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The full nonrelativistic quantum mechanical vibrational~J50! kinetic energy operator for
sequentially bondedN-atom molecules, expressed in valence stretch, bend, and torsion internal
coordinates, is explicitly given. Certain properties of the operator and its possible applications are
discussed. ©1995 American Institute of Physics.
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I. INTRODUCTION

One of the principal difficulties which had to be over
come to allow accurate calculation of~ro!vibrational spectra
of small molecules1–6 was the derivation of the exact, in the
nonrelativistic limit and within the framework of the Born–
Oppenheimer approximation, quantum mechanical~ro!vibra-
tional kinetic energy operator,T̂. The general form, i.e., a
form which applies to anyN-atom molecule, ofT̂ in normal
coordinates was obtained by Watson7 some 25 years ago.
Following the first few calculations using this operator, how
ever, it was realized8 that valence internal coordinates are
considerably better choice than normal coordinates for b
the lowest vibrational levels. The utility of~nonorthogonal!
internal coordinates in practical calculations is related to
least four key factors:~i! their use avoids the unfactorizabil-
ity problem9 of Watson’s rovibrational kinetic energy opera
tor T̂VR ; ~ii ! normal coordinate expansions of the potentia
V̂, have a comparatively short convergence radii and the re
tilinear nature of the normal coordinates results in unnece
sarily long and complicated forms when dealing with high
energy and/or large-amplitude motions;~iii ! it might,
occasionally, be a problem to choose a reference geome
~linear or nonlinear! to define the normal coordinates, while
the use of curvilinear internal coordinates ensures that
difficulties arise at special nuclear arrangements~e.g., at lin-
ear configurations!; and ~iv! while the normal coordinate-
Hamiltonian may be more efficient than the one expressed
internal coordinates for the lowest-lying energy levels, it wi
always lead to convergence problems as the energy lev
become more comparable with the barrier height. Thus, de
vation of the kinetic energy operator in carefully selecte
internal coordinates, suitable for the molecule under cons
eration, seems to be unavoidable.

Derivation of the exact~ro!vibrational quantum me-
chanical kinetic energy operator of sequentially bonded (A–
B–C) triatomic molecules, in stretch–stretch-bend intern
coordinates, dates back to at least 1966, when Freed
Lombardi,10 building on an earlier form ofT̂ expressed in
three bond length coordinates,11 derived a Hamiltonian in
stretch–stretch-bend internal coordinates. However, the fo
they obtained does not appear to be hermitian.8c In 1974,
Gribov and Khovrin12 performed crude vibrational varia-
tional calculations on H2O, using a stretch–stretch-bendT̂V
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not explicitly given but believed to be exact. Carney, Spran
del, and Kern13 report that the exactT̂V was obtained by
them at about the same time. However, it seems that the u
of the exact triatomicT̂VR in valence coordinates started sev-
eral years later with the work of Carter and Handy,8c and that
derivation of T̂VR for tetra-atomic molecules was only at-
tempted in the early 1980’s.14 The first complete, exact, de-
tailed rovibrational kinetic energy operator for tetra-atomic
molecules was derived in 1987.15 Since then efficient com-
puter programs to calculate the rovibrational spectra of tr
atomic and tetra-atomic molecules have been developed
several groups.1,2,16–18Recently, forms for the exact quantum
mechanical vibrational kinetic energy operator,T̂V , of se-
quentially bonded (A–B–C–D–E) and (A,B) –C–D–E-
type penta-atomic molecules have been reported by th
present authors.19 Hopefully the next few years will bring
implementations of these operators for calculation of the v
brational spectra of interesting penta-atomic molecules, lik
ketene~CH2CCO!, and carbon suboxide~C3O2!.

This communication builds on previous efforts of the
authors15,19 and reports the general form of the non-
relativistically exact quantum mechanical vibrational kinetic
energy operator,T̂V , for N-atom sequentially bonded mol-
ecules. After a brief discussion of the theory, which is em
ployed to obtain the formulae all distinct nondifferential,
first-derivative, and second-derivative terms in anN-atomic
T̂V are presented and reviewed. Finally, possible uses
these operators are discussed.

II. THEORETICAL FOUNDATIONS

In theoretical molecular spectroscopy, there seem t
have been two approaches employed for the derivation of th
exact quantum mechanical kinetic energy operator in intern
coordinates.20 The basic difference between the two ap-
proaches is in their starting point: while the first approach
starts with the classical Lagrangian form of the kinetic en
ergy operator,21 the second approach15 begins with the quan-
tum mechanical kinetic energy operator in Cartesian coord
nates.

The first, conventional approach writes the classical, La
grangian form of the kinetic energy,T, of anN-atom mol-
ecule in terms of the velocitiesṘi as
/102(10)/3962/6/$6.00 © 1995 American Institute of Physics¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3963A. G. Császár and N. C. Handy: Vibrational kinetic energy operator
T5
1

2 (
i51

N

miṘi•Ṙi , ~1!

where mi is the mass of atomi . Using successive
transformations,22,23 one obtains the formula

T5 1
2 pq

TG~q!pq , ~2!

wherepq are the momenta conjugate to the internal coor
nateq andG(q) is the well-knownG matrix of molecular
spectroscopy.23,24 In the next step one employs a formalism
first formulated by Podolsky,21 to obtain the quantum me
chanical operatorT̂V as

T̂V52
\2

2
g1/4(

i , j

]

]qi
g21/2Gi j

]

]qj
g1/4, ~3!

whereg5detG. This approach leads to the following fina
form for T̂V :

T̂V~q!5
1

2 (
i , j

piGi j ~q!pj1V8~q!, ~4!

wherepi52 i\]/]qi and

V8~q!5
\2

8 (
i , j

S ]

]qi
Gi j

] ln g

]qj
D

1
\2

32 (
i j

SGi j

] ln g

]qi

] ln g

]qj
D . ~5!

In Eq. ~4! the classical-like first term and the pure
quantum-mechanical, nondifferential second term are cle
separated. It is important to note that the simple form ofT̂V ,
as given in Eq.~4!, follows from the choice of the volume
element,dV5dq1dq2...dqN . Note also thatV8(q) can be
regarded as a mass-dependent contribution to the pote
energy function.

In this connection we wish to draw attention to a n
fully recognized paper by Decius,24 published in 1948. In
that paper he derived~by hand!! all the possibleG matrix
elements for bond stretching, bending and torsional inte
coordinates, for all 33 acyclic configurations. Decius us
the fundamental formulas of Wilson23 for G in terms of thes
vectors. Given the appropriate normalization condition t
then gives, using Eqs.~4! and~5! above, allT̂V operators for
these problems. Note that Decius does not derive the m
term Eq. ~5!, which was not of interest to those who us
Wilson’s GF formalism. The algebra in the Decius paper
far from trivial; the approach which we now describe, b
sides obtaining the fullT̂V operator, will also check the
Decius formulae.

The second approach, advocated by Sutcliffe5 and
Handy15 starts with the simple Laplacian form of the qua
tum mechanical kinetic energy operator written in Cartes
coordinates$xa i% ~a5xyz, i51,2,...,N! of theN nuclei in a
laboratory fixed frame of reference
J. Chem. Phys., Vol. 10Downloaded¬19¬May¬2006¬to¬157.181.190.84.¬Redistribution¬subje
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T̂52
\2

2 (
i

N
¹ i
2

mi
52

\2

2 (
i

N
1

mi
(
a

xyz
]2

]xa i]xa i
. ~6!

Then, by choosing a set of suitable internal coordinates$qi%
~i51,2,...,3N26! for the molecule considered and apply-
ing the chain rule twice to execute the transformation
]/]xa i°]/]qj one can write the exactJ50 kinetic energy
operator as

T̂V /~2 1
2 \2!5 (

jk

3N26

gjk
]2

]qj]qk
1 (

j

3N26

hj
]

]qj

:5 (
jk

3N26 F(
a

xyz

(
i

N
1

mi
S ]qj

]xa i

]qk
]xa i

D G ]2

]qj]qk

1 (
j

3N26 S (
a

xyz

(
i

N
1

mi

]2qj
]xa i]xa i

D ]

]qj
, ~7!

where the definitions for the contravariant metric tensorgjk,
and for hj , are made evident. Note that, when comparing
Eqs. ~4! and ~7!, gjk5Gjk and, of course, it has the same
Wilson formula as used by Decius. Calculation ofgjk andhj

requires knowledge of the explicit dependence of the chose
internal coordinates on the Cartesians. Therefore, it seem
most advantageous19 to definegjk and hj first in a set of
internal coordinates for which this functional dependence i
especially simple, i.e., in a set of interparticle distance coo
dinates. However, the number of interparticle distances for
generalN-atom molecule,@N3(N21)/2#, is different, apart
from tri- and tetra-atomic molecules, from the number o
independent internal coordinates,~3N26!. This means that
elimination of all Cartesian terms fromgjk andhj obtained
using Eq.~7! and the interparticle distances as internal coor
dinates for molecules having more than four atoms require
additional effort, namely expressing the ‘‘extraneous’’ inter-
particle distance~s! by the selected set of internal coordi-
nates. This step might require involved vector and algebra
manipulations but can be achieved rather easily if onl
stretch, bend, and torsion internal coordinates are selected
describe the internal motion. The key formula required is th
vector position of a fourth atom,A i22, in terms of the posi-
tion of earlier atomsA i21, A i , A i11 and the new internal
coordinatesr i22, Qi22, andti22, and is given as

A i225A i212r i22 cosQ i22A iA i21

1r i22 sin Q i22 sin t i22

A iA i213A iA i11

sin Q i21

1r i22 sin Q i22 cost i22

A iA i112cosQ i21A iA i21

sin Q i21
,

~8!

whereA iA i21 andA iA i11 are appropriate unit vectors point-
ing from the first toward the second atom, and definition o
the atoms and the internal coordinates is as given in Fig.
All interparticle distances can then be calculated in terms o
rI , QI , andtI . This procedure results in the introduction of all
2, No. 10, 8 March 1995ct¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3964 A. G. Császár and N. C. Handy: Vibrational kinetic energy operator
internal coordinates intogjk andhj at this early stage. This
presents no difficulty during later algebraic manipulations
derivatives ofgjk andhj are never formed, they appear sim
ply as multiplicative terms of the differential operators. It i
easy to show that changing from one set of internal coord

FIG. 1. Atom numbering and definition of~rI , QI , tI ! internal coordinates for
N-atom molecules. Note that Eq.~8! is consistently used for the consecu-
tively labeled atoms ensuring that the sense oft is always the same as one
moves along the chain.
o
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nates$qj8% to another set of internal coordinates$qj% can be
achieved by the use of the following expressions:

S (
a i

1

mi

]qj
]xa i

]qk
]xa i D 5(

lm
S (

a i

1

mi

]ql8

]xa i

]qm8

]xa i D ]qj
]ql8

]qk
]qm8

~9a!

and

S (
a i

1

mi

]2qj
]xa i]xa i D 5(

k
S (

a i

1

mi

]2qk8

]xa i]xa i D ]qj
]qk8

1(
kl

3S (
a i

1

mi

]qk8

]xa i

]ql8

]xa i D ]2qj
]qk8]ql8

.

~9b!

Repeated application, if necessary, of Eq.~9! produces the
desired quantitiesgjk5Gjk andh

j . A final transformation, to
include the stretching part of the full transformation Jacobia
into T̂V is carried out as

T̂̄V5s1/2T̂Vs
21/2, ~10!

wheres is the stretching part of the Jacobian for the trans
formation from$xa i% to the final set of internal coordinates
$qj% and is simply the square product of the bond length
This yields a new form for the operator as
T̂̄V /~2 1
2 \2!5 (

jk

3N26

gjk
]2

]qj]qk
1 (

j

3N26

hj
]

]qj
12s1/2 (

jk

3N26

gjk
]s21/2

]qj

]

]qk
1s1/2S (

jk

3N26

gjk
]2s21/2

]qj]qk
1 (

j

3N26

hj
]s21/2

]qj D .
~11!
f
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Since here only the stretching part of the full transformati
Jacobian has been absorbed intoT̂V , the volume element is
not the same as used during derivation of Eqs.~4! and~5!. It
then follows that although the coefficients of the secon
order differential operators are the same (gjk5Gjk), the co-
efficients of the linear operators and the nondifferential te
are different. Note that Eqs.~4! and ~5! and ~11! have the
usual Podolsky structure.21 To ease the notation, in the fol

lowing T̂V will always be written instead ofT̂̄V .
The second approach was used by the authors to de

kinetic energy operators for sequentially bonded (A–B–C–
D) and (A,B) –C–D-type tetra-atomic molecules,15 and for
sequentially bonded (A–B–C–D–E) and (A,B) –C–D–
E-type penta-atomic molecules.19 For actual derivation of
the exact quantum mechanical kinetic energy operator, us
computer algebra systems~CAS! and the following scheme
is advocated:~a! set up the necessary auxiliary function
which form the basis of a general-purpose CAS program,
subsequent use;~b! define the masses, the Cartesian coor
nates, and the~3N26! interparticle distances used as intern
coordinates;~c! transform, via Eq.~7!, from Cartesian coor-
dinates to the~3N26! stretching-type interparticle distances
n

d-

m

ive

of

,
or
i-
l

;

~d! eliminate, if necessary, the Cartesians left ingjk due to
the ‘‘extraneous’’ interparticle distance~s! @using Eq.~8! or
similar equations#; ~e! apply successive transformations, via
Eq. ~9!, from the interparticle coordinates to the final set o
internal coordinates;~f! include the stretching part of the
Jacobian intoT̂V through Eq.~11!; and ~g! simplify the re-
sulting operators.19

III. RESULTS AND DISCUSSION

The derivation, using the CAS scheme19 reiterated in
Sec. II, ofT̂V for sequentially bonded tetra- and penta-atomi
molecules can simply be extended to sequentially bond
molecules of arbitrary size. This stems from the fact that th
optimal choice of the internal coordinates is very clear fo
these molecules. When choosing the internal coordinat
$qi% in which the exact quantum mechanical kinetic energ
operator is to be expressed, it is necessary to keep in m
that ~a! practical calculations become easier and much in
sight into the physical nature of the system can be gained
one can find a set of optimal internal coordinates in whic
the system is nearly separable;~b! the choice of$qi% not only
determines the actual form ofT̂V , however, it, in turn, affects
, No. 10, 8 March 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Nondifferential, first-derivative, and second-derivative terms in the exact quantum mechanical vibrational kinetic energy operator of sequen
bonded molecules in internal coordinates$r ,Q,t% ~see Fig. 1!.

Nondiff.
term

(
i51

N22
2 cosQi

mi11RiRi11

]2

]Qi]Qi

1

miri
21

1

mi11ri11
2 2

2 cosQi

mi11riri11

]

]ri
2
2 cosQi21

miri21
2
2 cosQi

mi11ri11

]2

]Qi]Qi11
2 costiS2 1

mi11ri11
2 1

cosQi

mi11riri11
1

cosQi11

mi12ri11ri12
D

]

]Qi
S 1

miri
21

1

mi11ri11
2 DcotQi2

2 costi21 sinQi21

miri21ri

1
4 sinQi22 cosecQ i

mi11r i r i11
2
2 costi sinQi11

mi12ri11ri12

]2

]Qi]Qi12
2
2 sinti sin ti11

mi12ri11ri12
2
2 costi costi11 cosQi11

mi12ri11ri12

]

]ti

2 sinti sinQi cotQi11

mi11riri11
1
2 sinti21 sinQi21 cosecQ i

mir i21r i

1
2 sinti cotQi sinQi11

mi12ri11ri12
2
2 sinti11 sinQi12 cosecQ i11

mi13r i12r i13

]2

]Q i]t i
2 sintiScotQi11

mi11ri11
2 2

cosQi cotQi11

mi11riri11
2

cosecQ i11

mi12r i11r i12
D

]2

]r i]r i
1/m i51/mi11/mi11

]2

]Qi]ti11
22 sinti cosecQ i11S 2

1

m i11r i11
2 1

cosQi

mi11riri11
1

cosQi11

mi12ri11ri12
D

1
2 cotQi12

mi12ri11ri12
~2sin ti costi111costi sin ti11 cosQi!

]2

]ri]ri11

2 cosQi

mi11

]2

]Qi]ti12
2
2 cosecQ i12

mi12r i11r i12
~sin ti costi112costi sin ti11 cosQi11!

]2

]ri]Qi
2
2 sinQi

mi11ri11

]2

]ti]ti

cosec2 Q i

m i r i
2 1

cot2Qi

mi11ri11
2 1

cot2 Qi11

mi11ri11
2 1

cosec2 Q i11

m i12r i12
2

1
2 costi cotQi cotQi11

mi11ri11
2

2
2 cosecQ i cotQi

mi11riri11
2
2 costi cosecQ i cotQi11

mi11riri11

2
2 cosecQ i11 cotQi11

mi12ri11ri12
2
2 costi cosecQ i11 cotQi

mi12ri11ri12

]2

]ri]Qi11

2 sinQi costi
mi11ri11

]2

]ti]ti11
2 cosecQ i11S costi cotQi1cotQi11

mi11ri11
2 1

costi11 cotQi121cotQi11

mi12ri12
2

2
2 costi cosecQ i

mi11r i r i11
2
2 costi11 cosecQ i12

mi13r i12r i13
D

2
2

mi12r i11r i12
@cot2 Qi111cosec2 Q i11

1costi cotQi cotQi111costi11 cotQi11 cotQi12

1cotQi cotQi12~costi costi111sin ti sin t i11 cosQi11!#

]2

]ri]ti
2
2 sinti sinQi cotQi11

mi11ri11

]2

]ti]ti12

costi cosecQ i cosecQ i11

m i11r i11
2 2

cosecQ i11

mi11r i r i11
@costi cotQi

1cotQi21~costi21 costi1sin ti21 sin ti cosQi!#

2
cosecQ i

mi12r i11r i12
@costi cotQi111cotQi12~costi costi11

1sin ti sin ti11 cosQi11!#

]2

]ri]ti11
2
2 sinti sinQi cosecQ i11

mi11r i11

]2

]t i]t i13

cosecQ i11 cosecQ i13

mi13r i12r i13
~2costi11 costi12

1sin ti11 sin ti12 cosQi12!
f

the choice of the basis set for the expansion of the wa
function through occurrences of unavoidable singularities
the Hamiltonian,ĤV . It is important to emphasize this last
point, as to facilitate efficient practical calculations of vibra
J. Chem. Phys., Vol. 102Downloaded¬19¬May¬2006¬to¬157.181.190.84.¬Redistribution¬subjec
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tional spectraĤV should be separable and factorizable.9

Combined consideration of these factors dictate the use o
simple, elementary internal coordinates in the derivation of
T̂V . In summary, for sequentially bonded molecules one
, No. 10, 8 March 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3966 A. G. Császár and N. C. Handy: Vibrational kinetic energy operator
should use the simple, unsymmetrized stretching, an
bending, and torsion coordinates~see Fig. 1!, as use of these
coordinates ensures the required properties ofT̂V and, at the
same time, these coordinates are usually appropriate for
expansion of the potential energy for semirigid molecules

Once the internal coordinate system is selected for a c
tain class of molecules, the appropriateG-matrix elements
can be obtained23–24 which, in turn, determine the form of
the kinetic energy operator@see Eq.~4!#. It must be realized
that even for anN-atom sequentially bonded molecule the
are only a few distinctG-matrix elements24 as coordinates
having no common atom have zero off-diagonalG elements.
This fact is exploited in the present case to derive the ex
quantum mechanical kinetic energy operator for this class
compounds. In Fig. 1 a seven-atom molecule is depicte
which is the smallest sequentially bonded molecule hav
an arrangement which produces all the distinctT̂V terms, as
only in this case would the first and last torsions have o
and only one atom in common. As can easily be verifie
there are only twenty distinct terms in the exactT̂V of se-
quentially bonded molecules and all of them are given
Table I. Note that while all terms which arise in the fullT̂V of
sequentially bonded molecules can be derived from the te
given in Table I, indexing of the masses, distances and an
may need special attention. For example, while the opera
]2/]r i]Q i should be premultiplied by22 sinQi /mi11r i11
~see Table I!, the operator]2/]r i]Q i21 should be premulti-
plied by22 sinQi /mir i21. Note that the coefficients of the
second derivative operators in Table I are, as required
emphasized in Sec. II, precisely the distinctG-matrix ele-
ments, first derived by Decius, of the problem.24,25

Finally, application of the elegant general operator for
presented in Table I needs to be addressed. In principle
could be used for variational evaluation of vibrational ener
levels ofN-atom molecules. However, since, at present,
seems practical to carry out full variational calculations in
more than seven dimensions, this puts a severe restriction
the size of the system which could be handled. Even if fix
expansion functions are used for certain internal coordina
as suggested previously by the authors,19 the largest system
for which the bend-only spectrum could be obtained pro
ably has only six atoms, while an eight-atom molecule see
to be the largest system for which calculation of the stretc
only vibrational spectrum seems to be feasible. If the fu
exact form of the operator is too complicated, it is alwa
possible to delete or to replace certain of the operators
some average of their values. Approximate kinetic ene
operators for local vibrational modes26 and bender models27

are examples of this nature. Derivation of these operators
larger systems could possibly follow from the present ex
results. Application of the exact~or simplified! operators is
also envisioned in scattering theory or in quantum Mon
Carlo methods.28

IV. CONCLUSIONS

Distinct features of modern computer algebra syste
~e.g., their highly functional programming language, num
ous, easily applicable and extendable built-in functions, a
their capability to perform symbolic determination and m
J. Chem. Phys., Vol. 102,Downloaded¬19¬May¬2006¬to¬157.181.190.84.¬Redistribution¬subject
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nipulation of complex functions and expressions! provide the
necessary computing environment for the determination
quantum mechanical kinetic energy operators in internal c
ordinates. However, as this communication shows, it mig
not always be necessary to carry out the tremendous amo
of algebraic manipulations involved in these derivations,
simple analytic formulae can be devised for certain classes
molecules employing selected internal coordinates. The f
form of T̂V of anyN-atom sequentially bonded molecule in
stretch, bend, and torsion internal coordinates and employ
a customary normalization condition is elegantly present
in terms of only twenty distinct operator terms. Similar term
could be derived for other classes of compounds and ot
internal coordinate sets if desired. Use of the exact kine
energy operators ofN-atom molecules is envisioned in vibra-
tional spectroscopy, scattering theory, and in quantum Mon
Carlo calculations, for possibly less than eight-atom system
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