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Abstract

Ž .The extrapolation scheme for geometry optimizations presented in J. Phys. Chem. A 103 1999 651, which is based on a
Ž .similar scheme for energies proposed in Chem. Phys. Lett. 294 1998 45, is examined. The scheme is unreliable in the sense

that it sometimes yields results less accurate than the unextrapolated data it is aiming beyond and should be applied with
caution. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

In a recent paper entitled ‘‘Geometry optimization
w xwith an infinite basis set’’, Chuang and Truhlar 1

presented a scheme for geometry optimizations in
which the energy and its derivatives are not simply
obtained with one basis set. Instead, these quantities
are determined from an extrapolation based on re-
sults obtained with the correlation-consistent polar-

Ž .ized valence double-zeta cc-pVDZ and triple-zeta
Ž . w xcc-pVTZ basis sets 2 . The extrapolated quantities
are used in the optimization of the molecular geome-
try and, to the extent that the extrapolated properties
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agree with the basis-set limit, this optimization pro-
duces the equilibrium molecular structure that would
be obtained with a complete basis set for the given
wavefunction. Therefore, such a scheme is interest-

Ž .ing and important as it approximately removes one
of the two errors inherent in all standard molecular
electronic structure optimizations – namely, the ba-
sis-set truncation error.

Halkier et al., who have proposed a simple linear
two-point extrapolation for correlation energies, have
pointed out that such an extrapolation is ‘‘well suited
for automatic incorporation in a broader computa-
tional scheme aimed at high-accuracy prediction of

w xenergies and molecular properties’’ 3 . The studies
w xof Truhlar and co-workers 1,4 represent a realiza-

tion of this procedure, using one particular extrapola-
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tion scheme. In the present Comment, we analyse the
w xextrapolation introduced by Truhlar in Ref. 4 and

discuss the quality and reliability of the results ob-
w xtained in Ref. 1 .

2. Theory

2.1. Comparison of different extrapolation schemes

The two most popular extrapolation forms for the
energyrcorrelation energy obtained with the correla-

Ž .tion-consistent basis sets cc-pVXZ are the expo-
nential form

E sE qB exp ya X , 1Ž . Ž .X lim

Žwhich is used by Dunning and Feller cf. Refs.
w x.2,5,6 and the power form

E sE qBXya , 2Ž .X lim

which forms the basis for the two-point extrapolation
w xof Helgaker and co-workers 3,7 as well as for the

w x Ž .scheme of Truhlar and co-workers 1,4 . In Eqs. 1
Ž .and 2 , E is the energyrcorrelation energy ob-X

Žtained with the basis set with cardinal number X D:
.2, T: 3, . . . , E is the basis-set limit energyrcor-lim

relation energy, and B and a are parameters, the
determination of which we outline below. Note that
the two-point extrapolation of Helgaker and co-
workers is concerned only with the correlation en-
ergy.

As both the two-point extrapolation of Helgaker
and co-workers and the extrapolation scheme of
Truhlar and co-workers are based on results for two
consecutive X, we shall focus on this situation,
although we note that this is not the way the Dun-
ning–Feller exponential scheme is usually employed.
For two consecutive cardinal numbers Xy1 and X,
the following closed expressions for E are ob-lim

tained for the exponential form

1 exp yaŽ .
E s E y E ,lim X Xy11yexp ya 1yexp yaŽ . Ž .

3Ž .

and for the power form

aaX Xy1Ž .
E s E y E .a alim X Xy1a aX y Xy1 X y Xy1Ž . Ž .

4Ž .

Clearly, both expressions are of the form

E sC X , a E q 1yC X , a EŽ . Ž .lim Xy1 X

sC X , a E yE qE . 5Ž . Ž . Ž .Xy1 X X

The coefficient C depends in general on X, although
we note that C is independent of X for the exponen-

Ž . Ž .tial form. Extrapolations based on Eqs. 1 and 2
which employ results for two cardinal numbers can
thus be interpreted as a simple weighting of E andX

E .Xy1

The two-point extrapolation of Helgaker and co-
workers is, for all X pairs, carried out with the fixed
exponent as3. This particular value of a is sup-
ported by the theoretical analysis of the partial-wave

w xexpansion of the helium atom 8 and this extrapola-
tion thus exhibits the correct asymptotic behaviour

w xfor large X 7,9 . For this extrapolation, we prefer to
Ž .use the seemingly more complicated expression 4

Ž . Ž .rather than 5 to emphasize that: a there is a single
Ž . Ž .a parameter for all Xy1, X pairs in 4 rather

Ž .than a separate C parameter for each Xy1, X
Ž . Ž . 3pair as in 5 ; and b the explicit reference to X

serves as a reminder of the theoretical foundation of
the extrapolation.

The scheme of Truhlar and co-workers is econom-
w x Ž .ically motivated 4 and only the X pair 2, 3 is

used. The Hartree–Fock and correlation parts of the
Ženergies are treated separately i.e., there is one

exponent a for the Hartree–Fock energy and an-
.other for the correlation energy and the exponent for

each part is obtained as the one that minimizes the
root-mean-square error of extrapolated limits for a
sample of molecules for which the basis-set limits
are known either from numerical Hartree–Fock stud-

w xies or explicitly correlated R12 calculations 4 . Since
this scheme is purely empirical and used only for a
single X pair, it appears more natural to use the

Ž . Ž .form 5 rather than 4 . Furthermore, as the extrapo-
lation is empirical, a large and broad sample of
systems for the determination of the optimal expo-

Ž . w xnents or coefficients is preferable. In Ref. 4 , the
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exponents were determined from a sample of only
three systems, and a redetermination of the parame-
ters in the extrapolation from a larger sample of
molecules is thus desirable, as mentioned also in

w xRef. 4 .

2.2. Requirements for extrapolations

The requirements for the performance of an ex-
trapolation scheme may be subject to personal pref-
erence. In the following, we describe the require-
ments we impose on an extrapolation scheme to
consider it successful. As the extrapolation itself is
free of cost compared with the calculations needed
for obtaining the numbers used in the extrapolation,
we do not require a reduction of the error by several
orders of magnitude by the extrapolation. However,
we do require the results to be perceptibly improved
by the extrapolation. More important, the extrapola-
tion should only rarely fail in the sense of giving a
result poorer than the original numbers. If this crite-
rion is not met, the scheme is – in our opinion –
unreliable and it is better to work with the original,
unextrapolated results.

Regarding the first point, we note that the scheme
of Truhlar and co-workers is, by construction, biased
towards those molecules in the sample that have the

w xlargest absolute basis-set errors 10 . Therefore, there
is a risk of failure for molecules within the sample

w xthat have small absolute errors. Indeed, in Ref. 10 ,
it was found that the scheme of Truhlar and co-
workers overshoots the Hartree–Fock limit for H 2

by 99% compared with the error of the cc-pVTZ
basis set and thus does not represent any practical
improvement for this molecule. It may be argued that
this does not matter much since the hydrogen
molecule is rather accurately described anyway. In
our view, however, such a failure signals a warning
concerning the performance of the extrapolation
scheme.

3. Numerical results

In the present section, we examine the results
obtained with the extrapolation of Truhlar and co-
workers for the equilibrium geometries of H O,2

w xNH , and H O , which in Ref. 1 were studied at3 2 2
Ž .both the second-order Møller–Plesset MP2 theory

w x11 and the coupled-cluster singles-and-doubles
Ž . w xCCSD levels of the wavefunction 12 .

3.1. Computational considerations

To increase the number of significant digits, we
have recomputed all the unextrapolated cc-pVDZ,

Ž .cc-pVTZ, and cc-pVQZ MP2 FC geometries in Ref.
w x1 . Moreover, to enable a comparison with results
that are closer to the basis-set limit than those ob-
tained with the cc-pVQZ basis, we have performed

Ž .MP2 FC calculations with the cc-pV5Z and the
Ž . w xaug-cc-pVXZ XsDy5 basis sets 2,13 . As in

w xRef. 1 , only the valence electrons have been corre-
lated in the post-Hartree–Fock treatment. All calcu-
lations have been carried out with the Gaussian 94

w xprogram 14 , employing the ‘tight convergence’ op-
tion to ensure high numerical accuracy of the calcu-
lated geometries. The results are given in Table 1,
along with the geometries obtained using the extrap-

w xolation scheme of Ref. 1 . Included in Table 1 are
Ž .also MP2-R12 FC results for H O obtained as a2

Ž . Ž .by-product of the CCSD T -R12 FC calculations
w xpresented in Ref. 15 . The small discrepancies be-

tween the optimized angles in Table 1 and those in
w xRef. 1 are believed to arise from different conver-

gence thresholds. Since the discrepancies are small
compared with the changes observed when the basis
set is increased or the extrapolation is applied, they
do not affect our conclusions concerning the perfor-
mance of the extrapolation scheme of Truhlar and
co-workers for bond angles.

3.2. Equilibrium geometries of H O, NH , and H O2 3 2 2

w xIn the discussion section of Ref. 1 , it is stated
that ‘‘the extrapolated results are much closer to the
quadruple-zeta values than to the triple-zeta ones’’.
Although this conclusion is correct for the angles
and holds also for the mean absolute percentage
deviation of all the geometrical parameters, it does
not hold for all the bond distances. For both the
O–O bond distance in H O and the bond distance2 2

Ž w x.in NH at the CCSD level see Table 2 of Ref. 1 ,3

the extrapolated results are closer to the cc-pVTZ
results than to the cc-pVQZ results. Moreover, con-
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Table 1
Ž .Optimized equilibrium geometries of H O, NH , and H O obtained at the MP2 FC level with the cc-pVXZ and aug-cc-pVXZ,2 3 2 2

Ž . Ž .XsDy5 , basis sets and the extrapolation scheme of Truhlar and co-workers. Included are also the MP2-R12 FC results for H O. Bond2

lengths are in pm and angles in degrees

Basis H O NH H O2 3 2 2

r / r / r r / dihedralOH HOH NH HNH OH OO HOO

cc-pVDZ 96.49 101.90 102.35 103.90 97.04 145.68 98.78 118.44
cc-pVTZ 95.91 103.52 101.14 105.95 96.44 145.05 99.32 114.26
cc-pVQZ 95.77 104.02 100.98 106.47 96.31 144.64 99.66 112.73
cc-pV5Z 95.79 104.29 100.95 106.84 96.34 144.54 99.79 113.01
aug-cc-pVDZ 96.59 103.87 102.02 106.30 97.16 147.02 99.14 112.92
aug-cc-pVTZ 96.14 104.11 101.21 106.77 96.68 145.37 99.61 112.57
aug-cc-pVQZ 95.89 104.27 101.02 106.89 96.42 144.71 99.80 112.67
aug-cc-pV5Z 95.84 104.33 100.97 106.93 96.38 144.57 99.82 112.92

aR12 95.86 104.43
bTruhlar scheme 95.7 103.96 100.7 106.59 96.0 144.9 99.54 112.66

a w xFrom Ref. 15 .
b w xFrom Ref. 1 .

w xsidering the title of Ref. 1 , we should ask how close
the cc-pVQZ results are to the basis-set limit.

An inspection of the convergence of the bond
distances obtained within the aug-cc-pVXZ series
indicates that the aug-cc-pV5Z bond distances are
close to the basis-set limit. This is supported by the
excellent agreement between the R12 and aug-cc-
pV5Z results for r in H O. We further observeOH 2

that the bond distances extrapolated by Truhlar and
co-workers are further away from the basis-set limit
Ž .as represented by the aug-cc-pV5Z bond distances
than are the direct cc-pVQZ results. This is also seen
from Table 2, where we have listed the mean errors,
mean absolute errors, maximum absolute errors, and
root-mean-square errors of the calculated bond dis-
tances and angles relative to the aug-cc-pV5Z level.

w xIn Ref. 1 , it is stated that ‘‘it appears reasonable to

assume that the extrapolated geometries are actually
closer to the infinite-basis results than are the cc-
pVQZ geometries’’, but given the results in Tables 1
and 2, this assumption seems too optimistic.

w xIn the discussion section of Ref. 1 , it is stated
that ‘‘the alternate to extrapolated results for larger
molecules will usually be unextrapolated cc-pVTZ
results, which are much less accurate’’. As the most
accurate estimates of the basis-set limit are the aug-
cc-pV5Z results, we shall compare here the cc-pVTZ
and extrapolated numbers with these results. Again,
for the mean absolute percentage deviation of all
geometrical parameters, the extrapolated results rep-
resent an improvement on the cc-pVTZ results: 0.3%
Ž . Ž .extr. vs. 0.5% cc-pVTZ . The improvement is not
uniform, however. First, whereas the root-mean-
square error for the bond angles is significantly

Table 2
Mean errors, mean absolute errors, maximum absolute errors, and root-mean-square errors relative to the aug-cc-pV5Z level for the
cc-pVXZ basis sets and the extrapolation scheme of Truhlar and co-workers. The errors have been calculated based on the numbers in Table
1

Ž . Ž .Basis Bond lengths pm Angles deg

mean mean abs. max. abs. r.m.s. mean mean abs. max. abs. r.m.s.

cc-pVDZ 0.95 0.95 1.38 1.00 y0.24 3.00 5.52 3.41
cc-pVTZ 0.20 0.20 0.48 0.26 y0.24 0.91 1.34 0.96
cc-pVQZ y0.02 0.05 0.07 0.06 y0.28 0.28 0.46 0.30
Truhlar scheme y0.11 0.28 0.38 0.29 y0.31 0.31 0.37 0.32
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reduced from 0.96 to 0.328 by the extrapolation, it
increases from 0.26 to 0.29 pm for the bond dis-
tances. Second, even though the mean error for the
bond distances is reduced from 0.20 to y0.11 pm by
the extrapolation, for the bond distances in H O and2

NH and in particular for the O–H bond distance in3

H O , the difference between the cc-pVTZ and aug-2 2

cc-pV5Z results is smaller than the difference be-
tween the extrapolated result and the aug-cc-pV5Z
result.

According to our requirements on extrapolation
w xschemes given above, the scheme of Ref. 1 is thus

unreliable and it is, in our opinion, better to work
with the cc-pVTZ basis set – despite its limitations
with respect to completeness – than to apply this
particular extrapolation. Currently, the most accurate
equilibrium geometries are obtained by performing
standard calculations in the cc-pVXZ and aug-cc-
pVXZ basis sets to as high an X as possible, al-
though this may change with the development of
more reliable extrapolation schemes. It should finally
be noted that the convergence behaviour of the cc-
pVXZ and aug-cc-pVXZ geometric data is rather
different. Although computationally less economical,
the latter basis sets seem better suited for extrapola-

w xtions for the systems chosen in Ref. 1 , as they
include functions that make a proper description of
the lone-pairs and bond polarity possible, making the
extrapolation to the basis-set limit easier.

4. Conclusions

The extrapolation scheme for energies and geome-
try optimizations recently proposed by Truhlar and
co-workers has been examined. Although the extrap-
olation in average absolute percentage terms repre-
sents an improvement on the unextrapolated data, it
sometimes yields results that are poorer than those it

is aiming beyond. In this sense, the scheme is unreli-
able and should be employed with caution.
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