry for ( 1 stre, 2 bend), the 

4.231 1.835 associated wi -ws difference is at least twice as large as in 
-19.113 -20.922 the other cases, and the Coriolis contribution to a? involv- 

13.948 14.044 
2.383 2.271 

ing a wr -w3 resonance denominator is known to make this 
2.982 2.723 constant very sensitive to the level of theory.i3 In sum- 
3.634 3.259 mary, the data in Tables IX and X clearly establish the 
3.147 1.103 shift-term dependence of spectroscopic constants predicted 
0.23 1 1.905 

2.161 
at nonstationary geometries, and while in most cases this 

2.438 
-3.740 -3.835 dependence is not pernicious, the merits of an unambigu- 
-4.278 -3.985 ous shift procedure are clear. 
-0.436 -0.240 In surveying the results in Tables IX and X, the.con- 

- 13.891 - 12.853 elusion arises that the valence (2 stre, 1 bend) set of shift 
- 7.977 -7.206 
-5.641 -5.771 

coordinates is slightly better than (3 stre) and significantly 
better than ( 1 stre, 2 bend) in reproducing experiment, a 
fact not surprising to aficionados of vibrational analyses in 
internal coordinates. Comparing the various harmonic vi- 
brational frequencies in Table IX to the experimental val- 
ues wr(ar)=945 cm-‘, w2(al)=469 cm-‘, and w,(b,) 
=844 cm-1,118 the (2 stre, 1 bend) and (3 stre) sets 
appear essentially indistinguishable in accuracy, whereas 
the corresponding (1 stre, 2 bend) predictions are quite 
erratic in that the accuracy of w, and w2 is deteriorated 
while the os value is significantly improved. Instructive 
comparisons can also be made for the vibration-rotation 
interaction constants in Table X, specifically, a:, a$, at, 
and a f, whose experimental values (in 10B3 cm- ‘) are 
1.286, -23.316, 19.514, and 0.239, respectively.‘14 The 
predictions for the (2 stre, 1 bend) case are in the very 
least reasonable in an absolute sense in all four instances; 
however, at is anomalous in the (3 stre) case, and both a: 
and a? are spurious for ( 1 stre, 2 bend). It would be 
important to be able to judge a priori if a particular set of 
internal coordinates will give rise to anomalous spectro- 
scopic constants. As discussed in Sec. III C, a diagnostic 
for this purpose is provided by the determinant of the nor- 
malized B,BT matrix. For the (2 stre, 1 bend), (3 stre), 
and ( 1 stre, 2 bend) sets of shift coordinates, the determi- 
nants in question are 0.75, 0.64, and 0.78, respectively, so 
that there are no near redundancies and no clear distinc- 
tions between the three choices on this basis. 

Having investigated the shift-term dependence of the 
DZP RHF//expt results for F,O, a strong argument can 
be presented for the use of the Cartesian projection scheme. 
First, the cubic and quartic VP’“’ constants in Table VIII 
are in all cases almost identical to the analogous total en- 
ergy derivatives obtained using the best set of internal shift 
coordinates (2 stre, 1 bend). Similar agreement is seen for 
all quadratic constants in the DZP CCSD(T)//expt case, 

footnotes b-e of Table IX). The last column in the table 
reports force constants obtained via the Cartesian projec- 
tion scheme.‘19 The variations in the sets of data in Table 
IX are significant but not blatant. The ranges of variation 
in the ol, w2, and w3 values are 4.9%, 6.9%, and 3.0%, 
respectively, of the harmonic frequencies given by the Car- 
tesian projection scheme. Such variations represent size- 
able fractions of the respective errors in these harmonic 
frequencies as compared to experiment (see Table XI), 
viz., 6.9%, 13.7%, and 14.6%. On a relative basis the 
ranges of variation in the $ijk and ~ijkl constants are much 
larger; for example, the 4111, #a~, $221, 4222, 95331, and 4332 
ranges are 7.9%, 29.4%, 18.3%, 10.8%, 2.8%, and 41.0%, 
respectively, of the corresponding Cartesian projection val- 
ues. It must be realized that some of these changes in the 
~ijk and ~ijk, values arise from variations in the underlying 
Wi values, because the definition bf the dimensionless nor- 
mal coordinate on which these cubic and quartic constants 
are based involves a normalization factor of u,!“. However, 
this effect only partially accounts for the observed trends 
and in some cases actually increases the range of values 
observed. 

In Table X spectroscopic constants are given which 
arise from the various normal coordinate force constants in 
Table IX according to second-order perturbation theory. 
In an absolute sense it is seen that the anharmonic con- 
stants xii and the total anharmonicities Ai are reasonably 
insensitive to changes in the shift term. In support of this 
characterization of the data is the observation that none of 
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TABLE XI. Complete quartic force fields of F,O in dimensionless normal coordinates determined from various nroiected DZP Cartesian force fields.a 

Anharmonic: RHF//RHF 
Harmonic: RHF//RHF 

RHF//RHFb 
CCSD(T)//expt 

RHF//exptbvC 
CCSD(T)//expt 

CCSD(T)//expt 
CCSD(T)//expt Expt.* 

WI 
@2 
03 

4 III 
4 211 
4221 

4222 

4 331 

$332 

v4111 
42111 

4 2211 
4 2221 
42222 

4 3311 

‘$3321 

4 3322 

4 3333 

1211.52 [976.50] 
586.64 r463.051 

1211.61 [904.57] 
-240.5 -347.1 

- 52.4 -65.4 
- 13.0 -24.7 
-91.8 - 127.8 

-301.7 -441.9 
-37.0 -81.3 

35.8 56.0 
23.0 36.1 

-4.9 -6.5 
7.5 11.1 

21.4 27.4 
71.0 116.9 
12.1 22.0 

- 16.3 -24.8 
42.4 78.6 

[976.50] 976.50 
[463.05] 463.05 
[904.57] 904.57 

-235.5( -240.4) -247.2 
-45.3( -39.6) -41.7 
-15.3(-19.8) -17.4 
-92.0( -94.3) -97.3 

-296.0(-296.1) -295.9 
-51.7(-52.1) -52.0 

_3.7*5(38.1) 35.2 
22.8(22.4) 22.6 

-5.O( -5.0) -5.5 
8.7(9.4) 9.6 

22.8(20.9) 21.8 
74.6(74.5) 73.3 
15.1(15.2) 15.9 

- 16.7( - 16.5) - 19.2 
49.9(49.9) 81.4 

944.93 
469.22 
843.86 

- 247.4 
-48.4 
-19.4 
-97.6 

-288.4 
-63.4 

‘All values in cm- ‘. The positive phases of normal coordinates 1 and 2 were selected to correspond to increasing O-F bond lengths and an increasing 
F-O-F bond angle, respectively. 

bathe RHF cubic and quartic force constants were first combined with CCSD(T)//expt first and second derivatives in the (2 stre, 1 bend) representation. 
The combined nonstationary force field was then transformed into the Cartesian space and projected as described in the text before the normal- 
coordinate force constants were computed. 

‘The values in parentheses were obtained by combining the RHF//expt third- and fourth-order projected Cartesian derivatives directly with the 
CCSD(T)//expt projected Cartesian harmonic force field. 

dReference 118. 

and only for f 08 is there any significant modification of the 
original DZP RHF//expt second derivatives in arriving at 
the yPrq predictions. Thus, the effect of the projection 
scheme on the total energy derivatives expressed in a 
chemically relevant set of internal coordinates is greatest in 
first order and then falls off precipitously in higher order, a 
gratifying observation. Second, of the total reduction of the 
harmonic frequencies in going from DZP RHF//DZP 
RHF to DZP RHF//expt (2 stre, 1 bend), most is ob- 
tained via Cartesian projection of the DZP RHF//expt 
force constants. Note that for w1 and ws, 201 and 244 cm-’ 
out of the 220 and 250 cm-’ shifts, respectively, are recov- 
ered by the Cartesian projection method. Third, the repro- 
duction of the (2 stre, 1 bend) ~ijk, $ijkb a?, A, and xii 
constants in Tables IX and X is generally good, and, in 
fact, excellent in all but a few cases. Finally, and most 
importantly, the Cartesian projection scheme is unambig- 
uous and averts spurious shift term effects which might 
arise from high curvilinearity or near redundance of the 
shift coordinate system. 

In Table XI data are presented which illustrate the 
recommended procedure for obtaining accurate anhar- 
manic force fields of small polyatomic molecules which are 
strongly bonded. In the third column of the table, the quar- 
tic force field of F20 in dimensionless normal coordinates 
appears, as determined by appending projected DZP 
RHF//expt Cartesian third and fourth derivatives to pro- 
jected DZP CCSD(T)//expt Cartesian second derivatives 
via two different schemes (see footnotes b and c therein). 

The agreement of the results obtained by both methods 
with the actual, projected DZP CCSD (T) //expt ~ijk and 
~ijkl constants is exceptional in all cases but &s. The 
disparity for this constant arises from the discrepancies 
mentioned above in the RRRR’ and RRR’R’ derivatives in 
Table VIII. The high accuracy of the DZP RHF//expt ~ijk 
and ~ijkl constants is mitigated somewhat if the corre- 
sponding DZP RHF quadratic force field is used in the 
transformation to dimensionless normal coordinates, pri- 
marily because the vP’“j value for fee is too large. Thus, it 
seems advisable to uncouple the harmonic and anharmonic 
components of the force field in performing such analyses. 
Finally, a comment on the misleading accuracy of the DZP 
RHF//DZP RHF results is apt. As shown in Table VIII, 
a substantial overestimation occurs for almost all of the 
internal coordinate derivatives obtained via the DZP 
RHF//DZP RHF procedure. It happens that the error in 
the quadratic constants balances the error in the cubic and 
quartic constants to give a fortuitously good set of predic- 
tions in Table XI. This effect is clearly exposed by using the 
more accurate CCSD (T) //expt quadratic force field with 
the RHF//RHF higher derivatives to obtain the ~ijk and 
~ijkl data set, as shown in the second column of Table XI. 
The severe overestimation of the magnitudes of those con- 
stants- is striking, and the anharmonicities derived from 
them are unreasonable. While a balance of errors may 
work to improve the values of $ijk and ~ijkl constants de- 
termined at poor reference geometries, to rely on such an 

J. Chem. Phys., Vol. 98, No. 4, 15 February 1993 

Downloaded 19 May 2006 to 157.181.190.84. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



effect to yield accurate results when a more viable option is 
available cannot be recommended. 

C. N20 

The rovibrational spectrum of the nitrous oxide mole- 
cule has been the subject of numerous theoretical and ex- 
perimental investigations.12c-‘34 Rotational Z-type doubling 
and the Fermi resonance between the v3 and 2~~ vibra- 
tional states have been given particular attention in the 
experimental efforts. Empirical anharmonic force fields, 
even through sixth order, have been constructed for NzO 
by various approaches: (a) numerical, algebraic contact 
transformations;‘20 (b) second-order perturbation the- 
0l-y; Et1 and (c) direct numerical diagonalization. 122J23 
Some of the higher-order constants in these force fields are 
likely to be phenomenological in nature, i.e., not directly 
correspondent with the associated derivatives of the poten- 
tial energy surface. A synthesis of these results is encum- 
bered by large variations in several of the empirical anhar- 
manic 4.2 and ~ijk, force constants reported by Lacy and 

‘122 Whiffen, Kobayashi and Suzuki,123 and Teffo and ChC- 
din. lzo For example, the ranges of the deduced values (in 
cm-‘) for &I, $221, and $3111 are -271.8 to -477.7, 38.7 
to 106.4, and -82.6 to +5.7, respectively. Such variations 
are maintained in internal-coordinate representations of 
these force fields. 

In a recent ab initio study, Allen and co-work- 
ers12 found considerable disparities between both TZ2P 
RHF//RHF and CISD//CISD force constants and their 
experimental counterparts. The force constants of Teffo 
and ChCdin,“’ which constitute the most recent empirical 
force field, are in accord with theory in many cases, but the 
constants involving the N-N bond stretch (7) and its cou- 
pling to the N-O stretch(R) are generally in poor agree- 
ment with the TZ2P RHF//RHF and CISD//CISD pre- 
dictions. For example, the (RHF, CISD) sets of value! for 
f,,, f,,, and fRrrr are (-191.2, -161.1) ,aJ Am3, 
(1074.1, 931.3) aJ Am4, and (8.754, 5.699) aJ Am4, re- 
spectively, as compared to the analogous experimental re- 
sults of - 133.6, 691.4, and 46.45. The optimum TZ2P 
bond lengths underlying the ab initio predictions are re( N- 
N)=1.0815 and R,(N-0)=1.1723 A at the RHF level 
and r,(N-N)=1.1073 and R,(N-O)=1.1809 A at the 
CISD level, the spectroscopically determined distances be- 
ing r,(N-N)=1.1273 and R,(N-O)=1.1851 A.lzo Be- 
cause the underestimation of the N-N bond distance by 
both the TZ2P RHF and CISD methods is substantial, a 
redetermination of high-quality ab initio force fields at the 
experimental r, structure is warranted to address the dis- 
crepancies present in the theoretical and empirical force 
fields. 

The issues pertinent to the practical determination of 
spectroscopic constants at nonstationary reference geome- 
tries were discussed at length in the F20 case study above. 
Therefore, the analysis here is restricted to the force field 
data represented in terms of the valence internal coordi- 
nates r(N-N), R(N-O), and e(N-N-O). The complete 
quartic force fields predicted for N,O at several levels of 
theory are given in Table XII. As shown therein, the DZP 

RHF diagonal constants for N-N stretching undergo large 
reductions in magnitude upon shifting the reference geom- 
etry to the experimental structure, an occurrence mani- 
fested in the 264 cm- ’ reduction in the w1 harmonic 
stretching frequency. In each case these changes improve 
the agreement with the experimental constants of Teffo and 
Chedin. 12’ The effects of the geometry shift on most of the 
other DZP RHF force constants are quite insignificant. 
Augmentation of the one-particle basis set to TZ( 2dl f) in 
the RHF predictions at the experimental r, structure leads 
to a further but less pronounced reduction in the size of the 
diagonal force constants involving r. In contrast, for the 
diagonal N-O stretching constants and many of the 
higher-order coupling constants, the DZP RHF// 
expt+TZ(2dlf) RHF//expt changes are larger than the 
effects of the geometry shift on the DZP RHF values, the 
case of fRRRr being the most prominent in this regard. 

Perhaps the most important characteristic of the data 
in Table XII is the impressive agreement of the TZ( 2dl f) 
RHF//expt and CCSD (T) //expt values for the dominant 
diagonal stretching constants. The percent differences in 
the f rrv f rrw f RRR, and fRRRR predictions are Only 4.5%, 
3.6%, 5.3%, and 1. 1 %, respectively. The agreement for six 
other higher-order constants, viz., f oop f &=?& fRrrn f 08Rr, 
f @RR, and feeee, must also be considered good. The re- 
maining cubic and quartic constants involve coupling of 
the bond stretches. In the fRRrr and fRRRr cases, it is note- 
worthy that the differences between the CCSD and 
CCSD(T) predictions are sizeable in comparison with the 
deficiencies in the RHF values. Therefore, as observed in 
the F20 case, the small, higher-order bond-stretch cou- 
pling constants are very sensitive to the treatment of elec- 
tron correlation. 

Finally, it is possible to assess the accuracy of the ex- 
perimental force constants on the basis of the TZ( 2dl f) 
CCSD( T)//expt predictions in Table XII. As a point of 
reference, note that the CCSD(T) quadratic force con- 
stants represent only slight overestimations of the well- 
established empirical values, as displayed in the corre- 
sponding harmonic frequency predictions, which are only 
l%-2% to0 large. The If,,, fRRR, and f RRRR Values of 
both Teffo and ChCdin’20 and Kobayashi and Suzuki123 are 
supported by the theoretical results, although in the f RRRR 
case the 634.9 aJ AV4 empirical value’*’ may be slightly 
too large. In contrast, both of the empirical values for f rrr,. 
appear to be over 100 aJ Am4 too small, even though a 
large fraction of the previous discrepancy” with TZ2P 
RHF//RHF and CISD//CISD predictions is clearly a 
consequence of deficient theoretical reference geometries. 
For the five third- and fourth-order stretch-stretch cou- 
pling constants, the values of Teffo and ChCdintzO are 
clearly preferred over those of Kobayashi and Suzuki,‘23 
but the lack of agreement with theory makes the precise 
values suspect. For example, fRRRr= -7.691 aJOA-” is 
probably of the wrong sign, and fR,=46.45 aJ Am4 ap- 
pears to be too large by a factor of 4-5. The agreement of 
all of the CCSD(T) force constants involving the N-N-O 
angle with the results of Teffo and ChCdint2’ is remarkable, 
discrediting some of the analogous values of Ref. 123. It is 
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TABLE XII. Ab initio total energy derivatives from first through fourth order for NsO. 

Derivativea 
DZP RHF// 

DZP RHF 
DZP 
RHF 

Reference geometry: expt.b 

TZ(2dlf) TZ(2dlf) 
RHF CCSD 

TZ(2dlf) 
CCSD(T) 

Expt. 

Ref. 120 Ref. 123 

r( N-N) 
RW-0) 
rr 
Rr 
RR 
ee 
rrr 
Rrr 
RRr 
RRR 
eer 
eeR 
rrrr 
Rrrr 
RRrr 
RRRr 
RRRR 
e&r 
eeRr 
eeRR 
eeee 
w,(a) 
o,(a) 
o,(u) 
Energy 

. . . 

. . . 
26.585 

2.302 
11.704 
0.813 

- 188.8 
1.12 

-4.19 
- 114.9 

-1.79 
-1.92 

1027.9 
6.08 

10.03 
- 1.42 
640.6 
- 1.52 

4.35 
1.94 
2.07 

2589 
668 

1358 
- 183.715 76 

0.7499 1.0805 0.1696 -0.0840 
0.0487 0.2896 a.0228 -0.0545 

21.070 18.999, 19.040 18.778 
2.349 2.298 1.342 1.038 

11.824 10.195 11.964 12.374 
0.759 0.799 0.713 0.689 

- 159.1 - 148.7 - 143.1 - 142.2 
1.33 0.78 -2.04 -2.93 

-3.88 -4.17 -1.46 -0.76 
-116.4 - 106.0 - 102.3 - 100.5 

- 1.85 - 1.83 - 1.69 - 1.08 
- 1.79 -1.86 - 1.58 - 1.52 
847.6 803.6 828.9 833.0 

8.42 12.64 9.30 10.48 
9.35 9.55 4.50 1.39 

-0.57 4.43 10.75 18.77 
641.8 597.1 608.5 603.9 
- 1.55 - 1.58 0.47 0.92 

4.32 4.83 4.24 4.09 
1.83 1.82 2.24 2.43 
2.06 1.32 1.97 2.09 

2325 2184 2298 2318 
637 653 617 607 

1350 1264 1315 1319 
- 183.712 93 - 183.755 57 -184.386 04 - 184.422 08 

. . . 

. . . 
18.251 

1.028 
11.960 
0.666 

- 133.6 
-6.872 

1.498 
-98.83 

- 1.580 
- 1.537 
691.4 

46.45 
-3.485 
-7.691 
634.9 

1.808 
5.105 
1.491 
1.897 

2282.1 
596.3 

1298.3 

. . . 

. . . 
18.236 

1.029 
11.966 
0.666 

- 132.4 
-9.842 

2.45 1 
-96.33 

-2.567 
-1.101 
674.7 

65.61 
8.771 

-20.76 
590.3 

12.67 
7.222 

-6.165 
2.282 

2281.7 
596.5 

1298.5 
. . . 

‘Units are consistent with energy in aJ, distances in A, and angles in deg. The associated harmonic frequencies in cm-’ and total energies in hartree are 
also listed. The coordinate 0 is the actual N-N-G angle and not the linear bending variable of Hoy, Mills, and Strey (Ref. 64). 

bGeometrv from Ref. 120: r.(N-N) = 1.1273 8, and RJN-0) = 1.1851 A. The harmonic frequencies listed at each level of theory were obtained by using 
. . 

r(N-N) and R(N-0) as shift coordinates. 
G. 

hoped that the high-quality, state-of-the-art TZ( 2dlf) 
CCSD (T)//expt cubic and quartic force constants will as- 
sist the continued refinement of the anharmonic force field 
of N20. 

VI. RECOMMENDATIONS 

The results of this investigation allow preliminary rec- 
ommendations to be made concerning the ab initio predic- 
tion of anharmonic force fields for strongly bonded molec- 
ular systems. The treatment of weak intermolecular 
interactions or large-amplitude vibrational motions in gen- 
eral is a more intricate topic which is the subject of a 
forthcoming paper; 135 such cases are precisely those which 
are not amenable a priori to vibrational analyses based on 
force field representations of the local potential energy sur- 
face. The electronic energy and its derivatives through 
fourth order are typically predicted by Hartree-Fock the- 
ory at a given geometry to within a few percent in the 
bonding regions of the potential energy surfaces for the 
types of molecules considered here. The percent errors ap- 
pear to be slowly varying functions of the internuclear dis- 
tances, and there seems to be little correspondence between 
percent error and order of derivative. The cancellations of 
the lower-order derivatives of the electronic energy occur- 
ring when the nuclear repulsion terms are appended are 
almost complete, thus making the precise determination of 
first and second derivatives of the total energy problematic. 

In contrast, in higher orders the loss of numerical signifi- 
cance in the total energy derivatives is diminished because 
the nuclear repulsion terms become increasingly dominant. 
Consequently, higher-order derivatives can be predicted to 
high relative accuracy even by modest levels of theory. The 
associated caveat is that these derivatives are rapidly vary- 
ing functions of the internuclear distances, and if the ref- 
erence geometry is not precisely known, the numerical ad- 
vantage in their evaluation is lost. 

It is recommended that in ab initio predictions of an- 
harmonic molecular force fields the most accurate refer- 
ence geometry available be employed, even if it is not a 
stationary point at the level of theory used to determine the 
higher-order derivatives. If the use of an experimental r, 
structure or an empirically corrected theoretical geometry 
is not feasible or preferred, this recommendation entails the 
augmentation of second derivatives given by a correlated 
level of theory at the corresponding optimum geometry 
with RHF third and fourth derivatives computed at the 
same point. Of course, for small molecules it may be both 
possible and preferable to determine a consistent and com- 
plete anharmonic force field at a highly correlated level of 
theory to achieve improved accuracy. Some correlated 
electronic structure methods are inappropriate for the pro- 
vision of the underlying structure and harmonic force field 
because the imbalance of basis set and correlation errors 
creates a propensity for the overestimation of bond lengths. 
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Valence complete-active-space SCF (CASSCF) proce- 
dures frequently employed for small molecules and second- 
order Mnrller-Plesset perturbation (MP2) theory as ap- 
plied to multiply bonded species are examples of such 
methods. For many systems CISD wave functions con- 
structed with polarized basis sets of moderate size consti- 
tute a counterexample, as basis set incompleteness and the 
neglect of higher-order excitations tend to advantageously 
cancel in geometric structure determinations. To base pre- 
dictions of vibrational anharmonicities on RHF//RHF 
quartic force fields is to rely on the sizeable overestimation 
of harmonic frequencies to cancel the overestimation of the 
magnitudes of the cubic and quartic force constants in the 
evaluation of the xij constants appearing in the vibrational 
term value expansion. In many cases such cancellations 
indeed occur, but deficiencies in RHF//RHF anharmonic 
force fields can clearly be detected by substituting the as- 
sociated RHF//RHF harmonic frequencies with corre- 
lated values obtained at an improved reference structure in 
the computation of the vibrational anharmonic constants. 
The dominant diagonal stretching constants are those most 
sensitive to geometric structure in an absolute sense, and 
RHF predictions for these quantities at proper reference 
geometries typically reproduce highly correlated predic- 
tions extremely well. The RHF cubic and quartic force 
constants involving bond-angle bends are also quite accu- 
rate, but the values of the higher-order, stretch-stretch 
coupling constants are difficult to pinpoint theoretically. In 
the latter cases, predictions obtained using moderate treat- 
ments of electron correlation may not be much more reli- 
able. 

It is important to understand the conceptual basis for 
constructing anharmonic force fields from RHF higher de- 
rivatives at a nonstationary point, viz., that a shift term is 
being formally added to the RHF potential energy surface 
to bring its equilibrium point into coincidence with the 
reference structure. The predicted spectroscopic constants 
from the RHF force field are not invariant to the choice of 
the shift internal coordinate set. The variations in the pre- 
dictions can be as large as the uncertainties expected a 
priori for the given level of theory; nevertheless, standard 
valence internal coordinate sets seem to give reliable results 
if the Cartesian gradient is not too large and there are no 
singularities in the coordinate set within the nuclear con- 
figuration space of concern. The use of specially designed 
coordinates such as Simons-Parr-Finlan or Morse vari- 
ables is not recommended for the shift term because the 
nature of the curvilinearity exhibited therein tends to 
change the RHF stretching constants in the wrong direc- 
tion. To circumvent ambiguities arising from the choice of 
shift coordinates, the Cartesian projection formalism de- 
tailed here is a viable alternative, particularly if large- 
amplitude bending vibrations are absent. For strongly 
bonded systems the results given by the Cartesian projec- 
tion scheme appear to be only slightly different from those 
obtained using chemically relevant sets of shift coordinates. 
More extensive testing of this procedure is underway. In 
conclusion, the use of nonstationary reference structures in 
the determination of improved anharmonic molecular 

force fields shows much promise. The primary obstacles to 
be overcome are the development of widespread under- 
standing of the conceptual basis for performing vibrational 
analyses at nonstationary points and the establishment of 
standard procedures for dealing with the nonzero force 
dilemma. 
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APPENDIX A: HIGHER-ORDER PROJECTION 
MATRICES 

The essential results of Sec. III D are contained in Eqs. 
(62)-( 64)) where projected Cartesian force constants are 
expressed in terms of their unprojected analogs trans- 
formed via the projection matrices appearing in Eqs. (53)- 
(56). The utility of these expressions is predicated on the 
fact that at each order the projection matrices are indepen- 
dent of the internal coordinate set {s,} selected in Eqs. 
(53)-(56), thus allowing the shift term in Eq. (57) to be 
unambiguously defined. The challenge is then to derive 
formulas for the projection matrices which only contain 
derivatives of the external variables {r,,} with respect to 
the Cartesian coordinates of the system. The formalism in 
Appendixes A and B is constructed for the general case of 
nonlinear molecular reference configurations. The special 
case of linear molecules is discussed in Appendix C. 

In order to derive expressions of the desired form, it is 
necessary to establish orthogonality conditions of various 
degrees relating the B~,iz,i, derivatives to quantities involv- 
ing external variables alone. Let so denote the internal co- 
ordinates of a molecule for a given set of lab-fixed nuclear 
position vectors, denoted collectively as x and individually 
as x,. The level sets of composite Cartesian vectors r de- 
termined by the condition s(r) =so are comprised of the 
collections of points {r,} satisfying 

r,(A)=- A2 +exp (1;) -(i, z6 +)-&-IV, 

(Al) 
where il consists of translational and rotational parame- 
terS, (di, A2, /2,) and (A,, il,, &), respectively, lying in the 
domain ( - CO, + CO ), and R is an arbitrary, fixed position 
vector. Orthogonality conditions result from Eq. (Al ) by 
invoking a general theorem’36 involving multivariable 
functions f(z) : The gradient vector V f ( zo) is orthogonal to 
the tangent vector at z, of any smooth curve passing through 
this point on the level set defined by f(z) = fp In the cur- 
rent context this theorem is applied to each internal coor- 
dinate sJr). The gradient vectors of concern are com- 
prised simply of the quantities B5,, whereas the elements 
y, of the 3AJ-dimensional tangent vectors are given by the 
derivatives nz= (&,/&I.,). Hence, the following first- 
order orthogonality condition is revealed by the theorem 
for all p and v: 
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3N 

z Bpmyx) =o. (A21 

The individual tangent vectors nz given by Eq. (Al) at 
A = 0 yield 

y,= -e;% , 
e9-3 . [ep, X (Xal -R)] 

for ~=1,2,3 (A3) 
for r]=4,5,6, 

assuming a notation used henceforth in which a,=3’tbn 
+2-mod(j,-1,3)] is the nucleus to which Cartesian 
coordinate Xi, refers, 0, = j,, - 3 (a,, - 1) is the associated 
component of xa,, and ey denotes the unit vector 
~~,*,~,,,~,3) * 

The first-order condition embodied in Eq. (A2) is 
valid for all nuclear configurations x, as suggested by the 
functional dependence indicated therein. Consequently, the 
differentiation of Eq. (A2) with respect to Cartesian coor- 
dinate Xi2 provides a second-order orthogonality condition 

3N 3N 

C BTlj2ql + C B$y,,j2=Q 
il il 

(A4) 

in which 

0 
TlJ2= 

for n=1,2,3 
&,n2e9--3 - (epl Xq2) for n=4,5,6. (A5) 

Finally, Eq. (A4) can be differentiated in turn to obtain a 
third-order orthogonality condition of the form 

3N 

$ BT,j2j,q, + E  ( B$j2jQ3 + B~,j~~,,j2j=Q 
il 

(A61 

since all derivatives of ~~,j~ vanish. 
The tangent vector elements +I are closely related to 

the first derivatives By, of the standard set of external dis- 
placement coordinates. As shown in Appendix B, the ma- 
trix relation 

N= ---ABy (A7) 

holds when the rotational derivatives By, are evaluated at 
the reference orientation of the molecule, wherein A is an 
LX L matrix prescribed by 

MI3 0 
A= o 

1 1 IO 

=Nu--‘N= , (A81 

u is the diagonal matrix mentioned in Sec. III A containing 
triads of reciprocal atomic masses, M  is the total molecular 
mass, I3 is the 3 X3 identity matrix, and I0 is the inertia 
tensor computed in the molecule-fixed axis system. In ma- 
trix form Eq. (A2) is merely NBT=O, and thus Eqs. (10) 
and ( 11) follow trivially from Eq. (A7) because A is 
nonsingular for nonlinear reference configurations. Despite 
the isomorphism of Eqs. (10) and (A2), the second-order 
condition expressed in Eq. (A4) does not have an analog 
involving q, jz, i.e., 

z BT,j2By, + ? q,q,j2Z0 
il il 

(A91 

because ~,,j2 represents (~?~rj,/&l.,&j~)a with r from Eq. 
(A 1) and not ( ~2r~/~xjlJxjz ) c. 

An important consequence of Eqs. (A7) and (A8) is 
that A, = -NT and 

Q=A,B,=~=B,~(B,u=B~)-~B~=-N=B~, C-410) 

the matrix Q being the first-order projection matrix onto 
the external space. Equation (A4) can thus be multiplied 
by A; and B{ and successively summed over p and 77 to 
give 

3N 3N 

z QjlilFnjlj2= C Poj,rj,j2i, 3 
il 

(All) 

where 
L 

rj,j2j3...j,,= C ~,,j2~3...j,=S,I”z(eplXeR2) * k”383p’.‘panRn. 
9 

(A121 
The form involving k”3839...9”@n in Eq. (A12) assumes a 
notation used henceforth in which t and k are three- 
dimensional vectors containing the translational and rota- 
tional variables, respectively, and superscripts on these 
quantities denote derivatives with respect to a component /3 
of the Cartesian vector for atom a. The result of Eq. (Al 1) 
is very useful in replacing terms involving Foj,j2, which is 
defined by direct reference to a specific internal coordinate 

--set, with terms containing I’j,j2j3’ which depends only on 
external variables. In an analogous fashion, Eq. (A6) 
yields 

3N 

z QjlilFujlj2j3 = E  (Fnj,j2rj,j3i, +Foj,j3rj,j2i, ) 3 
il 

(A13) 
which later provides a key first step in the reduction of 
Foj,j2j3 to quantities involving external variables alone. 

The mathematical form for the first-order projection 
matrix P= A,B, is well known. Since Y in Eq. ( 14) is 
equivalent to the 3NX3N identity matrix 13N, 

P=&N-Q=I~N+N=B~. (A14) 
This equation can be simplified to a form involving deriv- 
atives of t and k, namely, 

P ~lWZP2 = &,a243,p2 - q3, . ,ziR29 (A151 

where 

P ~;&d+ka+ (x,,-R). (A161 

If a canonical set {rt} of external displacement variables is 
assumed, then u=I,, in Eqs. ( 12) and (13). The resulting 
P” and Q” matrices are symmetric and satisfy the simplified 
relation 

P”=B;[B,B;] -‘B, =13N--Qo=13N-NT[NN=] --IN. 
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The derivation of the expression for Pmi,i2 begins by 
noting that the first term in Eq. (54) is simply Foil+ by 
definition, whereas the second term satisfies 

Hei,i2 E 5 Azlp2Bfl %!’ 
PIP2 ‘2 

3N 
= - 2 PjlilPj2i2 CFoj,j, f Gojlj2) (A17) 

as a consequence of Eq. 

P~~,i2=Foili2+Htili2 
3N 

(25). Hence, 

= C (Sjlil~j2i2-PjlilPj2i2 )Fojlj2 
Ai2 

3N 
- C PjlilPj2i2Gmjlj2 * 

id2 

C-418) 

As shown by Eq. (A14), the Kronecker S symbols in Eq. 
(A18) can be replaced using Sili2 = Piliz + Qi,,, and after 
some rearrangement 

f’oi,i2= ‘$ CPj2i2Qjlil +Sjli,Qj2i2)Fajlj2- E PjlilPj2i2G~jlj2 
id2 Ai2 

(A191 

is obtained. Because each F”.li2 term in Eq. (A19) is ac- 
companied by a factor involving a component of Q, Eq. 
(Al 1) can be invoked to provide P,i,i2 in terms of Pail and 
Gei,i2 only. The resulting final form for P~ili2 is 

Puili2= 2 Pojlejlili2- E J’jlilf’j2i2Go~,j2 3 il jlj2 
(A201 

where 
3N 

ejlilj2~rjli,i2+ CPj2i2rjlj2il=rjli,i2+rj,i2il+3j~ili2 f 

h 

(A21) 

and 

Ej,j2j3e - F l?j,ilj2Q~,j3=e~, * (k”“XpEp)- (A221 
4 

To facilitate the evaluation of the second-order projection 
matrix via Eq. (A20), it is useful to note that Eq. (27) 
reduces to 

Gjlj2...j,,= [ (X,, -R) X ep, ] . ka2p2~a3b~.4@na (-423) 

The manipulations required to derive an appropriate 
form for the third-order projection matrix P~ili2i3 proceed 
in an analogous fashion to the Pgili2 case but are signifi- 
cantly more involved. By employing Eq. (29) the follow- 
ing result is obtained for the quantity Hoili2i3’ which com- 
prises the third term in Eq. (55) for Pqf,i2iJ: 
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Hoili2i3E E Ap4p2P3~,‘$~~~ 
PlP2P3 

X (Fcrj,j2 + Guj,j2) - ‘5 PjlilPj2i2pi3i3 
jlhh 

X (Fojlj2j3 + Gojlj2j3 ) * (~24) 

A useful modification of the second term in Eq. (55), 
Loili2i3’ can be achieved via Eq. (25), viz., 

X CFoj,j, + Gojlj2 ) * (A251 

These results can then be combined to provide an impor- 
tant intermediate expression for Poi,i2i3: 

Pui,i2i3 =Foi, i2i3 + Laili2i3 + Hcili2i3 

= !Z 
j&j 

(~jli,~j2i2Sj3i3-Pj,ilPj2i2pj3i3)F . uJ/lJzJ3 

- T pjlilpj2i2pj3i3G*jl j2j3- T (pjlilpj2i2i3 
hhA id2 

+Pj,i2Pj2i,i3+Pjli3Pj23pi2ili2) (Foj,j2+Gmj,j2). (A261 

The first term in Eq. (A26), denoted as S,,ili2i3y can be 
reduced as before by replacing each Kronecker S symbol 
with the sum Si,i2 = Pili2 + Qi,i2, hence 

sciili2i3s ‘i ~SjlilSj2i2Sj3i3-PjlilPj2i2pj3i3~F~jlj2j3 
ilhh 

(A=‘) 

Subsequently all terms involving F~i,i2i3 can be replaced 
using Eq. (A13) to provide 

3N 
scili2i3 = C Fujlj2 (Pjlilej2i3i2 +Pjli2ej2i3il +Pjli3ej2i2il 

iih 

+ Qj,i2rj2i3il + Qjli3@j2i2il ) * (A28) 

Accordingly, Eq. (A26) can be written in the form 
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3N 

Pcili2i3= Tci,i2i3 + C F,,j2 [Pj,i, (ej2i3i2-Pj2i2i3 ) 
jlj2 

+Pjli2(ej2i3il-pj2ili3) +Pjli3(ej2i2il-Pj2ili2) I 

+ ‘5 Fcjlj2( Qjli2rj2i3il + Qjli3ej2i2il) 9 (A291 
id2 

pansion of F~jlj2 and G,jlj2 according to Eqs. (26) and 
(27) followed by substitutions arising from Eq. (A4). Fi- 
nally, by defining 

3N 3N 

Mci,i2i3 E  Aoili2i3 - C Geilj2f’j2i2i3 + C Poj2rj2ilj3ej3i2i3 3 
j2 i2.h 

(-436) 

where 
a final form for the third-order projection matrix is found: 

3N 

3N 3N 

Toili2i3 G - C Pj,ilPj2i2Pj3i3G~j,j2j3 - C (PjlilPj2i2i3 
ili2.k Ai2 

+Pjli2pj2~li3+Pjl~3Pj2~l~2)G~j,j2 * (A30) 

By some means the Foili terms in Eq. (A29) must be 
eliminated, and the key observation for this purpose is that 

3N 

pgjli2i3= C pjlilpj2i2pj3i3 cRcj, j2.i3+Rcj2j,j3 +Roj3j,j2 
ilhh 

3N 

-G~jlj2j3) + C (Pjl i l~~~li2~3+Pjl~2~~~l~l~3 
jl 

3N 

+pj,i3Mmj,i,i2) + C  P,i,(rjlj2i2rj2i3i, 
jlj2 

+ rj, j2i3@j2i2i, 1. (-437) 

egi2i, -Pcili2= E’oi2i1 -mEoili2 + C Qajlej,ili2 
il 

3N 

+ C Pjl$‘j2i2Gcj,j2 . 
hi2 

(A31) 

All quantities appearing in this equation can be evaluated 
from expressions involving external variables alone, viz. 
Eqs. (A12), (A15), (A16), (A20)-(A23), and (A33)- 
(A35). 

Upon substitution of Eq. (A3 1) into Eq. (A29), it is found 
after invoking Eq. (Al 1) that 

3N 

APPENDIX B: HIGHER-ORDER DERIVATIVES OF 
EXTERNAL DISPLACEMENT VARIABLES 

Poili2i3=Taili2i3+ C P~~2~j2~lj3(Pjli3~j3ili2+Pjli2~j3~li3 
M2A 

+Pjli,ej3i2i3) + E (Pj,i3A~~lili2+Pjli2A~~,ili3 il 

+PjlilAojli2i3 ) + ‘i PjlilPj2i2pj3i3 (&jlj2j3 
ili2h 

In Appendix A, Eqs. (A15), (A20), and (A37) were 
presented which allow the projection matrices Pgi,, Paili2y 
and P~ili2i3, respectively, to be determined solely from the 
Gerivatives of the external displacement variables rT Thus, 
the ,procedure for performing higher-order projections of 
Cartesian force constants at nonstationary points is fully 
specified upon the formulation of higher-order derivatives 
of the 7V variables. A formalism for accomplishing this 
task is detailed in this section. 

+Roj2jlj3 +Ruj3j,j2 I+ E  Pai, ( rjlj2i2rj2i3il 
Ah 

+rj,j2i3@j2i2il)9 (~32) 

where 

The generalized external displacement variables spec- 
ify the position and orientation of the molecule-fixed coor- 
dinate system relative to the lab-fixed system. In particular, 
the Cartesian coordinates in the two frames, xmol and x, 
respectively, are related by 

Ao;,i2i3~ T Fmi,j2( Ej2i3i2- Zjzi2i3) =Woi, * ( ka’2X ka@‘) 9 
h 

(A33) 

(mui, 1 ?I= - -Yi pvj2q2,i19 
h 

(A34) 

where vector R connects the origins of the two systems, 
and %  is a 3 X 3 orthogonal matrix which may be consid- 
ered a function of the three Euler angles of orientation 8,4, 
and x. The ‘%  matrix in Eq. (Bl ) can alternatively be 
represented as e”, where K is a 3 X 3 antisymmetric matrix 
containing three rotational parameters k= (kl,k2,k3); spe- 
cifically, 

and 
3N 3N 

Rg/,i2i3G C FoiljlGjli2i3= C Pojlrjlili2i3 . (A35) 
il il 

The reductions of Acili2i3 and RciliZi3 in Eqs. (A33) and 
(A35) to the forms on the right sides therein, which con- 
tain no reference to internal coordinates, proceed by ex- 

KY (i, ; ;I). 032) 

By selecting the translational variables t= (tl,t2,t3) as the 
components of R, the full parametric dependence of x on 
the internal (s) and external (7) variables thus becomes 

x(s,r) =t+e”x”“(s). (B3) 
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There are many choices of conditions which prescribe 
the attachment of the molecule-fixed axes to the molecular 
system, thus specifying xmol as a function of the internal 
variables alone. The six Sayvetz conditions,56,59 which are 
also referred to as the Eckart conditions’s by many au- 
thors, are the most widely used. The first three Sayvetz 
conditions, 

W. Allen and A. C&z&r: Higher-order force constants 3011 

vestigated here but do not possess this property in general. 
Therefore, the spectroscopic constants derived from pro- 
jected Cartesian force fields generated with mass- 
dependent external variables may differ slightly from those 
derived using canonical sets of external variables defined 
for identical masses. 

5 III01 
ms, =g maeBK(x,--t) =O, 

The first derivative of the translational variables in Eq. 
(B5) with respect to Cartesian component fi of nucleus I 

(B4) (fi=x, y, or z, and I= 1,2 ,..., N) is simply given by 

p= m’ e 

i ) 
M 0’ 

@lo) 

a a 

are satisfied trivially by selecting t as the position of the 
center of mass, i.e., 

N 

t=M-’ 2 m,x,, (B5) 
a 

where m, is the mass of nucleus a, and M is the total mass 
of the system. The last three Sayvetz conditions, 

i m,(a,Xxy’) = 5 m,[aaXe-clx,--t) 1 =O, WI 
a a 

determine the values of the rotational variables. Implicit in 
Eq. (B6) is the choice of an arbitrary, fixed reference ori- 
entation of the molecule represented by the nuclear posi- 
tion vectors a,, which are subject to the center-of-mass 
condition 

where ep= (l,O,O), (O,l,O), or (O,O,l) depending on 
whether S=x, y, or z, respectively, and the superscript Zp 
denotes the derivative of concern. Taking the &I derivative 
of Eq. (B9) and evaluating the result at k=O yields 

y$= - Kq P+ a,) + x’fi, -k@x (fef+a a a ) +x’fi a. (Bll) 

Substitution of this equation into the first derivative of Eq. 
(BS) provides the following relation for the derivatives of 
the rotational parameters at k=O: 

: m,a, = 0. 
a 

As a consequence of Eq. (B7), the conditions which de- 
termine the rotational parameters k become 

(B7) 

N 

C m,b,XY,) =O, 
a 

038) 

in which 
yasevKx,. WI 

In analyses of molecular vibration-rotation dynamics, the 
internal coordinates underlying the reference positions a, 
usually correspond to the equilibrium geometry of the sys- 
tem, but for convenience here, the a, vectors are chosen as 
xgf-tref to represent the nonstationary reference geometry 
at which the unprojected Cartesian force field is computed. 
Thus by construction the solution to Eq. (BS) at the ge- 
ometry at which the t and k derivatives are to be deter- 
mined is k=O, a fact greatly facilitating the evaluation of 
these quantities. 

The Sayvetz conditions define a canonical set of exter- 
nal variables satisfying Eq. (10) only if all nuclear masses 
are identical. However, the Cartesian projection formalism 
presented above is valid for arbitrary choices of the {m,} 
set. The mass dependence due to the specification of the 
external variables by the Sayvetz conditions is contained 
completely in the t and k derivatives occurring in Appen- 
dix A, and thus is incorporated by the general formulas 
presented below for arbitrary nuclear masses. It should be 
recognized that the projected higher-order Cartesian force 
constants are mass invariant for the triatomic systems in- 

where IO is the 3 ~3 inertia tensor in the center-of-mass 
frame at the reference geometry, i.e., 

N 

Uo)v~= C m,[(a2,,,+a~,~+a~,=)6,~-a,p,gl. (B13) 
a 

The first, derivatives k@ can then be found by inversion of 
IO in Eq. (B12). By comparing Eqs. (BlO) and (B12) with 
Eq. (A3), the relationship between the tangent vector el- 
ements y, and the derivatives By, is revealed, as embodied 
in Eq. (A7) above. The derivative relations of Eqs. (BlO) 
and (B12) give the same results for the B, matrix reported 
by many other authors. The crux is that in this formalism 
higher-order derivatives follow readily. 

The second derivatives of ya with respect to Cartesian 
coordinates ID and my are obtained straightforwardly from 
Eq. (B9) as 

khr- Y, -- ,fhy pf+ a,) + W$mY 

=-- k&b’C’)< (t’ef+aa) +Wpmy (B14) 

upon evaluation at k=O, provided that 

W@ms -K@xw 
a a -KmrX~++(K’PKmY+KmYK@) (tref-f a,) 

= - (k@xxmy) - (k”Yxx@) cl CL 

+‘k@x [kmYx (tref+a,)] 2 

+ikmYx [k@x(tfef+aa>]. (B15) 
Thus, from the second derivative of Eq. (B8) it follows 
that 
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cz 

=ml[ (ar*kmy)eB--- (ape&k”Y] +m,[ (a,*km)ey 

-(a,- e,>k@] +i : m,[ (a,*k@>(a,Xkmy) 
a 

+(aa-k”Y)(aa~k’a>l. (B16) 

Analogously, the results for the third-derivative quantities 
are 

mwn~~ Ya -- K@my.n~(fref+aa) + W~w,n~ 

= -k@Jvdx (pf+ a,) + WfJvG~, 0317) 

Iok@my,n~= 5 m,(a,x WEmY*ns)  

a 

where 

w~mKnS=va(Z&my,n6) +v,(Z/?,nS,my) 

+v,hyJ&V +v,(nW,my) 

+v,(n&myJB +v,(my,n&ZL%, (J318) 

and 

v,(Zj3,my,ncY) =t(K’P,mY~“G+K”S~‘~~my) (tref+a,) 

_ d K’flKmYK”G ( tref + a,) _ ; K’P’m~x~’ 

+ ; K”KmYX$ (B19) 

Therefore, from Eq. (B8) 

4 

1 
= -m 

92 p 
[ (ap~k~v~m)ep-(ap*ep)k ~“J~+(k@‘~ep)(apXk”)]-~mp(kq”~k”)(apXep) 

1 N 
+; ~m,[(a,~kq~“)(a,~kp~)+(a,~kp~)(a,Xkqv~”)l 0320) 

a 

in which the sum on the right side is over all permutations 
9 (Zfi,my,n6) = (p,~,q~,ra). By inverting Is in Bqs. (B16) 
and (B20), klfimY and k’Dpmr,n8 are evaluated, allowing the 
Gj~j2j,’ Gj,jzj~j4’ and rjljZj3j4 matrices in Eqs. (A23) and 
(A12) to be computed and completing the determination 
of Pci,i2 and f’oi,i2i3* 

APPENDIX C: MODIFICATION OF THE CARTESIAN 
PROJECTION SCHEME FOR LINEAR MOLECULES 

The partitioning of the internal and external variables 
of a molecular system must be reconsidered in order to 
apply the Cartesian projection scheme of Sec. III D to lin- 
ear molecular reference configurations. While the potential 
energy function of an N-atom molecule is fully specified by 
3N-6 internal variables for all nuclear configurations, 
transformations between Cartesian and internal spaces be- 
come indeterminate for linear structures unless the exter- 
nal space partition includes only two rotational variables. 
The axis containing the nuclear centers defines the 
molecule-fixed z axis at the linear reference configuration, 
and the Sayvetz conditions determine the orientation of 
this axis for arbitrary displacements from linearity. By set- 
ting k3 and all .of its derivatives to zero, all formulas in 
Appendix B are applicable, provided that the vanishing z 
components of the inertia tensor are discarded in Eqs. 
(B12), (B16), and (B20), which are understood to be 
2 x 2 linear systems for the derivatives of k, and k, alone. 
The 3N--5 dimensional “internal” space is that which re- 

mains after k, and k2 and the translational variables t are 
partitioned into the external space. Assuming the atoms 
are indexed from 1 to N in order of increasing z, the inter- 
nuclear distances r,= 1 x,+,-x, 1 for Q= 1,2,...,N- 1 suf- 
fice for N- 1 of the internal variables. Two linear bending 
coordinates, Sx, and ga”,, for each atom cr=3,4 ,..., IV com- 
plete the specification of the “internal” space. It is critical 
to explicitly define these variables for all instantaneous lin- 
ear and nonlinear configurations. Here e and @a are taken 
to be the x and y components of the unit vector directed 
from CZ- 1 to Q: in a local coordinate frame in which the 
((r-2) - ((L- 1) bond axis defines the z direction and the 
component of the space-fixed X axis orthogonal to this 
bond vector is the local x direction. These linear bending 
variables are invariant to molecular translations as well as 
changes in the polar and azimuthal angles (& and As) of 
the molecular svstem relative to the snace-fixed X axis. 
Accordingly, the analog of Eq. (Al) becomest3’ 

sin /24 sin /2s -sin & cos j1s 
cos a5 sin & 

- cos A4 sin & cos a4 cos a, 

x (x,-R). 
By differentiating this parametric equation with respect to 
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the /2, quantities and evaluating the results at Iz=O, tan- 
gent vector formulas identical to those of Eqs. (A2)-( A6) 
are recovered except that 7=6 is omitted. Hence, Eqs. 
(A7) and (A8) hold as before except that the N and B, 
matrices are of dimensionality 5 X 3N and A is a 5 X 5 ma- 
trix. All subsequent formulas in Appendix A apply for 
linear molecules if the r] = 6 elements of the B$+, quan- 
tities and the third elements of k and all of its derivatives 
are formally set to zero. 

APPENDIX D: INVARIANCE RELATIONS FOR 
ANALYTIC DERIVATIVE EVALUATIONS 

In 1984, Page, Saxe, Adams, and Lengsfield76 brought 
attention to a set of translational and rotational invariance 
relations which can be exploited to enhance the efficiency 
of analytic derivative evaluations of various orders in elec- 
tronic structure calculations. Because the potential energy 
of a molecular system is a function of the internal variables 
alone, 

3N 

s vj,<“>q (xl =o, (Dl) 

by analogy with Eq. (A2). Successive differentiation of Eq. 
(Dl ) with respect to Cartesian variables Xi2 and Xi3 yields 
the potential energy analogs of Bqs. (A4) and (A6): 

3N 

? vj,j2q,+ 2 vil~l,j2=o 
il 

CD21 

c vi&$?, -I- C ( Vjlj2y,,j3 + Vjlj3Tl,j2) =O. (D3) 
il il 

and 
3N 3N 

These expressions are simply Eqs. (8) and (12) of Page 
et aZ.76 as written in our formalism, which facilitates ana- 
lytic manipulations of these invariance conditions via the 
expressions of Appendix A. Multiplication of Eqs. (D2) 
and (D3) by B’js and summation over the external index q 
provides the alternate forms 

3N 3N 

Z Vjlj2Qjlil= z Vjlrjlj2il h 
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3N 3N , 3N 3N \ 

C VjlPjlili2= C Vj, 
ii il 

C Pjlj2ej2ili2- C Pj2ilPj3i2Gjlj2j3 
h hi; 

3N 

= C vjlejliliz 3 
il 

by examining the form of Goi,iz in Eq. (27) and noting that 
the Cartesian gradient vector h satisfies Ph= h and Qh=O 
as a consequence of Eq. (Dl ) . Subsequent utilization of 
Eq. (A21 ) for 8jlfliZ followed by the implementation of Eq. 
( D4 ) provides 

T VjlPjli,i2= E Vj2i1Qj2i2+ ‘c” Vjlj2QjlilPj2i2 3 (D’) 
il i2 id2 

the right side of which can be readily shown to equal the 
left side of Eq. (65) by using Eq. (A14). Equations (65)- 
(67) provide an alternate route to the determination of 
complete Cartesian force fields from minimal, nonredun- 
dant sets of Cartesian derivatives through the inversion of 
the supermatrix Li,izin,jlj2j, = si, j16i2j2**-6injn 
- PiljlPi2j2easPinjn within a selected set of redundant force 
constants Vjlj2,.j n. This approach is direct, whereas the 
procedure of Page et all6 is sequential for higher-order 
derivatives; however, as the molecular system becomes 
larger the inversion of the burgeoning supermatrix is likely 
to make the direct approach computationally less efficient. 

and 
3N 

z Vjlj2j3Qjlil= $ ( Vjlj2rjlj3il + Vjlj3rj,j2il 1. (D5 1 

The conditions embodied in Eqs. (65)-(67) can be 
shown to arise from Eqs. (D4) and (D5) and higher-order 
analogs by a series of summations and algebraic manipu- 
lations. To illustrate the procedure it is worthwhile to dem- 
onstrate the equivalence of the two sides of Eq. (65). Sub- 
stitution into the right side of Eq. (65) using Pjliliz from 
Eq. (A20) gives 
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