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The full nonrelativistic quantum mechanical vibration@l=0) kinetic energy operator for
sequentially bondedN-atom molecules, expressed in valence stretch, bend, and torsion internal
coordinates, is explicitly given. Certain properties of the operator and its possible applications are
discussed. ©1995 American Institute of Physics.

I. INTRODUCTION not explicitly given but believed to be exact. Carney, Spran-
del, and Ker®® report that the exacT, was obtained by
One of the principal difficulties which had to be over- them at about the same time. However, it seems that the use
come to allow accurate calculation @b)vibrational spectra  f the exact triatomidy in valence coordinates started sev-
of small moleculel ®was the derivation of the exact, in the gra] years later with the work of Carter and Haffelnd that
nonrelativistic limit and within the framework of the Born— derivation Of-"rVR for tetra-atomic molecules was only at-
Oppenheimer approximation, quantum mechanigabibra-  tempted in the early 1980%.The first complete, exact, de-
tional kinetic energy operatolf. The general form, i.e., @ tajled rovibrational kinetic energy operator for tetra-atomic
form which applies to any-atom molecule, off in normal  molecules was derived in 1987 Since then efficient com-
coordinates was obtained by WatScsbme 25 years ago. puter programs to calculate the rovibrational spectra of tri-
Following the first few calculations using this operator, how- atomic and tetra-atomic molecules have been developed in
ever, it was realizétthat valence internal coordinates are aseyeral group&2-18Recently, forms for the exact quantum
considerably better choice than normal coordinates for bufyechanical vibrational kinetic energy operatdt,, of se-
the lowest vibrational levels. The utility dhonorthogonal  gyentially bonded A~B—C—D—-E) and (A,B)—C—D—E-
internal coordinates in practical calculations is related t0 afype penta-atomic molecules have been reported by the
least four key factors(i) their use avoids the unfactorizabil- yresent authorf Hopefully the next few years will bring
ity problen? of Watson’s rovibrational kinetic energy opera- jmplementations of these operators for calculation of the vi-
tor Tyg; (i) normal coordinate expansions of the potential,prational spectra of interesting penta-atomic molecules, like
V, have a comparatively short convergence radii and the regetene(CH,CCO), and carbon suboxideC;0,).
tilinear nature of the normal coordinates results in unneces-  This communication builds on previous efforts of the
sarily long and complicated forms when dealing with high- 3thord519 and reports the general form of the non-
energy and/or large-amplitude motiongiii) it might,  rejativistically exact quantum mechanical vibrational kinetic
occasionally, be a problem to choose a reference geometghergy operatori’v, for N-atom sequentially bonded mol-
(linear or nonlinearto define the normal coordinates, while ocyles. After a brief discussion of the theory, which is em-
the use of curvilinear internal coordinates ensures that ngjoyed to obtain the formulae all distinct nondifferential,
difficulties arise at special nuclear arrangemeets., atlin- first-derivative, and second-derivative terms inNwatomic

ear configurations and (iv) while the normal coordinate- T, are presented and reviewed. Finally, possible uses of
Hamiltonian may be more efficient than the one expressed ifhese operators are discussed.

internal coordinates for the lowest-lying energy levels, it will

always lead to convergence problems as the energy levels

bec_:ome more c_omparable with the barr_ier height. Thus, derly THEORETICAL FOUNDATIONS

vation of the kinetic energy operator in carefully selected

internal coordinates, suitable for the molecule under consid- In theoretical molecular spectroscopy, there seem to

eration, seems to be unavoidable. have been two approaches employed for the derivation of the
Derivation of the exact(ro)vibrational quantum me- exact quantum mechanical kinetic energy operator in internal

chanical kinetic energy operator of sequentially bondée (  coordinate€® The basic difference between the two ap-

B-C) triatomic molecules, in stretch—stretch-bend internalproaches is in their starting point: while the first approach

coordinates, dates back to at least 1966, when Freed arsarts with the classical Lagrangian form of the kinetic en-

Lombardi® building on an earlier form off expressed in ergy operatof: the second approathbegins with the quan-

three bond length coordinat&sderived a Hamiltonian in  tum mechanical kinetic energy operator in Cartesian coordi-

stretch—stretch-bend internal coordinates. However, the formates.

they obtained does not appear to be hermftfam 1974, The first, conventional approach writes the classical, La-

Gribov and Khovrid? performed crude vibrational varia- grangian form of the kinetic energy,, of an N-atom mol-

tional calculations on kD, using a stretch—stretch-befig ~ ecule in terms of the velocitieR; as
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where m, is the mass of atomi. Using successive Then, by choosing a set of suitable interpal coordingtgs
transformation223 one obtains the formula (i=1,2,...,—-6) for the molecule considered and apply-
ing the chain rule twice to execute the transformation
=1 PEG(Q)pq, 2 9l dx,i—>3l9q; one can write the exact=0 kinetic energy

operator as

wherep, are the momenta conjugate to the internal coordi-

) : 3N-6 2 3N-6
nateq and G(q) is the well-knownG matrix of molecular

n .0
Tyl(—3h?)= Z gk + > hl—

spectroscop$>?4In the next step one employs a formalism, ;99 | aq;
first formulated by Podolsk§! to obtain the quantum me-
chanical operatoTy, as ._356 %z% aq; ad P2
T 1/42 i 1/4 (3) ik a i ml Pai M 99; 9%
V 2 g Ij f7q]' '
whereg=detG. This approach leads to the following final * 2 ~ My Xei0Xqi | 90" @
form for Ty : .
where the definitions for the contravariant metric ternglr
and forhl, are made evident. Note that, when comparing
TV(q E PiGij(a)p;+V'(a), (4) Egs. (4) and (7), g'*=G Gjx and, of course, it has the same
b Wilson formula as used by Decius. CaIcuIanrgd’f andh’
wherep, = —i%d/dq; and _requwes know_ledge of the explicit d_ependence of the_ chosen
internal coordinates on the Cartesians. Therefore, it seems
52 9 Jlng most advantageotisto defineg’® and h’ first in a set of
V'(q)= T 2 (a Gjj W) internal coordinates for which this functional dependence is
i ! I

especially simple, i.e., in a set of interparticle distance coor-
) dinates. However, the number of interparticle distances for a

(5) generalN-atom molecule[NX (N—1)/2], is different, apart
from tri- and tetra-atomic molecules, from the number of
independent internal coordinaté8N—6). This means that

In Eq. (4) the classical-like first term and the purely elimination of all Cartesian terms from* andh’ obtained

guantum-mechanical, nondifferential second term are clearlysing Eq.(7) and the interparticle distances as internal coor-

separated. It is important to note that the simple fornTef  dinates for molecules having more than four atoms requires
as given in Eq(4), follows from the choice of the volume additional effort, namely expressing the “extraneous” inter-
element,dV=dq,dqg,...dqgy. Note also thatv’(g) can be particle distance) by the selected set of internal coordi-
regarded as a mass-dependent contribution to the potentiahates. This step might require involved vector and algebraic
energy function. manipulations but can be achieved rather easily if only

In this connection we wish to draw attention to a notstretch, bend, and torsion internal coordinates are selected to
fully recognized paper by Deci#é,published in 1948. In  describe the internal motion. The key formula required is the
that paper he derive(by hand) all the possibleG matrix  vector position of a fourth aton®;_», in terms of the posi-
elements for bond stretching, bending and torsional interndion of earlier atomsA;_4, A;, A;.; and the new internal
coordinates, for all 33 acyclic configurations. Decius usectoordinates;_,, 0;_,, and7-,_2, and is given as

the fundamental formulas of Wilshfor G in terms of thes

vectors. Given the appropriate normalization condition thi

then gives, using Eq$4) and(5) above, allT,, operators for _ _ AA_ XAA
these problems. Note that Decius does not derive the messy Tri—psin®j_psint_; ————=——
term Eq.(5), which was not of interest to those who used

Wilson’s GF formalism. The algebra in the Decius paper is i AjAj;1—CosO_1AA

far from trivial, the approach which we now describe, be- +ri—z Sin Oy coST_, sin®,_,

sides obtaining the fullTy, operator, will also check the

Decius formulae. 8)

The second approach, advocated by Sutclifind  whereAA,_; andAA, ., are appropriate unit vectors point-

Handy? starts with the simple Laplacian form of the quan-ing from the first toward the second atom, and definition of

tum mechanical kinetic energy operator written in Cartesiarthe atoms and the internal coordinates is as given in Fig. 1.

coordinategx,;} (e=xyz i=1,2,...N)oftheN nucleiina All interparticle distances can then be calculated in terms of

laboratory fixed frame of reference r, ®, and 7. This procedure results in the introduction of all

h? ( dlngalng
i

SAi—zzAi—l—ri—z cosO;_AA_;

sin®;_,
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nates{q;} to another set of internal coordinatfg} can be

A achieved by the use of the following expressions:
s 106 G| 5 (s L oal am) 96 oG
fis A M X OXgi | | My X 0Xai | 9G] o

(9a)

and

en
AI-Z
\ eMA 1 a2 . l 072 ’ (? .
t m “ S )y [y 2 T )N
" 5 My IX4i X 4i "M XaiIXai | 9T
o /Af\ Ty k i
b =
Tia

1 dqp dq/\ d%q;
« E = Qx 2q ’qj .
\fj M Xy IXoi | 3G9,

(9b)
FIG. 1. Atom numbering and definition éf, ®, 7) internal coordinates for . . .
N-atom molecules. Note that E(B) is consistently used for the consecu- Repeated app'_“:aﬁ'(on: if necessary, of K8). produc_es the
tively labeled atoms ensuring that the sense- &f always the same as one  desired quantitieg’*=G;, andh’. A final transformation, to

moves along the chain. include the stretching part of the full transformation Jacobian
into Ty, is carried out as

ai ai

_ _ T _dli2y o112
internal coordinates intg!* andh! at this early stage. This Ty=s7Tvs 5 (10

presents no difficulty during later algebraic manipulations asvheres is the stretching part of the Jacobian for the trans-
derivatives ofg/* andh’ are never formed, they appear sim- formation from{x,;} to the final set of internal coordinates
ply as multiplicative terms of the differential operators. It is {q;} and is simply the square product of the bond lengths.
easy to show that changing from one set of internal coordiThis yields a new form for the operator as

3N-6 3N-6 3N-6 — 3N-6 — 3N-6 —
2 Js 1/2 9 528 1/2 - Js 1/2

- , o0 i i
Ty /(=242)= ik + hi — +2s1/2 Ik — - +st? a t2oh
vI(=321%) % 9" 5q,40 ; aq, % 9" Toq; o % 9 Ga0a, " “ dq;

(11)

Since here only the stretching part of the full transformation(d) eliminate, if necessary, the Cartesians lefgih due to
Jacobian has been absorbed ifitp, the volume element is the “extraneous” interparticle distan(® [using Eq.(8) or
not the same as used during derivation of Hdsand(5). It~ similar equation§ (e) apply successive transformations, via
then follows that although the coefficients of the secondEd. (9), from the interparticle coordinates to the final set of
order differential operators are the sangg‘e& Gjy), the co- internal coordinates(f) include the stretching part of the
efficients of the linear operators and the nondifferential termy@cobian intoTy, through Eq.(11); and(g) simplify the re-
are different. Note that Eqg4) and (5) and (11) have the Sulting operators?

usual Podolsky structufé.To ease the notation, in the fol-

lowing T, will always be written instead of, . Ill. RESULTS AND DISCUSSION
The second approach was used by the authors to derive

kinetic energy operators for sequentially bondég-B—C— The derivation, using the CAS scheheeiterated in

. Sec. Il, of T, for sequentially bonded tetra- and penta-atomic
D) and _(A,B)—C—D-type tetra-atomic moleculéS,and for molecules can simply be extended to sequentially bonded
sequentially bondedA-B-C-D-E) and (A,B)-C-D~  5jacyles of arbitrary size. This stems from the fact that the
E-type penta-atomic molegulé%._For_ actual derivation of = ontimal choice of the internal coordinates is very clear for
the exact quantum mechanical kinetic energy operator, use ‘H{)ese molecules. When choosing the internal coordinates
computer algebra systemi€AS) and the following scheme 1.1 in which the exact quantum mechanical kinetic energy
is advocatedi(a) set up the necessary auxiliary functions, pperator is to be expressed, it is necessary to keep in mind
which form the basis of a general-purpose CAS program, fothat (a) practical calculations become easier and much in-
subsequent useb) define the masses, the Cartesian coordisight into the physical nature of the system can be gained if
nates, and th€8N—6) interparticle distances used as internalone can find a set of optimal internal coordinates in which
coordinates|c) transform, via Eq(7), from Cartesian coor- the system is nearly separabib) the choice ofq;} not only
dinates to th€3N—6) stretching-type interparticle distances; determines the actual form @f,, however, it, in turn, affects
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TABLE I. Nondifferential, first-derivative, and second-derivative terms in the exact quantum mechanical vibrational kinetic energy operator of sequentially
bonded molecules in internal coordinafesd, r} (see Fig. 1

N-2
. 2 !
Nondiff. cos® i iz + ;2_ 2¢c0s0;
term i mRR. 90,00, M Miralin Migalificg
2c0s0,_; 2 cos6, &+ 1 cos0, cos0,
7 - _— 2 cost| — v
o Mri-y Myqfivg 3000, Misalivr Malifier Maolivfive
d 1 1 ) ‘® 2cost_,SinG;_; &+ 2singsinz,, 2 COS7 COST,1CO0SO;,
— —+———|cot@j— ——— _— -
90, Ml Mivalivg ' Mri_af; 90091, M ofirafiv2 My ofiafiv2
¢4 sin®;—2 cosec®; 2 cost Sin®; 4
‘
M aliliva My olivalivo
J 2sin7 sin®; cot®;,, 2sin7_;Sin®;,_; cosecH; 72 2 si (cot@i+1 cos®,; cot®;,; cosecO;, )
— + sinT
T Miafifisg miri—qf; 39,97 AV M alifivg Misofivaliv2
+2 sing cot®; sin®;,, 2sins,,sin0;,,cosecO;,,
M ofitaliv2 Mi+ali+2fi+3
&+ ) 1 cos0; cos0;,,
2 O —2sin7 cosec®, 4| — ) P ool
Up=1/m+1/m ., i9Ti+1 Mi+1liv1 +1hili+1 +2li+1li+2
aridr; 2 C0t®i+2 i X
+ —————(—sin 7 c0S7,,+COS7 Sin 7,1 COSO);)
M ofiraliv
2 2 cos0), Ka 2 cosed®®;, , s ) 0.0
—_— oy — ——————(sin 7 COS 7, 1—COST; SiN 7,1 COSO;, |
idlivq My 300715 M ofivaliv2 ' " ' ' "
&+ cosed 0; . cof®, cof O, . coseé 0,
2 2 2 2
ITdT, Mil§ Mivalivr  Mivafizg  Ris2lis2
N 2 cosr cot®; cot®;
. ‘ 2
s _2sin6; Mi+1live
;00 M afivg 2 cosed®; cot®; 2 cost cosecd; cot®;,
M afifivg M afifiv
2 cosed®;,, cot®; ., 2 cost cosecOd;,, cotO;
M ofiafiv2 M ofialiv2
&# 2 cosecd cosT cot®; -s-cot@,Jrl €0S7, 1 COtO;,,+cot®;,
i+1 2
IT0Ti+1 ' Mivalig Mit2li2
2 2 costcosec®; 2 cost,qcosecO; ,
2 sin®; cosT - -
A < SINT Cos7 Misalilivg Mit3liv2li+g
011 Malivg 2
- ——————[cof ®,,,+cosed 0,
M4 olivalis2
+cosT cot®; cot®,, ,+cost 4 cot®;,, cot®,,,
+cot®; cot®;, ,(cosT cosT ., +Sin7 sin 7,1 c0sO;, )]
s cost cosec®; cosec®,;,, cosecO,,,
> [cosT; cot®;
ITi0T;+2 Mitalivy Miialifive
&+ 7 2 sin7 sin®; cot®,, ; +cot®;_4(cosT_, cos7+sin 7_, Sin 7, c0sB;)]
;o Ml cosecO;
— —————[cos7 cotO;,,+cot®;, ,(COST COST
Mioli+ali+2
+sin 7 sin 7,4 cos®;, )]
&+ 2 sin7 sin®; cosecO; , ; 2 cosec®; ; cosecO;, 5
— - — (—C0S7 41 COST1
IidTi1 Ml ITi0Ti+3 Mitalisalivg

+sin 7,4 SiN 7., C0SO; ;. »)

the choice of the basis set for the expansion of the wavéonal spectral:|v should be separable and factorizable.

function through occurrences of unavoidable singularities ifCombined consideration of these factors dictate the use of
the HamiltonianH,, . It is important to emphasize this last simple, elementary internal coordinates in the derivation of
point, as to facilitate efficient practical calculations of vibra- Ty,. In summary, for sequentially bonded molecules one
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should use the simple, unsymmetrized stretching, angleipulation of complex functions and expressippsovide the
bending, and torsion coordinatésee Fig. ], as use of these necessary computing environment for the determination of
coordinates ensures the required propertie§,poand, at the quantum mechanical kinetic energy operators in internal co-
same time, these coordinates are usually appropriate for trerdinates. However, as this communication shows, it might
expansion of the potential energy for semirigid molecules. not always be necessary to carry out the tremendous amount

Once the internal coordinate system is selected for a cewf algebraic manipulations involved in these derivations, as
tain class of molecules, the appropridgematrix elements simple analytic formulae can be devised for certain classes of
can be obtainéd=2* which, in turn, determine the form of molecules employing selected internal coordinates. The full
the kinetic energy operatgsee Eq.(4)]. It must be realized form of T,, of any N-atom sequentially bonded molecule in
that even for arN-atom sequentially bonded molecule there stretch, bend, and torsion internal coordinates and employing
are only a few distinctG-matrix element® as coordinates a customary normalization condition is elegantly presented
having no common atom have zero off-diago@aélements.  in terms of only twenty distinct operator terms. Similar terms
This fact is exploited in the present case to derive the exaatould be derived for other classes of compounds and other
guantum mechanical kinetic energy operator for this class ointernal coordinate sets if desired. Use of the exact kinetic
compounds. In Figl a seven-atom molecule is depicted, energy operators df-atom molecules is envisioned in vibra-
which is the smallest sequentially bonded molecule havindional spectroscopy, scattering theory, and in quantum Monte
an arrangement which produces all the distifigtterms, as  Carlo calculations, for possibly less than eight-atom systems.
only in this case would the first and last torsions have one
and only one atom in common. As can easily be verified,y ckNOWLEDGMENTS
there are only twenty distinct terms in the exdgt of se-
quentially bonded molecules and all of them are given in A.G.C. thanks the PHARE ACCORD program for
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