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The rho-axis system and the rho-axis-system Hamiltonian were devised and formulated to describe
the rotational—internal—rotational motion of molecules possessing certain local geometrical
symmetries. Nevertheless, they were employed to molecules without the required symmetries and
apparently lying outside the range of their applicability. To justify such applications and to facilitate
first-principles calculation of the corresponding spectroscopic parameters, the rho-axis-system and
the rho-axis system Hamiltonian must be derived without assuming or imposing symmetry
constraints. A derivation satisfying this requirement is described, and the rho-axis method is
extended to molecules having a large amplitude internal motion of any kind20@ American
Institute of Physics.[DOI: 10.1063/1.1560634

I. INTRODUCTION This paper describes derivation of a transformation to
the RAS and the RAS rotational-LAM Hamiltonian for a

Understanding the finer details of rotational—internal ro-molecule with one LAM. The derivation involves no as-

tational dynamics, for instance in acetaldehyde §CHO),  sumptions about local geometrical symmetries of the mol-

has been difficult due to, among various reasons, the defecule. The results are obtained through an analysis of the

ciencies in our understanding of the Hamiltonians employegroperties of the transformation to the internal-axis system

in the analysis of the experimental spectroscopic data. Som@AS) and that of the corresponding IAS rotational-LAM

of these deficiencies have been described in Ref. 1. One ¢iamiltonian derived in Ref. 13.

them, the problem of defining the torsional coordinate, has

been solved in Ref. 2. Two other problems, which have not

been solved yet, are the following: II. PRELIMINARY CONSIDERATIONS
The experimental rotational-torsional spectra of ) o . )
acetaldehyd® were fitted by a rho-axis-systerfRAS) A simple prescription will be derived to transform a

Hamiltonian derived by assuming a methyl group with three_rotat!onal-LAM Hamiltonian when the MFS is' subjected to a
fold symmetry’~8 Since the methyl group in acetaldehyde "otation that may depend on the LAM coordinate. _
actually does not have have @ symmetry axi$~! the The rotation of a molecule as a whole may be described
excellent fits obtainetf might be surprising. Could p-axis by three Euler angles defining the orientation of a Cartesian

system Hamiltonian be derived without imposing symmetryMFS With respect to a Cartesian laboratory syst@s$) of
constraints? axes. The origin of the MFS is fixed to the center of mass of

The first-principles calculation of spectroscopic param-the molecule. Consider an initial MFS. Let the Euler angles

eters in a RAS Hamiltonian requires the transformation of a0 andy describe the orientation of the initial MFS with

initial Cartesian molecule fixed syste@WFS) of axes into respect to the L.S' Let, (1), a=xy,z,j=12,... N, de-
the RAS! However, the transformation to the RAS is not note the coordinates of the atoms of theatom molecule

known except for the simple cases when a molecule Withstudled. The atom coordinates are functions of the LAM co-

internal rotation has certain local geometrical symmef_’ries.ord_Inate T Then, b_y re@rrangmg _the terms in the H_amll-
Only a proof of existence of the RAS is known in the case Oftonlan derived by P'_Cke » the rotational-LAM Hamiltonian
internal rotation in a molecule with asymmetric top andoperator may be writien as

asymmetric framé? Little is known about the transformation A= 23turpd+ 2 (p— {30} p,(p— {0 +V(7), (1)

to the RAS in a molecule with a large amplitude internal

motion (LAM) different from internal rotation. with
_-1
MRR=IRR) @
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o=~ o'lgrw) L (4) (Srictly speakingwy, is not an angular velocity vector. Only
wyd7/dt, whered7/dt is the time derivative ofr, is an
& angular velocity vector

Ig,= >, MaxX— : : .

Rr EJ: i8 ar’ ®) The potential energy/(7), does not depend on the ori-
s g entation of the MFS. Thus, the Hamiltonian in the rotated
a; oJa;

|TT:E i | 6) system takes the form

~ " ar a7’ - - ~ - o
Hy=3P'U'ugUP+ 3(p' —{P'UYw—wy)}) .-
wherel rr denotes the rotational tensor of inerté&g,andm, A .
denote the column vector of the coordinates and the mass of X(p'—{(w—wy)'UP}H)+V(7), (14
the jth atom, respectively/ () stands for the LAM potential L& A s A )
energy function with the so-called pseudopotential energyVith P=(Px,Py.,P;)" denoting the column vector of the
terms incorporated, and superscripmeans transposition. components of the total angular momentum operator given in

The column vectod contains the MFS components of the the new MFS, and

total angular momentum operator. They can be expressed in -, [
terms of the Euler angles, 8, and y and the partial differ- p'=—ih 97 , (19
ential operators with respect to these andfeb satisfies the ot . S
commutation relatiol? where the Euler angleg’,68’, andy’ define the orientation
o R of the new MFS with respect to the LS.
IXJ=—ind. @) Since the total angular momentum is conservidis
The momentum operatqy conjugated to the LAM coordi- felated toJ by
nate is defined by p=ut. (16)
~ J L . . 2
p= —iﬁ(a—) , (8) By substituting Eq(16) into the expression dfl ; and com-
T g0.x paring the terms in the resulting Hamiltonian with thosélin
and it commutes with the MFS components of the total anone finds the relationship
ular momentum operator, i.e., ~, o
J P p'=p—wld. (17)
[J,p]=0, ©) Equation(17) may be considered as a generalization of the
where0 is the zero vector (0,0,0) since the Euler angles Nielsen transformation By replacingd with UP andp with
¢,6, and are independent of. p'+wL,UP in H, Hy is obtained.
The Schrdinger equation foH may be solved varia- The angular momentum operatér satisfies the same
tionally for any given vglue of. the total angula_r momentum o mmutation relations ak
quantum numbed by using a direct product basis formed by o . A o . .
the symmetric rotor eigenfunctiors,{ ¢, 8)e'**** and any PXxP=UUxUJ=U'IJxJ)=—iaUJ=—iaP. (18

set of basis functions suitable to approximating the torsional A .
wave functions. Therefore, the elements &f are given by the same math-
Pickett also derived how the kinetic energy tensor ele£matical expressions as those of the components, dfut
ments are transformed by rotating to a new MFS with athey are given in terms of the Euler angle$,¢’, and x'.
LAM-dependent rotation? Rotate the MFS by a rotatiod. ~ For & given value of total angular momentum quantum num-
By saying that the MFS is rotated by, we understand that ber,P=J, the matrix elements of the componentsPtal-
the row of the unit vectors of the new MFE(,E, ,E,), is  culated in the symmetric rotor bas&;km(q;’,a’)eik/ are
related to that of the initial oneg,ey,e,), by the transfor-  the same as those dfcalculated in the symmetric rotor basis
mation Ey,E,,E,)=(e,e ,e,)U. ThusU" transforms the Sy @,0)e’®X.  The symmetric rotor eigenfunctions

. . Ot i - vl . . . . .
column vectors & 8y j 13z,) Of. the qoordlnates of the at Serm( @', 0")e*X" give a suitable rotational basis for solving
oms, and one can find the relationships . . ~

the Schrdinger equation oH ;.

lrr—U'IRrgU, (10) Similarly to J andp the operator®® andp’ commute:
w—U0-wy), (1D [P.p'1=[UJ,p~0}J]
Morr— Morr (12) :Utj(ﬁ—wbj)—(ﬁ—wbj)utj,
wherew; is the angular velocity vector defined byaccord- SUt SUt
ing to e T TR I T i W P A
. if 07J+U [wyd,d]=ith aTJ+|ﬁU QyJd
(wU)z (C’)U)y (9Ut aUt i
Qu=| (wy), 0 —(wy)x =-U——. =iﬁ(—+U‘QU)J=O, (19
T aT
_(wu)y (wy)x 0

(13)  where the last equality follows from E¢13).

Downloaded 07 Apr 2003 to 157.181.193.139. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 118, No. 15, 15 April 2003

Rho-axis-system Hamiltonian for molecules 6803

The results obtained in the above-presented discussions | J

can be summarized as follows. The rotational-LAM Hamil-

tonian,H, derived in an initial MFS can be given by EQ),
where the angular momentum operathr,and the momen-
tum operator of the LAMp, satisfy the commutation rela-
tions given by Eqgs(7) and(9). The rotational-LAM Hamil-
tonian FIU that is given in a new MFS related to the initial
MFS by a rotational transformatiod can be obtained by

F=w-J—i—,

or (28)

whereJ is an angular momentum operator satisfyiihg J
=iJ, and|y),y=1,0,—1 are the corresponding eigenfunc-
tions. [Note that the imaginaryin iw-J in Eq. (19) of Ref.
13 should be omittediFinally, the integeM denotes that the
angular velocity vectow calculated in the initial MFS is a

replacing the angular momentum and momentum operatordm/M periodic function ofr. (M =1 was assumed in Ref.

in the initial rotational-LAM Hamiltonian according to the 13)
The rotation matrixX® can be factorized as

rule
J-UP, (20) D=FeF{=(FFy)(FoeFg)=(FFYR, (29
p—p +w,UP. (21  Wwhere
This transformation preserves the commutation relations of ” M
the angular momentum and momentum operators. The sym- ]:“Vzn;w e™(a,nly), (30)
metric rotor eigenfunctions expressed as functions of the Eu-
ler angles defining the orientation of the new MFS with re- *
spect to the LS give a useful rotational basis set for solving  (Fo)s,= _2 (B,m|v), (32
the Schrdinger equation oi:|U. The choice of the LAM e
basis depends on the actual boundary conditions and will be 2 — FoeFy, (32)

discussed shortly. The results obtained in this section are
straightforward to extend to the case of more than one LAMand, by making use of the propertieg=0 ande;=—¢€_;
of the central Floquet eigenvalues,

e—ielT 0 0
IIl. THE INTERNAL-AXIS SYSTEM HAMILTONIAN
€= 0 1 0 (33
The IAS is obtained by rotating the initial MFS by a 0 0 eear

LAM dependent rotatiod such that
Superscript T denotes Hermitian conjugation.

»—wp=0. (22) The matricesF and F, are unitary(see Ref. 15 The
Then, the Hamiltonian given in Eq¢14) simplifies to matrix R is unitary, its determinant is equal to one, and its
PP Y eigenvalue matrix is. The angular velocity vectow=wx
Ho=2P' D urrDP+ 2p" u,p" + V(7). (23)  defined byR according to an equation similar to E(L3)

(except that transposition is replaced by Hermitian conjuga-
tion) is independent of the LAM coordinate. The orthogonal
matrix Z

As shown in Sec. IIP satisfies the commutation relation Eq.

(18) and commutes witp’.
An analytical expression of the matrix transforming to

the IAS has been derived in Ref. 13 by employing the Flo- 0, 0 oy
. 1
guet method: 7— 0 o 0
1 o o ”w”wxy ®
D= > 2 2 (an[y)e™e%7(y|gm) Y ’
y=-ln=-em=-x wy o, 0
(Q,B:X,y,Z). (24) X| Ty wy 0 , (34)
The basis s€f|a,n), a=x,y,z, n=0,+1,=2,... =x}is 0 0 oy
the direct product of the Fourier basis and the basis set
where || denotes the length o and wy,=\wy+ wy,
1 transformsw such that
x)=—=(-11,9+[1,—1)), (25)
V2 Zw=(0,0]w|)". (35
i The rotation matrixZ RZ' generates the angular velocity vec-
V)= ﬁ(|1’1>+|1'_ o 26 o (0,0]|w|))!. The rotation of angléw||r around thez axis,
ie.,
12)=11.0, (27)
] codlw||r —sinjw|r 0
where|1,1),|1,— 1), and|1,0) are the complex spherical har- _
monics,|J,m), forJ=1.€,,y=1,0-1, (e,>€>€_,), are R,=R,|o|n)=| sinlollr codo|r 0], (36
the three central eigenvalues of the Floquet operator, 0 0 1
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also generates the angular velocity vector ((@&f)! and, in
general, so doeR,Q, whereQ is any 7 independent unitary
matrix. ZRZ' must be equal t&R,Q with some appropriate
Q.

The matrix e can also be obtained by diagonal-
izing R,(e;7). Let C' denote the corresponding eigen-
vector matrix. Then e=CR,(e;7)C" and ZRZ
=ZFOCRZ(elr)CTF$Zt. By equating the latter matrix to
R, || 7)Q and rearranging one obtains

R(e,7)=CFIZ'R (|| w| 7)QZF,C. (37)

Equation(37) cannot be satisfied unless the mafik,C is
either a unit matrix or a matrix af-rotation, andQ is either
a unit matrix or a matrix ofzrotation with constant angle,

70-

Therefore,

ZRZ'=R&17)=R||wl|7+ 7o), (38)
and

loll= € (39)
and

T0=0 (40
follow.

Thus, one can factorizB as

D=(FFH)R=(FF{Z")(zZRZ"Z

=(FF{ZYR,Z=SR,Z, (42)

whereZ is a rotational matrix independent of the LAM co-
ordinate[see Eq.(34)], R, is a rotational matrix around a
axis with anglee, 7 [see Eq(38)], andS=]:F(J§Zt is a rota-
tional matrix whose elements arerPM periodic functions
of the LAM coordinate.

Now, let us rotate the IAS b¥'. Then, by applying the
rules derived in Sec. Il, one finds that the IAS rotational-
LAM Hamiltonian given in Eq.(23) is transformed into the
Hamiltonian

Hsr,=Hpz= 3L 'R IS uprSRAL+ 39’ 10" +V(7),
(42)

wherelL =ZP, p'=—i#(3/37) s» g ,», and the Euler angles
¢”,0", andy” describe the orientation of the new MFS with

respect to the LS. The new MFS is an IAS and the corre-

sponding rotational-LAM HamiltonianHpzt, is an IAS

Szalay et al.

For a given value of the total angular momentum quan-
tum number L the symmetric rotor eigenfunctions
SLm(@”,0")e*X" give a suitable rotational basis for solving
the Schrdinger equation foH pt . To choose an appropriate
LAM basis one must consider that the rotational-LAM wave
functions are invariant upon changing the value of the LAM
coordinate by 2r. This boundary condition is of importance
only for molecules where a2 change of the LAM coordi-
nate can actually take place, e.g., in molecules with internal
rotation. With changingr by 27, the Euler angleg’, 6’,
andy’ can change only by an integer multiple ofrZinceS
is 27 periodic, but

(46)
wheren is an integer number. Sinceg, is, in general, not
an integer, the wusual direct product basis functions
S.m(@”, 0")eXX" ¢, (7), where ¢,(7) are 27 periodic, do

not satisfy the boundary condition required. One remedy is
to use the nondirect product basis functions

X'=x't+er—x"+2an+2meq,

SLkm((,D”,HI,)eikX”e_ikelT(bn(T)- (47)

Another, but only approximate, method to satisfy the bound-
ary condition approximates the value ef by the ratio of
two relative prime integers and introduces a new torsional
variable!’3

Since R S'urrSR, is not 2z/M periodic it does not
seem obvious how the molecular symmetry may be taken
into account when solving the IAS rotational—internal—
rotational Schrdinger equation given by Eq42).

A rotational-LAM Hamiltonian whose Schdinger
equation is significantly simpler to solve than that of the IAS
Hamiltonian in Eq.(42) is obtained by rotating the IAS into
a new MFS by the rotatiofR ;.

IV. THE p-AXIS SYSTEM HAMILTONIAN

The rotation of thénew) IAS by th transforms the IAS
Hamiltonian given in Eq(42) into the Hamiltonian

Hs=3P'S ureSPt 3 (0"~ €1P) ("~ €1Py)

+V(7), (48

whereP=R,L andp”=—i#(d/d7), o . The commuta-
tion relations are, as usudx P=—i%P and[P,p"]=0.

The basis set formed by the direct product of the sym-
metric rotor eigenfunctionSey(¢’,0')e*X" and a suitably

Hamiltonian. They can also be obtained by rotating the initialChoSen LAM basis set can be used to find the eigenpairs of

MFS by SR, and by transforming the rotational-LAM
Hamiltonian given in Eq(1).

Let the Euler angles’,0’, andy’ describe the orienta-
tion (with respect to the LBof the MFS obtained by rotating
the initial MFS byS The two sets of rotational coordinates,
¢",0", x" ande’,6’, x' are related by

o"=¢, (43
9'=0', (44)
X'=x'ter. (45)
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H g variationally. Unlike in the case of the IAS Hamiltonians,
now all kinetic energy tensor elements can be expanded into
a Fourier series of periodicity2/M. The value ofM de-
pends on the actual permutation inversion symmetry and
LAM dynamics of the molecule studied. To make full use of
the symmetry properties, however, the LAM coordinate must
be defined properls.

The HamiltonianH s can also be obtained by rotating the
initial MFS by S and transforming the Hamiltonian given in
Eq. (1) accordingly. Our results show th&totates the initial
MFES into a new one, where the internal angular velocity
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vector due to the LAM coincides with the axis and has tem and the strength of the LAMHotation momentum cou-
constant magnitude. Thus, the new MFS has all the charagling, i.e., the constant denoted traditionally py can be
teristic properties of the MFS derived for special cases otalculated by finding the three central eigenvalues and cor-
internal rotation and called the-axis systenf. The Hamil-  responding eigenfunctions of the Floquet operator given in
tonian in Eq.(48) is a generalization of thg-axis system Eq. (29). In fact, p is identical to the positive central eigen-

Hamiltonians discussed in Refs. 5 and 8 and may be callega|ue e, of the Floquet operator. The LAM-rotation mo-
the generalizeg-axis system Hamiltonian or just theaxis mentum coupling constant can also be obtained from analyz-

system Hamiltonian. It is a simple excercise to show that ing experimental spectroscopic data. For the case of

reduces to the known special cgsexis system Hamilto-  , -oa1dehyde, the theoretically derived value was found to be

nians denv_e_d n Ref. 5. Numerical results presented n Se(fh excellent agreement with that obtained from spectral
V give additional evidence for the correctness of thaxis

o . . analysis.
system Hamiltonian given in Eq48). . . I
y g 8) The p-axis system rotational-LAM Hamiltonian, Eg.
V. A NUMERICAL EXAMPLE (48), augmented with small amplitude vibrational

. contributions® can be the starting point of the derivation of

All terms in Hs can be determined by first-principles an effective rotational-LAM Hamiltonian suitable to fit spec-
calculations. One parameter appearingHg, namelye;,  troscopic data. In addition to fitting, the parameters in this
also appears in the effective spectroscopic Hamiltoniaffective Hamiltonian will be amenable to first-principles
(where it is denoted by) employed in fitting the rotational-  cajculations, since they will be given as functions of the

torsional spectrum of acetaldehyde. Unlike most fitting payngjecular geometry and potential energy surface parameters.
rameters,e; is free of vibrational contributions. Therefore,

the comparison of the theoretically determined values pf
with that obtained by fitting to experimental data should
show good agreement.
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