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INTERMOLECULAR BOND LENGTHS

Introduction

D uring the last few years significant progress
has been made in the ab initio computation

of intermolecular interactions. The rapid develop-
ment in quantum chemical procedures (including
methods, basis sets, and computer codes) and the
expansion of computational resources changed the
prospects of theoreticians working in the field of
noncovalent chemistry. From the relevant develop-
ments we mention only those of importance for the
present study. First, Dunning and coworkers have
developed a family of correlation consistent [(aug)-
cc-p(C)VXZ, X = 2(D), 3(T), 4(Q), . . .] basis sets.1 – 3

These basis sets systematically extend the atomic ra-
dial and angular spaces as a function of the cardinal
number X. Therefore, results obtained with them
seem to provide an excellent opportunity to extrap-
olate energies as well as properties to the complete
basis set (CBS) limit. In most systems studied, ex-
trapolation of the total energy and many properties
has been achieved with simple functional forms.
The exponential form

AX = ACBS + ae−bX, (1)

and polynomials of the form

AX = ACBS +
kmax∑
k= 3

αk(X+ βk)−k, (2)

where kmax is small, or similar polynomial forms
with noninteger exponents have been extensively
employed to estimate the CBS limit.4 – 15 The form
of eq. (1), for example, suggests that properties
obtained with three basis sets (e.g., X = D, T,
and Q) gives an opportunity to extrapolate to the
CBS limit of the investigated property. Second,
much experience4 has been accumulated on how the
correlation-consistent basis sets can be employed
in calculations on various properties. For example,
it is clear that for calculations of intermolecular
complexes5, 13 – 15 one should apply the augmented
version (aug-cc-pVXZ) of the cc-pVXZ sets contain-
ing diffuse functions, which are essential for the
description of long-range interactions. Third, due
to the rapid progress of both the available com-
puter codes and hardware, it became practical to
carry out ab initio computations at correlated levels
[Møller–Plesset (MPn), coupled cluster (CC)] em-
ploying basis sets of aug-cc-pVQZ quality or better
for small intermolecular complexes.

One of the principal difficulties during computa-
tion of intermolecular properties is due to the basis

set superposition error (BSSE). Briefly, because one
cannot use complete basis sets in practical com-
putations, the description of “internal” monomer
properties depends on the quality and location of
the basis functions of the partner molecule(s). Due
to BSSE, the calculated interaction energies become
too large, and the predicted potential energy hyper-
surfaces are distorted.

The conventional way to correct for BSSE a pos-
teriori is based on the Boys–Bernardi16, 17 [counter-
poise (CP)] scheme. On the other hand, the Chem-
ical Hamiltonian Approach18, 19 (CHA) introduced
by Mayer eliminates the nonphysical terms of the
Hamiltonian that are due to BSSE a priori, and there-
fore, represents an ultimate solution to the problem
of BSSE. The CHA is available up to the MP2 level
of theory;20 however, the actual implementation is
not suitable for calculations as large as those pre-
sented here. For an excellent recent review on CHA,
see ref. 21.

Using the CP scheme one has to recalculate the
monomers in the basis of the whole supermolecule
for every geometrical arrangement. For example, in
the case of two interacting monomers A and B, the
uncorrected interaction energy (1E) can be calcu-
lated as

1E = EAB(AB)− EA(A)− EB(B), (3)

where EAB(AB) is the total energy of the complex,
and EA(A) and EB(B) are the total energies of the
monomers. [In the following, we will use subscripts
to denote the molecular species in the energy ex-
pressions, while the letters in parentheses refer to
the (composite) basis used in the calculation. For ex-
ample, EA(A) is the energy of monomer A calculated
by using its own basis set.] The CP-corrected inter-
action energy can be defined as

1ECP = EAB(AB)− EA(AB)− EB(AB). (4)

Using eqs. (3) and (4), one can define the BSSE
content of the interaction energy as

δBSSE = 1E−1ECP = EA(AB)− EA(A)
+EB(AB)− EB(B). (5)

Using eq. (5), one can define the CP-corrected po-
tential energy surface (PES) of a dimer as

ECP = EAB(AB)− δBSSE = EAB(AB)+ EA(A)− EA(AB)
+EB(B)− EB(AB). (6)

According to eq. (6), one has to calculate five dif-
ferent total energies22 at every geometrical arrange-
ment of the system to determine a CP-corrected PES.
Of course, eq. (6) can be generalized to the case of
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an arbitrary number of subsystems, but the num-
ber of energy calculations necessary to determine
the PES increases with the number of monomers
enormously.23

There has been a continuous debate on the CP
method in the literature. One of the main arguments
against the CP scheme is that the composite basis
of the complex AB is not available for monomer A,
as the Pauli exclusion principle precludes the use of
the occupied orbitals of monomer B.24 In practice,
this means that the CP scheme overcompensates the
BSSE. This effect was studied on a small analyti-
cal model by Mayer and Túri.25 They found that
the CP scheme takes the leading BSSE terms prop-
erly into account. However, there are two additional
terms, which are responsible for the propensity of
the method to overcompensate the BSSE. The mag-
nitude of these minor terms depends on the size and
quality of the basis and, in accordance with the accu-
mulated numerical experience,26 – 28 decreases as the
basis set is enlarged. It has generally been accepted
that one almost always has to correct for the BSSE,
and that adequate basis sets have to be used to avoid
the overcompensating nature of the CP method.

This status quo seems to have been challenged
by new results obtained from calculations using
the aug-cc-pVXZ basis sets of Dunning. As most
of the pioneering investigations5, 13 – 15 have shown,
it is rather important to correct for the BSSE if the
standard cc-pVXZ basis sets are used for the calcula-
tions. In these cases, the CP-corrected properties are
nearly always closer to the available experimental
data than the uncorrected ones. However, the sit-
uation is substantially different in the case of the
aug-cc-pVXZ basis sets. The general trend is that
the uncorrected aug-cc-pVXZ results lie close to the
corresponding experimental values, and the con-
vergence of the CP-corrected aug-cc-pVXZ results
to the CBS limit is slow. Based on these findings
many of the authors of the pioneering studies14, 15

criticized the CP method and questioned the ap-
plicability of the CP scheme in conjunction with the
aug-cc-pVXZ basis sets.

Dunning and coworkers have recently published
a review4 about their activity devoted to the explo-
ration of the limits of the CP scheme. These authors
have shown that, in many cases, the convergence
behavior of various molecular properties is signifi-
cantly improved if the calculations are corrected for
the BSSE. According to Dunning and coworkers,4

for many investigated properties the smooth con-
vergence behavior of the results obtained with aug-
cc-pVXZ basis sets is a pure illusion, as it is due to
a fortuitous cancellation of the BSSE and the basis

set incompleteness error (BSIE). Correction for the
BSSE destroys the balance of the two errors; conse-
quently, the CP-corrected data lie farther away from
experiment than the uncorrected ones. However,
the use of CP-corrected data is much safer for CBS
limit extrapolation: the corrected data suffer only
from the BSIE, which can be taken into account by a
suitable extrapolation to the CBS limit. Anomalies
related to the extrapolation to the CBS limit were
most pronounced for weakly bound intermolecular
complexes4 (van der Waals and hydrogen-bonded
systems), although similar behaviour was observed
even for certain strongly bound systems.4

Dunning and coworkers have investigated var-
ious molecular properties like interaction energies
and equilibrium distances of di- and triatomic
molecules. However, their work on real many-
dimensional potential energy hypersurfaces (PESs)
was limited to (HF)2, partly due to the lack of
an efficient automated procedure for BSSE-free
geometry optimizations. [The optimized geome-
tries were computed from numerical (CP-corrected
or uncorrected) gradients.] Those studies, which
expressed scepticism14, 15 about the usefulness of
the CP scheme when applied in connection with
the aug-cc-pVXZ basis sets, were devoted to
the characterization of PESs of hydrogen-bonded
systems like the HF dimer15 and the water
dimer.14, 15

To resolve this apparent controversy, we de-
cided to carry out geometry optimizations on pro-
totypical hydrogen-bonded systems. Our goal is
to investigate the behavior of the CP method in
conjunction with the aug-cc-pVXZ basis sets for
equilibrium geometric parameters. Therefore, we
optimized the geometry of (HF)2 and (H2O)2 em-
ploying analytical gradients at both the uncorrected
and BSSE-corrected MP2/aug-cc-pVXZ [X = D(2),
T(3), Q(4), for (HF)2 also 5] levels of theory. The
geometrical data obtained provide evidence in sup-
port of Dunning’s opinion described above. From
the comparison of our data with the literature re-
sults available on (H2O)2, we evaluate the relia-
bility of various approximations used in geometry
optimizations (e.g., freezing a subset of the pa-
rameters), and show the importance of carrying
out full geometry optimizations when extrapola-
tion of geometrical parameters to the CBS limit is
desired. Finally, we present optimized geometries
and equilibrium interaction energies of the HF–
H2O complex obtained on both uncorrected and
BSSE-corrected MP2/aug-cc-pVXZ (X = D, T, Q)
PESs.
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Computational Details

All ab initio energy and gradient calculations uti-
lized the Gaussian94 program system.29 For the CP
geometry optimizations we used a program system
described in ref. 30 with some small modifications in
both the scripts and the various Gaussian links. The
main idea behind the CP optimization is that var-
ious derivatives of eq. (6) can easily be calculated.
For example, the gradient on the CP-corrected sur-
face can be calculated as
δEBB

δx
= δEAB(AB)

δx
+ δEA(A)

δx
− δEA(AB)

δx

+ δEB(B)
δx

− δEB(AB)
δx

, (7)

where x is a geometry parameter. Our present im-
plementation enables us to determine optimized
geometries on the corrected PES in three to four
optimization steps provided the initial geometry is
the corresponding uncorrected optimized one. For
rapid convergence it was important to use reliable
Hessians in conjunction with simple Z-matrix-type
coordinates during the GDIIS31 optimization. The
Hessian was usually calculated on the uncorrected
PES. In all correlated-level calculations the 1s core
orbitals of O and F have been kept frozen.

Results and Discussion

HF DIMER

The HF dimer (see Fig. 1) is one of the most
important prototypes of hydrogen-bonded systems.
Therefore, it has been the subject of detailed exper-
imental (cf., ref. 32 and references therein) and the-
oretical (cf., ref. 13 and references therein) studies.
The structure of (HF)2 was studied at the MP2/aug-
cc-pVXZ (X = D, T, and Q) levels by Peterson
and Dunning (henceforth, PD).13 In that article the
geometry of the complex was fully optimized at the
MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ levels
on both the uncorrected and CP-corrected potential
energy hypersurfaces. (PD used numerical gradi-
ents for the optimization.) With the aug-cc-pVQZ
basis set PD carried out full geometry optimiza-
tion on the uncorrected PES, while they optimized
only the intermolecular F—F distance (rFF, Fig. 1) on
the CP-corrected PES, keeping the other parameters
fixed at their estimated MP2/aug-cc-pVQZ values.
(For further details, see ref. 13.) The most important
conclusions drawn by PD are as follows: (a) the un-
corrected MP2/aug-cc-pVXZ interaction energies

FIGURE 1. Geometrical parameters of the (HF)2,
(H2O)2, and HF–H2O complexes.

and geometries are closer to experiment than the
corresponding corrected ones; (b) convergence of
the CP-corrected binding energies and geometries
is more regular than that of the uncorrected para-
meters; and (c) the CBS limit of the CP-corrected
rFF distance, 2.737 Å , is numerically indistinguish-
able from the uncorrected aug-cc-pVQZ optimized
value. Overall, PD stressed the importance of the CP
correction for the investigated properties.

As a first step in our investigation, we reopti-
mized the geometry of (HF)2 at the levels for which
PD published data. We were able to reproduce their
results with only slight deviations by using our
automated CP optimization algorithm (see Table I
for the results). For the CP-corrected MP2/aug-cc-
pVQZ case PD carried out partial optimizations
by fixing most of the internal parameters. Our full
optimization at the same level confirmed the ad-
equacy of the approximations applied by PD, the
fully optimized parameters (α = 6.7◦, β = 111.7◦,
rFF = 2.753 Å) are close to the corresponding val-
ues (α = 6.4◦, β = 111.15◦, rFF = 2.753 Å) of PD.
As mentioned above, the uncorrected MP2/aug-
cc-pVQZ rFF distance seems to be converged, and
agrees with the CBS limit, 2.737 Å, obtained on
the CP-corrected surface by PD. (One has to note
here that the CBS limit of rFF determined by our
geometry data, 2.741 Å, differs slightly from the
corresponding value of PD, 2.737 Å). At the same
time, the actual value of the rFF distance (2.753 Å)
on the corrected PES is far from both the MP2/aug-
cc-pVQZ and the corrected CBS limit values. This
situation provides an opportunity to further inves-
tigate the importance of CP correction in estimating
the CBS limit of geometrical parameters, like the rFF

distance in (HF)2. It seems to be worth investigat-
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TABLE I.
Geometrical Parameters (Angles/Deg and Lengths/Å) and Total Energies (Etot/Eh) of the HF Dimer Calculated at
the Uncorrected and CP-Corrected MP2/aug-cc-pVXZ (X = 2, 3, 4, 5) Levels of Theory.

Uncorrected PES

X rFF α β Etot

D 2.753a 6.5 (6.6a) 110.2 (110.1a) −200.519075a

T 2.746a 6.4a 111.1a −200.689285a

Q 2.736 (2.737a) 6.4a 111.5 (111.6a) −200.746906a

5 2.739 6.3 112.0 −200.768417

Corrected PES

N rFF α β Etot

D 2.812 (2.813a) 7.0a 111.3a −200.518060
T 2.770 (2.772a) 6.7a 111.7 (111.8a) −200.688525
Q 2.753a,b 6.7 111.7 −200.746495
5 2.749 6.7 111.7 −200.768158

a Ref. 6.
b Partial optimization. For details, see ref. 6. For the definition of the variables, see Figure 1. In those cases, when two values are
presented for a variable, our optimized value does not agree with that of ref. 6 given in parentheses.

ing the geometry of (HF)2 at the MP2/aug-cc-pV5Z
level for the following reasons. If convergence of
rFF was really manifested at the MP2/aug-cc-pVQZ
level, the MP2/aug-cc-pV5Z value would coincide
with the MP2/aug-cc-pVQZ value. On the other
hand, any other MP2/aug-cc-pV5Z rFF value would
question the extrapolation to the CBS limit using the
uncorrected data. As it turns out, both the uncor-
rected (α = 6.3◦, β = 112.0◦, rFF = 2.739 Å) and
CP-corrected (α = 6.7◦, β = 111.7◦, rFF = 2.749 Å)
geometric parameters lie close to the correspond-
ing MP2/aug-cc-pVQZ values. It is noted, that the
difference between the corrected and uncorrected
rFF values is substantial, 0.010 Å, at the MP2/aug-
cc-pV5Z level of theory. The series of MP2/aug-cc-
pVXZ (X = D, T, Q, 5) rFF data represent a minimum
curve with the minimum between X equal to Q and
5 (see Fig. 2). On the other hand, the CP-corrected
MP2/aug-cc-pVXZ (X = D, T, Q, 5) rFF distances
follow a monotonic curve.

One could extrapolate to the CBS limit of the
rFF distance in three ways using the available data
obtained on the corrected PES; for example, one
could use the {2, 3, 4}, {3, 4, 5}, and {2, 3, 4, 5} se-
ries for determining extrapolated geometric para-
meters according to eq. (1). Obviously, more rea-
sonable values are expected for the latter choices.
The CBS limit values of the rFF distance of (HF)2

for the above listed series are reasonably close to
each other at 2.741, 2.748, and 2.745 Å, respec-

tively. (For the two to five fitting we used our
own CP-corrected data, which slightly differ from
those of PD.) One has to note that the MP2/aug-
cc-pVDZ level, which represents the lowest level
of theory employed, provides a much poorer ap-
proximation than that obtained at the MP2/aug-
cc-pVTZ level. This effect can be seen, for exam-
ple, in the huge BSSE content of the geometry.
After correction for BSSE, the rFF distance is length-
ened by 0.059, 0.024, 0.017 Å, and 0.010 Å at the
MP2/aug-cc-pVDZ, MP2/aug-cc-pVTZ, MP2/aug-
cc-pVQZ, and MP2/aug-cc-pV5Z levels of theory,

FIGURE 2. Comparison of the plain and CP-corrected
rFF distances for (HF)2.
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respectively. Inferiority of the MP2/aug-cc-pVDZ
geometry parameters, compared to the larger basis
set results, is basically responsible for the differ-
ences between the CBS limit values obtained from
the three fittings.

Nevertheless, as Chuang and Truhlar12 explored,
one is tempted to use the inexpensive DZ and TZ
data to obtain extrapolated geometric parameters
corresponding to the basis set limit. However, in-
stead of using the scheme of Chuang and Truhlar,
we employed eq. (2) in the form of

AX = ACBS + aX−3 (8)

to obtain estimates of the extrapolated rFF. Our note-
worthy result is that the extrapolated rFF distances,
2.743 and 2.752 Å in the uncorrected and BSSE-
corrected cases, respectively, are very close to the
corresponding MP2/aug-cc-pV5Z numbers. This is
especially notable for the CP-corrected rFF distance,
in which case the MP2/aug-cc-pVTZ value deviates
from the MP2/aug-cc-pV5Z value by 0.021 Å, while
the extrapolated distance deviates only by 0.003 Å.

In summary, the smooth convergence behavior of
the geometric parameters obtained directly with the
aug-cc-pVXZ basis sets is due to a fortuitous can-
cellation of BSSE and BSIE. The simple exponential
or polynomial functions employed to extrapolate
to the CBS limit cannot work reliably if the points
do not follow a monotonic curve, as is the case for
the uncorrected MP2/aug-cc-pVXZ results. On the
other hand, although the CP-corrected rFF distances
are usually farther away from the extrapolated val-
ues than the uncorrected distances (this is true for
all but the MP2/aug-cc-pV5Z data), changes in the
corrected geometric parameters are monotonic, and
thus are in better accordance with the design philos-
ophy of the aug-cc-pVXZ basis sets.

WATER DIMER

The water dimer (see Fig. 1) has a linear struc-
ture, which is known both from experiment33 and
from ab initio calculations [ref. 15, and references
therein]. Our results and the available MP2/aug-cc-
pVXZ geometry data are summarized in Table II.

The first study devoted to the investigation of
(H2O)2 employing the aug-cc-pVXZ (X = 2, 3, 4, 5)
basis sets at the MP2 level was carried out by Feller,5

who determined the interaction energy of the com-
plex at various correlated levels at a fixed geometry.
The first geometry optimizations on the water dimer
at the MP2(FC)/aug-cc-pVXZ (X = D, T, Q) were
carried out by Feller et al.34 on the uncorrected PES.
Importance of fragment relaxation terms in the CP TA
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scheme was investigated by Xantheas,35 who deter-
mined the fully relaxed geometry of (H2O)2 at the
MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ levels
on the uncorrected potential energy hypersurfaces.
Furthermore, Xantheas carried out partial optimiza-
tions at the MP2/aug-cc-pVQZ and MP2/aug-cc-
pV5Z levels varying the intermolecular rOO distance
(Fig. 1) and keeping other parameters fixed at their
MP2/aug-cc-pVTZ value. Xantheas’ MP2/aug-cc-
pV5Z value for the rOO distance is 2.905 Å on the
uncorrected and 2.913 Å on the CP-corrected PESs,
respectively. In a recent article, Halkier et al.15

also investigated the structure of the water dimer
employing the MP2/aug-cc-pVXZ models. These
authors performed constrained optimizations, for
example, they kept the water monomer parame-
ters frozen at the corresponding experimental val-
ues. With this approximation, the geometry of
(H2O)2 was determined at the MP2/aug-cc-pVXZ
(X = 2, 3, 4) levels at both the uncorrected and
the CP-corrected surfaces. (As a further approxima-
tion, the intermolecular valence angles were also
frozen in the optimizations on the CP-corrected
PES at their corresponding uncorrected values.) One
should note here that, based on the analysis of
their data, Halkier and coworkers argued against
the computation of CP-corrected geometries at the
MP2/aug-cc-pVXZ levels.

The results of our full geometry optimizations
carried out on the uncorrected and CP-corrected
PESs are shown in Table II. At the MP2/aug-cc-
pVDZ and MP2/aug-cc-pVTZ levels we could re-
produce Feller’s and Xantheas’ results with slight
differences on both the uncorrected and corrected
PESs. On the other hand, the rOO distances ob-
tained by Halkier et al. for the uncorrected surfaces
differ considerably from the corresponding fully re-
laxed values. For example, the difference between
the rOO distances of Feller and Halkier is 0.016 Å
at the MP2/aug-cc-pVTZ level. This discrepancy
questions the validity of the approximations uti-
lized by Halkier et al. Furthermore, Xantheas’ data
determined at the MP2/aug-cc-pVQZ level from
partial optimizations agree reasonably well with
both Feller’s and our values obtained from full op-
timizations. Hereby, we can confirm the adequacy
of the approximations employed by Xantheas in his
partial optimizations on (H2O)2, for example, keep-
ing all the intramolecular and the valence bend-
ing intermolecular parameters at their optimized
MP2/aug-cc-pVTZ values in the subsequent aug-cc-
pVQZ and aug-cc-pV5Z optimizations. Because of
the reliability of the approximations employed by
Xantheas and the cost of the MP2/aug-cc-pV5Z op-

timization we decided not to determine the geome-
try of (H2O)2 at the MP2/aug-cc-pV5Z level.

Concerning the extrapolation of the rOO distance
to the CBS limit, one can draw the following conclu-
sions. The two series of rOO distances, determined
by Feller et al., Xantheas and Halkier et al. em-
ploying different approximations during the opti-
mizations, follow a curve with a minimum. That
is, Halkier’s aug-cc-pVTZ rOO distance at 2.891 Å
is shorter than the corresponding aug-cc-pVDZ
(2.912 Å) and aug-cc-pVQZ (2.895 Å) values. This
behavior is presumably due to the inadequacy of
the constraints employed by Halkier et al. dur-
ing the optimizations. In the data series of Feller
et al. and Xantheas, the aug-cc-pVQZ rOO distance
(2.903 Å) is shorter than the corresponding aug-
cc-pVDZ (2.916 Å), aug-cc-pVTZ (2.907 Å), and
aug-cc-pV5Z (2.905 Å) values. This behavior of the
aug-cc-pVXZ basis sets in the case of uncorrected
calculations is very similar to what we observed in
full geometry optimizations on (HF)2. On the other
hand, the CP-corrected rOO distances converge more
regularly, all three data series obtained by Xanth-
eas, Halkier et al. and the present work ascend
gradually when enlarging the cardinal number of
the employed basis set (see Fig. 3). The extrapo-
lated CBS limit of the rOO distance obtained from
Halkier’s data seems to be too short at 2.897 Å,
indicating again the inadequacy of the constraints
employed during the geometry optimizations. On
the other hand, the extrapolated rOO CBS limit val-
ues obtained from Xantheas’ partially optimized
aug-cc-pVXZ {X = 2, 3, 4, 5}and our fully optimized
aug-cc-pVXZ {X = 2, 3, 4} data using eq. (1) practi-
cally coincide at 2.910 Å. It is worth noting in this
respect that the CBS limit values determined from

FIGURE 3. Comparison of the plain and CP-corrected
rOO distances for (H2O)2.
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the {X = 2, 3, 4} and {X = 3, 4, 5} series of Xantheas
are also the same at 2.910 Å.

Similarly to the case of (HF)2, use of eq. (8)
for the extrapolation of aug-cc-pVDZ and aug-cc-
pVTZ data gives very satisfactory results for the
CP-corrected rOO distances. While the difference
between the aug-cc-pVTZ and aug-cc-pV5Z rOO dis-
tances is 0.020 Å the extrapolated value differs by
only 0.005 Å.

As a summary of the above considerations, we
strongly advocate to perform full geometry opti-
mizations in those studies whose aim is the extrap-
olation of geometrical parameters to the CBS limit.
The reliability of the CBS limit of the rOO distance
determined from the fully relaxed CP-corrected
aug-cc-pVXZ {X = 2, 3, 4} potential energy hyper-
surfaces is appealing compared to the aug-cc-pVXZ
{X = 2, 3, 4, 5} data obtained by Xantheas.35

HF–H2O COMPLEX

Determination of the structure of the HF–H2O
complex proved to be a challenge for experimental-
ists and theoreticians alike. Theoretical studies36, 37

showed that one can find stationary points on the
HF–H2O PES with both Cs and C2v symmetries.
(In the case of the C2v structure the α and β an-
gles (Fig. 1) are 0 and 180 degrees, respectively.)
The C2v species is favored by certain electrostatic
arguments.38 Namely, the C2v arrangement of the
complex allows the dipole moment of H2O to be
aligned with the dipole of HF. On the other hand,
the interaction of the negative charges of the re-
spective quadrupole tensor element of H2O and the
positive end of the HF dipole clearly favors a struc-
ture where the plane of H2O is perpendicular to the
direction of the HF dipole. The structure of HF–H2O
can be considered as a compromise between these
electrostatic and other (less important) nonelectro-
static effects. Indeed, although the Cs structure is
more stable than the C2v one, the energy difference
between them is only 0.1 and 0.5 kcal mol−1 us-
ing a small basis set at the SCF and MP2 levels,36

respectively. The experimental39 estimate of the bar-
rier is 0.4 kcal mol−1. Experimental determination
of the angular features of the HF–H2O complex is
difficult.30 The energy barrier between the Cs and
C2v structures is small, presumably close to the en-
ergy of the first vibrational level. In the case when
the first vibrational level occurs above the top of
the barrier, the experiment would predict a planar
structure despite the existence of a double-well po-
tential. If the vibrational level is slightly below the

top of the barrier, the experiment can predict only a
poorly defined structure.

The most recent theoretical investigation devoted
to the structure of HF–H2O, including geometry op-
timizations, was carried out by Novoa et al.37 at
the MP2/6-311++G(2d,2p) level of theory resulting
in an energy difference of 0.45 kcal mol−1 between
the Cs and C2v structures. They have also calcu-
lated the equilibrium rFO distance (2.663 Å) using
a constrained optimization keeping the monomer
parameters fixed. Finally, their interaction ener-
gies computed at the uncorrected and CP-corrected
MP2/6-311++G(2d,2p) levels are −9.20 and −7.87
kcal mol−1, respectively.

Because of the available experimental and the-
oretical information, the HF–H2O complex is an
ideal subject to test the CBS limit values of various
properties determined from calculations performed
at the MP2/aug-cc-pVXZ {X = 2, 3, 4} levels. To
explore the quality of theoretical results obtained
on the uncorrected and CP-corrected surfaces, we
decided to calculate the equilibrium dissociation
energy, the energy difference between the Cs and
C2v species, and the equilibrium geometry of HF–
H2O. The experimental data were determined by
Legon and coworkers39 – 41 using microwave rota-
tional spectroscopy. The calculated total energies,
energy barriers, and geometrical parameters ob-
tained at the MP2/aug-cc-pVXZ {X = 2, 3, 4} lev-
els are given in Table III. The CBS value for the
total energy of H2O is −76.363558 Eh, obtained
from the total energies (−76.260910, −76.328992,
and −76.351919 Eh) calculated at the MP2/aug-cc-
pVDZ, MP2/aug-cc-pVTZ, and MP2/aug-cc-pVQZ
levels, respectively.

The experimental41 equilibrium interaction en-
ergy (Eint) of HF–H2O is −10.2 kcal mol−1, de-
termined by Legon and coworkers from absolute
intensities of rotational transitions. As mentioned
before, the best theoretical values37 available are
−9.20 and −7.87 kcal mol−1 obtained from un-
corrected and CP-corrected calculations using a
medium-size basis set and the MP2 method. The
uncorrected aug-cc-pVXZ {X = 2, 3, 4} interac-
tion energies shown in Table IV are appealingly
close to each other. The CBS limit value of Eint ob-
tained using the extrapolated total energies of the
monomers and the complex, differs only slightly
from these values. The interaction energies obtained
at the CP-corrected PESs considerably differ from
the corresponding uncorrected energies. However,
this difference gradually decreases, considering the
series of basis sets, going from the aug-cc-pVDZ
set to the aug-cc-pVQZ one. The CP-corrected CBS
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TABLE III.
Geometrical Parameters (Angles/Deg and Lengths/Å) and Total Energies (Etot/Eh) of HF–H2O Calculated at the
Uncorrected and CP-Corrected MP2/aug-cc-pVXZ (X = 2, 3, 4) Levels of Theory.

Plain CP-Corrected

X Etot rFO α β Etot rFO α β

Cs

2 −176.531107 2.658 129.5 1.4 −176.529305 2.701 130.6 1.5
3 −176.684156 2.643 130.7 1.4 −176.683198 2.662 132.0 1.5
4 −176.735847 2.640 132.4 1.4 −176.735257 2.654 132.6 1.4

CBS −176.762208 2.639 — — −176.761869 2.652 — —

C2v

2 −176.530314 2.666 0.0 180.0 −176.528674 2.710 0.0 180.0
3 −176.683503 2.655 0.0 180.0 −176.682605 2.670 0.0 180.0
4 −176.735318 2.648 0.0 180.0 −176.734751 2.661 0.0 180.0

CBS −176.761803 2.636 — — −176.761465 2.658 — —

limit of Eint at −8.6 kcal mol−1 is remarkably close
to the corresponding uncorrected value at −8.8 kcal
mol−1. Comparing the experimental and theoretical
results, one has to note that the CBS limit1E values
obtained at the MP2 level considerably differ from
the experimental40 value (−10.2 kcal/mol). Perhaps,
truncation of the correlation energy expansion at the
MP2 level does not represent a satisfactory descrip-
tion of the investigated problem.

The calculated energy barriers (1E) belonging to
the transition from the Cs to the C2v species of HF–
H2O are shown in Table IV.1E gradually decreases,
going from the smallest to the larger basis sets. It
is worth noting that the 1E values obtained at the
plain and CP-corrected surfaces are very close to
each other at the MP2/aug-cc-pVQZ level of the-
ory. The CBS limit values of the same parameter
obtained at the plain and the CP-corrected PESs
numerically coincide at 0.25 kcal mol−1. The CBS

limit of 1E is considerably smaller than the corre-
sponding equilibrium experimental40 data (0.36 kcal
mol−1), again showing the importance of inclusion
of higher order correlation terms. It is worth noting
that the good agreement with experiment obtained
in previous theoretical studies36, 37 is clearly due to
cancellation of errors, for example, the quality of the
basis sets employed in those investigations was un-
satisfactory to consistently deal with the problems
of BSSE and BSIE.

Analyzing the geometrical data (mainly the pa-
rameter rFO) presented in Table III, one can find
trends similar to those already detected in the cases
of (HF)2 and (H2O)2. The rFO values obtained on the
uncorrected PES change less than the correspond-
ing CP-corrected values with change in the basis
set. The CBS limit of rFO at the uncorrected PES,
2.639 Å, is very close to both the MP2/aug-cc-pVTZ
(2.643 Å) and MP2/aug-cc-pVQZ (2.640 Å) values.

TABLE IV.
Equilibrium Interaction Energies (Etot in kcal/mol) and Energy Splitting (1E in kcal mol−1) between the Cs and
C2v Species of HF–H2O Calculated at the Uncorrected and CP-Corrected MP2/aug-cc-pVXZ (X = 2, 3, 4) Levels
of Theory.

Eint 1E

X Plain CP-Corrected Plain CP-Corrected

2 −9.0 −7.9 0.50 0.40
3 −9.0 −8.4 0.41 0.37
4 −8.9 −8.5 0.33 0.32

CBSa −8.8 −8.6 0.25 0.25

a The CBS limit values were calculated using the respective CBS limit total energies shown in Table III.
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FIGURE 4. Comparison of the plain and CP-corrected
rFO distances for HF–H2O.

On the other hand, the CBS limit of rFO is 2.652 Å
on the CP-corrected PES, representing a difference
of 0.013 Å between the two extrapolated values.
Legon and coworkers have determined the experi-
mental value of rFO at 2.662 å from the microwave
rotational spectrum40 of HF–H2O. Direct compari-
son of the experimental r0 and theoretical re values
is not fully valid, but it is clear that the CP-corrected
CBS limit rFO distance lies closer to experiment than
the corresponding uncorrected value (see Fig. 4).
However, one has to note here that the vibrational
effects on hydrogen bond lengths can be substan-
tial resulting in a case when the uncorrected CBS
limit value is closer to the unmeasured experimen-
tal re value. Another interesting anomaly concerns
the change of the actual value of rFO going from
the Cs to the C2v species. One expects that the in-
termolecular bond length increases when climbing
the transititon state (C2v species) region. All the data
listed in Table III supports this statement, but the
CBS limit of rFO obtained at the plain PESs contra-
dicts it. In our opinion, this strange behavior is again
due to the unreliability of the CBS limit values of
geometry parameters obtained on the uncorrected
PES.

Concerning the extrapolated rFO distances ob-
tained by using eq. (8), one finds tendencies sim-
ilar to those observed in the cases of (HF)2 and
(H2O)2. The extrapolated C2v rFO distances, 2.650
and 2.653 Å, in the uncorrected and CP-corrected
cases, respectively, are very close to the correspond-
ing CBS value (2.658 Å) determined by using eq. (1)
on the CP-corrected PESs. The extrapolated Cs rFO

distances, 2.637 and 2.646 Å determined on the plain
and CP-corrected PESs lie close to the correspond-
ing CBS limit values (2.639 and 2.652 å) obtained

by using eq. (1). It is worth noting here that the
extrapolated [eq. (8)] C2v rFO value is longer than
the corresponding Cs value in both the plain and
CP-corrected cases. This means that bond length ex-
trapolation based on eq. (8) is more reliable in the
case of the HF–H2O complex than application of
eq. (1) because the expected change of parameter
rFO is at least qualitatively given back by the former
technique.

COMMENT ON THE TRENDS OF
INTERMOLECULAR DISTANCES IN THE (HF)2,
(H2O)2, AND HF–H2O SERIES

One of the referees of the present article sug-
gested to investigate trends observed for the inter-
molecular bond lengths in the (HF)2, (H2O)2, and
HF–H2O series. The two most interesting obser-
vations are as follows: (1) the differences between
the plain aug-cc-pVQZ and the corresponding (CP-
corrected) CBS values of the intermolecular dis-
tances are 0.005–0.008, 0.007, and 0.012 Å for (HF)2,
(H2O)2, and HF–H2O, respectively; (2) the differ-
ences between the CP-corrected aug-cc-pVQZ and
(CP-corrected) CBS values of the intermolecular
bond lengths are 0.008–0.012, 0.007, and 0.002 Å,
gradually decreasing in the (HF)2, (H2O)2, and HF–
H2O series. (It is to be noted that three different CBS
values were obtained for (HF)2, resulting in uncer-
tainties in the above-mentioned differences between
the aug-cc-pVQZ and CBS limit values.)

We begin with the explanation of tendency (2),
because in this case differences between two BSSE-
free quantities are evaluated resulting in a less
complex situation than that of point (1). The in-
teraction between the monomers of the complexes
in the (HF)2, (H2O)2, and HF–H2O series is getting
definitely stronger. This means that the importance
of very weak interactions, like dispersion forces,
is decreasing, while the strength of the electrosta-
tic and charge transfer interactions is increasing for
the series of complexes investigated. Of course, one
expects more reliable results for HF–H2O than for
(HF)2 by using the same basis set in the calculations.
Equivalent with this statement is that the real phys-
ical part of the interaction is more satisfied (e.g., it
is getting closer to the CBS limit) for HF–H2O than
for (HF)2 at a given level of theory provided that a
reasonable basis set is applied in the particular cal-
culations.

The difference between the plain aug-cc-pVQZ
and (CP-corrected) CBS limit bond distances de-
pends clearly on the magnitude of the BSSE and
BSIE. The magnitude of the BSSE also depends on
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two main factors in our case. The first and more
important is the choice of the basis set applied. Plot-
ting the BSSE content of the interaction energy vs.
different basis sets results in a curve that exhibits
a maximum.42 The flexibility of a small basis set
is insufficient for the appearance of a significant
BSSE-type correlation energy contribution. With the
growing size of the basis set such contributions ap-
pear and the BSSE content of the interaction energy
increases. Using even larger basis sets the BSSE
content will again decrease. It is clear that the ba-
sis sets applied in the present study represent the
postmaximum regions of such BSSE content curves,
but the actual locations of the aug-cc-pVXZ (X =
2, 3, 4, and 5) points and the slopes of the curves are
clearly different for the (HF)2, (H2O)2, and HF–H2O
cases. In this respect, similarly to the description of
the physical part of the interaction, the strength of
the interaction is very important. One is evidently
closer to the saturated description at the MP2/aug-
cc-pVQZ level of theory in the case of HF–H2O than
for (HF)2. However, among other factors, the magni-
tude of the BSSE depends also on the intermolecular
distance between the monomers. The shorter dis-
tance means more possibilities for BSSE-type delo-
calizations. The data presented in Tables I–III show
that the shortest intermolecular distance is obtained
for HF–H2O, where the intermolecular bond length
is 0.25 Å shorter than the corresponding value ob-
tained for (H2O)2. The intermolecular distance for
(HF)2 is between the corresponding HF–H2O and
(H2O)2 values. The actual magnitude of the BSSE
is determined by the interplay of these and other
(less important) effects highly depending on the
structure, interaction, basis set, etc. For the sys-
tems investigated in the present study, this interplay
results that the BSSE contents of the intermolecu-
lar distances are 0.017, 0.014, and 0.014 Å at the
MP2/aug-ccpVQZ level for (HF)2, (H2O)2, and HF–
H2O, respectively, showing approximately the same
magnitude for these systems.

We found a reasonable explanation for the de-
creasing differences between the CP-corrected in-
termolecular distances and their CBS limit for the
systems investigated. We also saw that the actual
BSSE content seems to be more or less constant
for the (HF)2, (H2O)2, and HF–H2O complexes at
the MP2/aug-cc-pVQZ level of theory. Because the
plain and CP-corrected MP2/aug-cc-pVQZ inter-
molecular distances bracket the CBS limit of the
parameter investigated, the tendency that the differ-
ence between the plain aug-cc-pVQZ results and the
corresponding CBS limit is increasing in the (HF)2,
(H2O)2, and HF–H2O series, is explained. It is im-

portant to note here that these observations further
stress the importance of correction for the BSSE.

Conclusions

Geometry optimizations were carried out for the
(HF)2, (H2O)2, and HF–H2O intermolecular com-
plexes using the MP2/aug-cc-pVXZ {X = 2, 3, 4,
and 5} theoretical models on both the uncorrected
and CP-corrected potential energy hypersurfaces.
Our results and the available literature data clearly
show that extrapolation of intermolecular distances
to the CBS limit is satisfactory on PESs corrected
for BSSE. Evaluation of two extrapolation schemes
[eqs. (1) and (8)] suggests that reliable extrapolated
geometry parameters can be obtained even with a
simple two-point formula based on aug-cc-pVDZ
and aug-cc-pVTZ data. Application of the extrap-
olation to obtain the CBS limit of intermolecular
geometry parameters seems to be worth it if vari-
ous species are to be compared on the PES of the
complex investigated. Also, fixing intramolecular
parameters at their experimental values could cause
difficulties during the extrapolation. As the avail-
able literature data and our results clearly show, the
MP2/aug-cc-pVXZ {X = 2, 3, 4} data series of inter-
molecular distances obtained from the CP-corrected
surfaces can be safely used for the purpose of CBS
extrapolations.
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