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Rho-axis-system Hamiltonian for molecules with one large amplitude
internal motion
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The rho-axis system and the rho-axis-system Hamiltonian were devised and formulated to describe
the rotational–internal–rotational motion of molecules possessing certain local geometrical
symmetries. Nevertheless, they were employed to molecules without the required symmetries and
apparently lying outside the range of their applicability. To justify such applications and to facilitate
first-principles calculation of the corresponding spectroscopic parameters, the rho-axis-system and
the rho-axis system Hamiltonian must be derived without assuming or imposing symmetry
constraints. A derivation satisfying this requirement is described, and the rho-axis method is
extended to molecules having a large amplitude internal motion of any kind. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1560634#
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I. INTRODUCTION

Understanding the finer details of rotational–internal
tational dynamics, for instance in acetaldehyde (CH3CHO),
has been difficult due to, among various reasons, the d
ciencies in our understanding of the Hamiltonians emplo
in the analysis of the experimental spectroscopic data. S
of these deficiencies have been described in Ref. 1. On
them, the problem of defining the torsional coordinate,
been solved in Ref. 2. Two other problems, which have
been solved yet, are the following:

The experimental rotational-torsional spectra
acetaldehyde3,4 were fitted by a rho-axis-system~RAS!
Hamiltonian derived by assuming a methyl group with thre
fold symmetry.5–8 Since the methyl group in acetaldehyd
actually does not have have aC3 symmetry axis,9–11 the
excellent fits obtained3,4 might be surprising. Could ar-axis
system Hamiltonian be derived without imposing symme
constraints?

The first-principles calculation of spectroscopic para
eters in a RAS Hamiltonian requires the transformation of
initial Cartesian molecule fixed system~MFS! of axes into
the RAS.1 However, the transformation to the RAS is n
known except for the simple cases when a molecule w
internal rotation has certain local geometrical symmetrie5

Only a proof of existence of the RAS is known in the case
internal rotation in a molecule with asymmetric top a
asymmetric frame.12 Little is known about the transformatio
to the RAS in a molecule with a large amplitude intern
motion ~LAM ! different from internal rotation.

a!Author to whom all corresondence should be addressed. Electronic m
viktor@power.szfki.kfki.hu
6800021-9606/2003/118(15)/6801/5/$20.00
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This paper describes derivation of a transformation
the RAS and the RAS rotational-LAM Hamiltonian for
molecule with one LAM. The derivation involves no a
sumptions about local geometrical symmetries of the m
ecule. The results are obtained through an analysis of
properties of the transformation to the internal-axis syst
~IAS! and that of the corresponding IAS rotational-LAM
Hamiltonian derived in Ref. 13.

II. PRELIMINARY CONSIDERATIONS

A simple prescription will be derived to transform
rotational-LAM Hamiltonian when the MFS is subjected to
rotation that may depend on the LAM coordinate.

The rotation of a molecule as a whole may be describ
by three Euler angles defining the orientation of a Cartes
MFS with respect to a Cartesian laboratory system~LS! of
axes. The origin of the MFS is fixed to the center of mass
the molecule. Consider an initial MFS. Let the Euler ang
w,u, andx describe the orientation of the initial MFS wit
respect to the LS. Letaa, j (t), a5x,y,z, j 51,2, . . . ,N, de-
note the coordinates of the atoms of theN-atom molecule
studied. The atom coordinates are functions of the LAM c
ordinate t. Then, by rearranging the terms in the Ham
tonian derived by Pickett,14 the rotational-LAM Hamiltonian
operator may be written as

Ĥ5 1
2Ĵ

tmRRĴ1 1
2 ~ p̂2$Ĵtv%!mtt~ p̂2$v tĴ%!1V~t!, ~1!

with

mRR5I RR
21 , ~2!

v5I RR
21I Rt , ~3!

il:
1 © 2003 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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mtt5~ I tt2v tI RRv!21, ~4!

I Rt5(
j

mjaj3
]aj

]t
, ~5!

I tt5(
j

mj

]aj

]t
•

]aj

]t
, ~6!

whereI RR denotes the rotational tensor of inertia,aj andmj

denote the column vector of the coordinates and the mas
the j th atom, respectively,V(t) stands for the LAM potentia
energy function with the so-called pseudopotential ene
terms incorporated, and superscriptt means transposition
The column vectorĴ contains the MFS components of th
total angular momentum operator. They can be expresse
terms of the Euler anglesw,u, andx and the partial differ-
ential operators with respect to these angles.15 Ĵ satisfies the
commutation relation15

Ĵ3 Ĵ52 i\ Ĵ. ~7!

The momentum operatorp̂ conjugated to the LAM coordi-
nate is defined by

p̂52 i\S ]

]t D
w,u,x

, ~8!

and it commutes with the MFS components of the total
gular momentum operator, i.e.,

@ Ĵ,p̂#50, ~9!

where0 is the zero vector (0,0,0)t, since the Euler angle
w,u, andx are independent oft.

The Schro¨dinger equation forĤ may be solved varia-
tionally for any given value of the total angular momentu
quantum numberJ by using a direct product basis formed b
the symmetric rotor eigenfunctionsSJkm(w,u)eikx15 and any
set of basis functions suitable to approximating the torsio
wave functions.

Pickett also derived how the kinetic energy tensor e
ments are transformed by rotating to a new MFS with
LAM-dependent rotation.14 Rotate the MFS by a rotationU.
By saying that the MFS is rotated byU, we understand tha
the row of the unit vectors of the new MFS, (Ex ,Ey ,Ez), is
related to that of the initial one, (ex ,ey ,ez), by the transfor-
mation (Ex ,Ey ,Ez)5(ex ,ey ,ez)U. Thus Ut transforms the
column vectors (ax, j ,ay, j ,az, j )

t of the coordinates of the at
oms, and one can find the relationships

I RR→UtI RRU, ~10!

v→Ut~v2vU!, ~11!

mtt→mtt , ~12!

wherevU is the angular velocity vector defined byU accord-
ing to

VU5S 0 2~vU!z ~vU!y

~vU!z 0 2~vU!x

2~vU!y ~vU!x 0
D 52U

]Ut

]t
.

~13!
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~Srictly speakingvU is not an angular velocity vector. Onl
vUdt/dt, where dt/dt is the time derivative oft, is an
angular velocity vector.!

The potential energy,V(t), does not depend on the or
entation of the MFS. Thus, the Hamiltonian in the rotat
system takes the form

ĤU5 1
2P̂

tUtmRRUP̂1 1
2 ~ p̂82$P̂tUt~v2vU!%!mtt

3~ p̂82$~v2vU! tUP̂%!1V~t!, ~14!

with P̂5( P̂x ,P̂y ,P̂z)
t denoting the column vector of th

components of the total angular momentum operator give
the new MFS, and

p̂852 i\S ]

]t D
w8,u8,x8

, ~15!

where the Euler anglesw8,u8, andx8 define the orientation
of the new MFS with respect to the LS.

Since the total angular momentum is conserved,P̂ is
related toĴ by

P̂5UtĴ. ~16!

By substituting Eq.~16! into the expression ofĤU and com-
paring the terms in the resulting Hamiltonian with those inĤ
one finds the relationship

p̂85 p̂2vU
t Ĵ. ~17!

Equation~17! may be considered as a generalization of
Nielsen transformation.5 By replacingĴ with UP̂ andp̂ with
p̂81vU

t UP̂ in Ĥ, ĤU is obtained.
The angular momentum operatorP̂ satisfies the same

commutation relations asĴ:

P̂3 P̂5UtĴ3UtĴ5Ut~ Ĵ3 Ĵ!52 i\UtĴ52 i\ P̂. ~18!

Therefore, the elements ofP̂ are given by the same math
ematical expressions as those of the components ofĴ, but
they are given in terms of the Euler anglesw8,u8, andx8.
For a given value of total angular momentum quantum nu
ber, P5J, the matrix elements of the components ofP̂ cal-
culated in the symmetric rotor basisSPkm(w8,u8)eikx8 are
the same as those ofĴ calculated in the symmetric rotor bas
SJkm(w,u)eikx. The symmetric rotor eigenfunction
SPkm(w8,u8)eikx8 give a suitable rotational basis for solvin
the Schro¨dinger equation ofĤU .

Similarly to Ĵ and p̂ the operatorsP̂ and p̂8 commute:

@ P̂,p̂8#5@UtĴ,p̂2vU
t Ĵ#

5UtĴ~ p̂2vU
t Ĵ!2~ p̂2vU

t Ĵ!UtĴ,

i\
]Ut

]t
Ĵ1Ut@vU

t Ĵ,Ĵ#5 i\
]Ut

]t
Ĵ1 i\UtVUĴ

5 i\S ]Ut

]t
1UtVUD Ĵ50, ~19!

where the last equality follows from Eq.~13!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The results obtained in the above-presented discuss
can be summarized as follows. The rotational-LAM Ham
tonian,Ĥ, derived in an initial MFS can be given by Eq.~1!,
where the angular momentum operator,Ĵ, and the momen-
tum operator of the LAM,p̂, satisfy the commutation rela
tions given by Eqs.~7! and~9!. The rotational-LAM Hamil-
tonian ĤU that is given in a new MFS related to the initi
MFS by a rotational transformationU can be obtained by
replacing the angular momentum and momentum opera
in the initial rotational-LAM Hamiltonian according to th
rule

Ĵ→UP̂, ~20!

p̂→ p̂81vU
t UP̂. ~21!

This transformation preserves the commutation relations
the angular momentum and momentum operators. The s
metric rotor eigenfunctions expressed as functions of the
ler angles defining the orientation of the new MFS with
spect to the LS give a useful rotational basis set for solv
the Schro¨dinger equation ofĤU . The choice of the LAM
basis depends on the actual boundary conditions and wi
discussed shortly. The results obtained in this section
straightforward to extend to the case of more than one LA

III. THE INTERNAL-AXIS SYSTEM HAMILTONIAN

The IAS is obtained by rotating the initial MFS by
LAM dependent rotationD such that

v2vD50. ~22!

Then, the Hamiltonian given in Eq.~14! simplifies to

ĤD5 1
2P̂

tDtmRRDP̂1 1
2p̂8mttp̂81V~t!. ~23!

As shown in Sec. II,P̂ satisfies the commutation relation E
~18! and commutes withp̂8.

An analytical expression of the matrix transforming
the IAS has been derived in Ref. 13 by employing the F
quet method:

Dab5 (
g521

1

(
n52`

`

(
m52`

`

^a,nug&einMte2 i egt^gub,m&

(a,b5x,y,z). ~24!

The basis set$ua,n&, a5x,y,z, n50,61,62, . . . ,6`% is
the direct product of the Fourier basis and the basis set

ux&5
1

A2
~2u1,1&1u1,21&), ~25!

uy&5
i

A2
~ u1,1&1u1,21&), ~26!

uz&5u1,0&, ~27!

whereu1,1&,u1,21&, andu1,0& are the complex spherical ha
monics,uJ,m&, for J51. eg ,g51,0,21, (e1.e0.e21), are
the three central eigenvalues of the Floquet operator,
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F̂5v• Ĵ2 i
]

]t
, ~28!

where Ĵ is an angular momentum operator satisfyingĴ3 Ĵ

5 i Ĵ, and ug&,g51,0,21 are the corresponding eigenfun
tions. @Note that the imaginaryi in iv• Ĵ in Eq. ~19! of Ref.
13 should be omitted.# Finally, the integerM denotes that the
angular velocity vectorv calculated in the initial MFS is a
2p/M periodic function oft. (M51 was assumed in Ref
13.!

The rotation matrixD can be factorized as

D5FeF0
†5~FF0

†!~F0eF0
†!5~FF0

†!R, ~29!

where

Fag5 (
n52`

`

einMt^a,nug&, ~30!

~F0!bg5 (
m52`

`

^b,mug&, ~31!

R5F0eF0
† , ~32!

and, by making use of the propertiese050 ande152e21

of the central Floquet eigenvalues,

e5S e2 i e1t 0 0

0 1 0

0 0 ei e1t
D . ~33!

Superscript † denotes Hermitian conjugation.
The matricesF and F0 are unitary~see Ref. 16!. The

matrix R is unitary, its determinant is equal to one, and
eigenvalue matrix ise. The angular velocity vectorv[vR
defined byR according to an equation similar to Eq.~13!
~except that transposition is replaced by Hermitian conju
tion! is independent of the LAM coordinate. The orthogon
matrix Z

Z5
1

ivivxy
S vz 0 2vxy

0 ivi 0

vxy 0 vz

D
3S vx vy 0

2vy vx 0

0 0 vxy

D , ~34!

where ivi denotes the length ofv and vxy5Avx
21vy

2,
transformsv such that

Zv5~0,0,ivi ! t. ~35!

The rotation matrixZRZt generates the angular velocity ve
tor (0,0,ivi) t. The rotation of angleivit around thez axis,
i.e.,

Rz5Rz~ ivit!5S cosivit 2sinivit 0

sinivit cosivit 0

0 0 1
D , ~36!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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also generates the angular velocity vector (0,0,ivi) t and, in
general, so doesRzQ, whereQ is anyt independent unitary
matrix. ZRZt must be equal toRzQ with some appropriate
Q.

The matrix e can also be obtained by diagona
izing Rz(e1t). Let C† denote the corresponding eige
vector matrix. Then e5CRz(e1t)C† and ZRZt

5ZF0CRz(e1t)C†F0
†Zt. By equating the latter matrix to

Rz(ivit)Q and rearranging one obtains

Rz~e1t!5C†F0
†ZtRz~ ivit!QZF0C. ~37!

Equation~37! cannot be satisfied unless the matrixZF0C is
either a unit matrix or a matrix ofz-rotation, andQ is either
a unit matrix or a matrix ofz-rotation with constant angle
t0 .

Therefore,

ZRZt5Rz~e1t!5Rz~ ivit1t0!, ~38!

and

ivi5e1 ~39!

and

t050 ~40!

follow.
Thus, one can factorizeD as

D5~FF0
†!R5~FF0

†Zt!~ZRZt!Z

5~FF0
†Zt!RzZ5SRzZ, ~41!

whereZ is a rotational matrix independent of the LAM co
ordinate@see Eq.~34!#, Rz is a rotational matrix around az
axis with anglee1t @see Eq.~38!#, andS5FF0

†Zt is a rota-
tional matrix whose elements are 2p/M periodic functions
of the LAM coordinate.

Now, let us rotate the IAS byZt. Then, by applying the
rules derived in Sec. II, one finds that the IAS rotation
LAM Hamiltonian given in Eq.~23! is transformed into the
Hamiltonian

ĤSRz
5ĤDZt5 1

2L̂
tR z

t StmRRSRzL̂1 1
2p̂8mttp̂81V~t!,

~42!

whereL̂5ZP̂, p̂852 i\(]/]t)w9,u9,x9 , and the Euler angles
w9,u9, andx9 describe the orientation of the new MFS wi
respect to the LS. The new MFS is an IAS and the cor
sponding rotational-LAM Hamiltonian,ĤDZt, is an IAS
Hamiltonian. They can also be obtained by rotating the ini
MFS by SRz and by transforming the rotational-LAM
Hamiltonian given in Eq.~1!.

Let the Euler anglesw8,u8, andx8 describe the orienta
tion ~with respect to the LS! of the MFS obtained by rotating
the initial MFS byS. The two sets of rotational coordinate
w9,u9, x9 andw8,u8, x8 are related by

w95w8, ~43!

u95u8, ~44!

x95x81e1t. ~45!
Downloaded 07 Apr 2003 to 157.181.193.139. Redistribution subject to A
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For a given value of the total angular momentum qua
tum number L the symmetric rotor eigenfunction
SLkm(w9,u9)eikx9 give a suitable rotational basis for solvin
the Schro¨dinger equation forĤDZt . To choose an appropriat
LAM basis one must consider that the rotational-LAM wa
functions are invariant upon changing the value of the LA
coordinate by 2p. This boundary condition is of importanc
only for molecules where a 2p change of the LAM coordi-
nate can actually take place, e.g., in molecules with inter
rotation. With changingt by 2p, the Euler anglesw8, u8,
andx8 can change only by an integer multiple of 2p sinceS
is 2p periodic, but

x95x81e1t→x912pn12pe1 , ~46!

where n is an integer number. Sincee1 is, in general, not
an integer, the usual direct product basis functio
SLkm(w9,u9)eikx9fn(t), wherefn(t) are 2p periodic, do
not satisfy the boundary condition required. One remedy
to use the nondirect product basis functions

SLkm~w9,u9!eikx9e2 ike1tfn~t!. ~47!

Another, but only approximate, method to satisfy the bou
ary condition approximates the value ofe1 by the ratio of
two relative prime integers and introduces a new torsio
variable.17,13

Since R z
t StmRRSRz is not 2p/M periodic it does not

seem obvious how the molecular symmetry may be ta
into account when solving the IAS rotational–interna
rotational Schro¨dinger equation given by Eq.~42!.

A rotational-LAM Hamiltonian whose Schro¨dinger
equation is significantly simpler to solve than that of the IA
Hamiltonian in Eq.~42! is obtained by rotating the IAS into
a new MFS by the rotationR z

t .

IV. THE r-AXIS SYSTEM HAMILTONIAN

The rotation of the~new! IAS by R z
t transforms the IAS

Hamiltonian given in Eq.~42! into the Hamiltonian

ĤS5 1
2P̂

tStmRRSP̂1 1
2 ~ p̂92e1P̂z!mtt~ p̂92e1P̂z!

1V~t!, ~48!

whereP̂5RzL̂ and p̂952 i\(]/]t)w8,u8,x8 . The commuta-
tion relations are, as usual,P̂3 P̂52 i\ P̂ and @ P̂,p̂9#50.

The basis set formed by the direct product of the sy
metric rotor eigenfunctionsSPkm(w8,u8)eikx8 and a suitably
chosen LAM basis set can be used to find the eigenpair
ĤS variationally. Unlike in the case of the IAS Hamiltonian
now all kinetic energy tensor elements can be expanded
a Fourier series of periodicity 2p/M . The value ofM de-
pends on the actual permutation inversion symmetry
LAM dynamics of the molecule studied. To make full use
the symmetry properties, however, the LAM coordinate m
be defined properly.2

The HamiltonianĤS can also be obtained by rotating th
initial MFS by S and transforming the Hamiltonian given i
Eq. ~1! accordingly. Our results show thatS rotates the initial
MFS into a new one, where the internal angular veloc
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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vector due to the LAM coincides with thez axis and has
constant magnitude. Thus, the new MFS has all the cha
teristic properties of the MFS derived for special cases
internal rotation and called ther-axis system.8 The Hamil-
tonian in Eq.~48! is a generalization of ther-axis system
Hamiltonians discussed in Refs. 5 and 8 and may be ca
the generalizedr-axis system Hamiltonian or just ther-axis
system Hamiltonian. It is a simple excercise to show thatĤS

reduces to the known special caser-axis system Hamilto-
nians derived in Ref. 5. Numerical results presented in S
V give additional evidence for the correctness of ther-axis
system Hamiltonian given in Eq.~48!.

V. A NUMERICAL EXAMPLE

All terms in ĤS can be determined by first-principle
calculations. One parameter appearing inĤS , namely e1 ,
also appears in the effective spectroscopic Hamilton
~where it is denoted byr) employed in fitting the rotational
torsional spectrum of acetaldehyde. Unlike most fitting p
rameters,e1 is free of vibrational contributions. Therefore
the comparison of the theoretically determined value ofe1

with that obtained by fitting to experimental data shou
show good agreement.

Details of ourab initio calculations of the torsional po
tential and molecular geometries along the minimum ene
torsional path of acetaldehyde have been described in Re
By utilizing the results of these calculations, the angular
locity vector due to internal rotation has been calcula
along the minimum energy torsional path in an initial MF
and found to depend on the torsional coordinatet1 defined in
Ref. 2 as

vx520.000 770 373 sin 3t110.000 015 sin 6t1

23.731 9631027 sin 9t1 ,

vy520.103 83120.001 256 83 cos 3t1 , ~49!

vz50.313 24610.005 137 83 cos 3t1 .

~More about these calculations will be described along w
results obtained by very high-levelab initio calculations in a
forthcoming publication.18! Then, following the prescriptions
of Ref. 13 e1 is calculated. The theoretically determine
value of 0.3300 agrees very well with the spectroscopic v
ues 0.3316 and 0.3291 taken from Ref. 4. The deviatio
less than 0.5%. For comparison it is worth mentioning tha
recent attempt1 to calculatee1 (r) ab initio gave the value
0.3384, which is more than 2% off the experimental valu

VI. SUMMARY

A simple rule has been obtained to transform t
rotational-LAM Hamiltonian when the molecule fixed sy
tem of axes is rotated by some rotation that may depend
the LAM coordinate.~The extension of this rule to the cas
of more than one LAM is straightforward.!

Then, ar-axis system rotational-LAM Hamiltonian, Eq
~48!, has been derived. It applies to any molecule with a
type of LAM. The matrixS transforming to ther-axis sys-
Downloaded 07 Apr 2003 to 157.181.193.139. Redistribution subject to A
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tem and the strength of the LAM-z-rotation momentum cou-
pling, i.e., the constant denoted traditionally byr, can be
calculated by finding the three central eigenvalues and
responding eigenfunctions of the Floquet operator given
Eq. ~28!. In fact, r is identical to the positive central eigen
value,e1 , of the Floquet operator. The LAM-z-rotation mo-
mentum coupling constant can also be obtained from ana
ing experimental spectroscopic data. For the case
acetaldehyde, the theoretically derived value was found to
in excellent agreement with that obtained from spec
analysis.

The r-axis system rotational-LAM Hamiltonian, Eq
~48!, augmented with small amplitude vibration
contributions19 can be the starting point of the derivation
an effective rotational-LAM Hamiltonian suitable to fit spe
troscopic data. In addition to fitting, the parameters in t
effective Hamiltonian will be amenable to first-principle
calculations, since they will be given as functions of t
molecular geometry and potential energy surface parame
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