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Abstract

The vibrational fundamentals and the rotational levels up to JZ7 of the ~X
3
B1 and ~a1A1 electronic states of CH2 have been computed

completely ab initio. The calculations were based on converged, variational nuclear motion calculations employing high-quality ab initio

quartic force field approximations of the related potential energy surfaces (PES). The vibrational fundamentals obtained are compared to

other computational results, namely those obtained from second-order vibrational perturbation theory (VPT2) and the nonrigid-rotation-

large-amplitude-internal-motion Hamiltonian (NRLH) approach. The variationally computed rotational transitions are compared both to

experimentally available results and to results obtained using empirical, fitted PESs. The comparisons suggest that while the fitted PESs of
~X

3
B1 CH2 reproduce excellently the available rovibrational transition wavenumbers, the corresponding stretching fundamental term values,

which have not been determined experimentally, are less accurate than the ab initio values obtained in the present study. This means that the

zero-point energy (ZPE) computed ab initio in the present work is an improvement over that computed from the fitted PES of ~X
3
B1 CH2. No

similar problems are observed for the semirigid ~a1A1 state of CH2, where the computed, the fitted, and the experimental results all agree with

each other. The symmetric and antisymmetric stretching fundamentals of ~X
3
B1 CH2 obtained in this study are 3035G7 and 3249G7 cmK1,

respectively. The corresponding ZPE of ~X
3
B1 is 3733G10 cmK1, while that of ~a1A1 CH2 is 3605G15 cmK1.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The unique role the simple triatomic molecule methylene

(CH2) has played in the development of modern quantum

chemical techniques was reviewed excellently by Schaefer

[1] almost two decades ago. To understand how the

structure and energetics of methylene has become a

‘paradigm for quantitative quantum chemistry’ [1] it is

sufficient to mention that two important results, deduced by

some of the best spectroscopists in the world [2–5] namely

that triplet methylene has a linear equilibrium structure [2]
0022-2860/$ - see front matter q 2005 Elsevier B.V. All rights reserved.
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and that the singlet-triplet energy separation, To ( ~a1A1), is

either small, around 2 kcal molK1 [3,4], or large, almost

20 kcal molK1 [5], proved to be even qualitatively wrong by

theory (see, e.g. Refs. [6–9] for recent compilations of

relevant experimental and computational data). In both

cases, it was pure ab initio electronic structure theory that

provided correct answers for the relevant quantities from

almost the very beginning.

From the results presented in this study it seems that the

methylene saga is continued in that pure ab initio theory can

now improve some of the empirical data deduced from

experiment for ~X
3
B1 CH2. As shown below, ab initio theory

predicts the stretching fundamentals of the lowest triplet

state of CH2, so far not measured directly, and thus the

subsequent zero-point energy (ZPE) of ~X
3
B1 CH2 more

accurately than some of the empirical attempts [10–17].

Recently, two of the authors of this article have been

involved [6] in the definitive ab initio determination of

the enthalpies of formation, both at 0 and 298.15 K, of
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the two lowest electronic states of methylene, ~X
3
B1 and

~a1A1 [9]. Publication of Ref. [6] was severely hindered by

the problem surrounding the ZPEs of the two states for

which several determinations have been available in the

literature. The basic problem can be described as follows.

The 0–0 transition between the two states is T0ð ~a
1A1ÞZ

3147G5 cmK1 [11,14,16]. (A discussion of how this T0ð ~a
1

A1Þ was determined is given in Section 6.) An accurate

computational value of Teð ~a
1A1ÞZ3262C29

K16 cmK1 was

obtained in Ref. [6] after establishing the all-electron

complete basis set (CBS) full configuration interaction

(FCI) limit [18,19] and augmenting the result with

relativistic and diagonal Born–Oppenheimer corrections

(DBOC) in the spirit of the focal-point approach (FPA) [20,

21]. These T0 and Te values are only compatible if not the

available empirical estimates [10–16], detailed below, are

used for the difference between the singlet and triplet ZPEs.

Rather a computational estimate [6] based on the nonrigid-

rotation-large-amplitude-internal-motion Hamiltonian

(NRLH) approach of Szalay [22–25] and accurate quartic

force field representations of the potential energy surfaces

(PES) of ~X
3
B1 and ~a1A1 CH2 should be employed. The

simplified one-dimensional treatment of Ref. [6] is

substituted in this study by a fully six-dimensional

variational treatment of the vibrations and rotations of

both states of CH2. New estimates of the vibrational

fundamentals and ZPEs of 3CH2 and 1CH2 are obtained,

where 3CH2 and 1CH2 are shorthand notations for ~X
3
B1 and

~a1A1 CH2, respectively. Rotational transitions are computed

with the help of an exceedingly simple algorithm and a

newly developed code. These calculations help to establish

the accuracy of the fitted empirical PESs of Jensen and

Bunker [14], which provided significantly different esti-

mates for the stretching fundamentals and the ZPE of 3CH2

but not of 1CH2. Here and in the following review of the

literature we employ the notation 1ZPE and 3ZPE for the

ZPEs of ~a1A1 and ~X
3
B1 CH2, respectively, while DZPE

refers to the ZPE difference between the excited singlet and

ground-state triplet states (1ZPE–3ZPE).

In 1983, McKellar and co-workers [11], using the

crude approximation that the stretching ZPEs are similar

for the two states, determined the ZPE contribution of

the bending modes of the triplet and singlet states as 670

and 499 cmK1, respectively, leading to a DZPE of

171 cmK1. Two years later, Leopold and co-workers

[12], based on a 3ZPE of 3430G140 cmK1 and a 1ZPE

of 3530 cmK1, obtained a curious DZPE estimate of

C100G140 cmK1 from the deuterium shifts of photo-

electron spectra of CHK
2 and CDK

2 . In a subsequent study

McLean and co-workers [13], using high-quality ab initio

(six-electron corrected second-order configuration inter-

action, SOCICQ) energy points and a variational

nonrigid bender Hamiltonian approach [26], obtained

3710G20 cmK1 for 3ZPE. A value for 1ZPE of 3620G
20 cmK1 was also determined by them from a fit to the

available experimental data [27–29], corresponding to a
DZPE of K90 cmK1. In 1989, Comeau and co-workers

[15], based on [5s4p3d2f1g/3s2p1d] MR-CISDCQ, i.e.

corrected multireference configuration interaction with all

singles and doubles, PESs and the Morse oscillator rigid

bender internal dynamics (MORBID) Hamiltonian

approach [30], determined a DZPE of K125 cmK1,

with 3ZPE and 1ZPE values of 3711 and 3586 cmK1,

respectively. Based on small adjustments to the ab initio

potential of Comeau and co-workers [15] in order to

better reproduce the available rovibrational levels, Jensen

and Bunker [14], again using their MORBID approach

for solution of the nuclear motion problem, obtained

3689 cmK1 for 3ZPE and 3613 cmK1 for 1ZPE, resulting

in a DZPE of only K76 cmK1. For a long-time, these

values remained the best empirical estimates for these

quantities. In a recent publication, Gu and co-workers

[16] investigated the effect of the Renner–Teller

interaction of the ~a1A1 state with the ~b
1
B1 state and

found that the adiabatic zero-point energy of ~a1A1 CH2

changes appreciably, to 3621 cmK1, by inclusion of a

rotational contribution, closing DZPE to K68 cmK1.

In our recent computational study [6], the best theoretical

ZPE estimates were 3736C15
K15 and 3612C10

K10 for 3ZPE and
1ZPE, with a subsequent DZPE ofK124C18

K18 cmK1. Relevant

computational results of some other high-quality studies are

summarized in Table 1.

Many of the empirical and computational determinations

of the ZPEs mentioned involved estimates of the vibrational

fundamentals of the two states of CH2 investigated. Of the

six vibrational fundamentals only the two stretching

fundamentals of 3CH2 have not been measured. The

available harmonic [6,7,31,32], and anharmonic [6,14,17,

29,32–34] vibrational fundamentals of ~X
3
B1 and ~a1A1 CH2

are summarized in Table 2. Note that the accuracy of the

computed harmonic and anharmonic vibrational funda-

mentals should be judged differently for the two states. The

~a1A1 state is semirigid while the ground ~X
3
B1 state is

much more floppy as can be inferred from the

bending fundamentals of the two states, 963 and

1353 cmK1 for ~X
3
B1 and ~a1A1 CH2, respectively.

As is clear from Table 2, there is little reason to deal with

the vibrational fundamentals of ~a1A1 CH2 in detail, as they

have been measured experimentally and, furthermore, all

dependable theoretical computations support the measured

values (see also Ref. [6]). In order to obtain a good estimate

of DZPE, one can concentrate on the stretching funda-

mentals of ~X
3
B1 CH2, which have not been measured

experimentally and determine 3ZPE from a reliable

variational nuclear motion calculation.

Details of the representations of the PESs of ~X
3
B1 and

~a1A1 CH2 employed in this study are given in Section 2.

The perturbational and variational approaches employed

for the determination of rovibrational eigenstates are

discussed in Section 3, the former, of course, rather

briefly. Computed rotational transitions that can be

compared to experimental data are discussed in detail



Table 1

Computational determinations of the zero-point energies, in cmK1, for ~X3
B1 and ~a1A1

12CH2
a

Method 3ZPE 1ZPE DZPE References and notes

Harmonic 3822 3678 K144 All-electron cc-pVQZ UCCSD(T), Ref. [32]

Harmonic 3817 3642 K175 TZ2P CCSD(T), one frozen core and one frozen virtual,

Ref. [7]

Harmonic 3808 All-electron aug-cc-pCVQZ ROCCSD(T), this work

Harmonic 3810 3637 K173 TZ2P FCI, one frozen core and one frozen virtual, Ref. [7]

VPT2b 3768 3625 K143 All-electron cc-pVQZ UCCSD(T), Ref. [32] and this work

VPT2b All-electron aug-cc-pCVQZ ROCCSD(T), this work

NRLH 3736 3612 K124 Ref. [6], see also Ref. [25]

VAR 3734.66 3609.96 K124.7 Present work

a 3ZPEZzero-point energy of ~X
3
B1 CH2. 1ZPEZzero-point energy of ~a1A1 CH2. DZPEZ1ZPEK3ZPE.

b The second-order vibrational perturbation theory (VPT2) results reported here do not include the small contributions from the constant (G0) term of the

VPT2 vibrational energy expansion [51].
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in Section 4 in order to prove the adequacy of the quartic

force field representations of the PESs for the purposes of

this paper. Dependable values for the stretching funda-

mentals and zero-point energy of 3CH2 are proposed in

Section 5, the similar quantities for 1CH2 are

also reviewed here. This is followed by a discussion of

T0ð ~a
1A1Þ in Section 6 to show that the computationally

determined DZPE is supported by the available exper-

imental data. In Section 7, we offer concluding remarks.
Table 2

Harmonic and anharmonic vibrational fundamentals, in cmK1, of ~X
3
B1 and ~a1A1

~X
3
B1 CH2

Harmonic u1(a1) u2(a1

TZ2P CCSD(T) 3140 1131

TZ2P FCI 3134 1127

cc-pVTZ CCSD(T) 3167 1085

cc-pVQZ UCCSD(T) 3159 1099

aug-cc-pCVQZ ROCCSD(T) 3148 1091

Anharmonic n1(a1) n2(a1)

Expt. 963.1

Fitted empirical 2994.2 973.4

Fitted empirical 3013.2 969.6

Jensen and Bunker 2992.0 963.1

cc-pVQZ UCCSD(T)CVPT2 3045 1019

aug-cc-pCVQZ ROCCSD(T)CVPT2 3032 1011

aug-cc-pCVQZ ROCCSD(T)CNRLH 3036 965

aug-cc-pCVQZ ROCCSD(T)CVAR 3036 967

~a1A1 CH2

Harmonic u1(a1) u2(a1

TZ2P CCSD(T) 2899 1414

TZ2P FCI 2899 1404

cc-pVQZ UCCSD(T) 2938 1407

Anharmonic n1(a1) n2(a1)

Expt. 2806 1353

Fitted empirical 2809 1353

cc-pVQZ UCCSD(T)CVPT2 2819 1367

aug-cc-pCVQZ ROCCSD(T)CVPT2 2806 1362

aug-cc-pCVQZ ROCCSD(T)CNRLH 2805 1358

aug-cc-pCVQZ ROCCSD(T)CVAR 2809 1361

a All CCSD(T) harmonic and anharmonic results are based on quadratic and qu
2. Representation of the PESs of CH2

Three different representations of the potential energy

surfaces (PES) of the ground triplet (3CH2) and the first

excited singlet (1CH2) states of CH2 have been employed in

this study.

The internal coordinate quartic force fields of 3CH2 and
1CH2, computed at the all-electron cc-pVQZ [35–37]

CCSD(T) [38] level, have been used in second-order
CH2
a

References and notes

) u3(b2)

3362 Ref. [7]

3358 Ref. [7]

3369 Ref. [31]

3385 Ref. [32]

3377 Ref. [6]

n3(b2)

Ref. [33]

3212.0 Ref. [17], surface A

3236.9 Ref. [17], surface C

3213.5 Ref. [14]

3260 Ref. [32]

3247 Ref. [6]

3249 Ref. [6]

3252 Present work

) u3(b2)

2971 Ref. [7]

2971 Ref. [7]

3012 Ref. [32]

n3(b2)

2865 Refs. [29,34]

2865 Ref. [14]

2871 Ref. [32]

2860 Ref. [6]

2860 Ref. [6]

2863 Present work

artic force field representations of the appropriate PESs, respectively.
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vibrational perturbation theory (VPT2) calculations. The

reliability of the underlying optimized Born–Oppenheimer

equilibrium structures and the related anharmonic (quartic)

force fields have been discussed several times before [32,

39–42].

The internal coordinate quartic force fields of 3CH2

and 1CH2, computed at the all-electron aug-cc-pCVQZ

CCSD(T) level at their respective optimized geometries,

thus eliminating the nonzero force dilemma [42], are

used both in VPT2 and variational calculations. The

[re(CH),:e(HCH)] structural parameters at this level are

[1.075981 Å, 133.84838] and [1.106907 Å, 102.13698] for
3CH2 and 1CH2, respectively. The best available

computational and the empirical estimates of the Born–

Oppenheimer equilibrium structures of 3CH2 and 1CH2

show an almost perfect agreement for both states. For
3CH2, the best empirical estimates are re(CH)Z
1.0753(3) Å and :e(HCH)Z133.93(1)8 [14], while for
1CH2 they are re(CH)Z1.1066(3) Å and :e(HCH)Z
102.378 [43]. For the variational calculations the all-

electron aug-cc-pCVQZ CCSD(T) force fields, reported in

Ref. [6] in full detail, have been slightly modified [44] by

transforming them from a simple (STRE, STRE, BEND)

representation to a (SPF, SPF, BEND) representation,

where SPF stands for the Simons–Parr–Finlan [45,46]

coordinate.

The fitted empirical PESs of Jensen and Bunker are

employed both for 3CH2 and 1CH2, corresponding to the

‘fitted’ constants of Tables 2 and 5 of Ref. [14],

respectively.

The CCSD(T) technique, with its approximate

inclusion of triple excitations, overcomes the difficulty

of a single-reference-based description of 1CH2, which

hindered early ab initio calculations of this electronic

state even close to equilibrium [8]. This can be seen from

the excellent agreement not only between the computed

[6] and experimental [43] structural parameters, given

above, but also in a similar comparison of the vibrational

fundamentals. The excellent agreement in the computed

and measured vibrational fundamentals ensures that the

effective adiabatic vibrational zero-point energy of 1CH2

should indeed be very close to 3612 cmK1 (Table 2), our

computed value, based on a fully variational treatment

involving the all-electron aug-cc-pCVQZ CCSD(T)

quartic force field, which is a value in fact only 1 cmK1

away from the MORBID result of Jensen and Bunker

[14] and only 9 cmK1 away from the latest result of Gu

et al. [16].
3. Computation of rovibrational levels of CH2

3.1. Second-order vibrational perturbation theory (VPT2)

The lengthy standard formulas resulting from second-

order vibrational perturbation theory (VPT2) for the
computation of vibrational anharmonicities, and conse-

quently anharmonic ZPEs, have been published several

times [47–51]. Therefore, there is no need to reintroduce

them here. It is mentioned only briefly that performance of

ab initio electronic structure calculations for determining

anharmonic vibrational energy levels and transitions

through quartic force fields and VPT2 formulas have

extensively been tested [49,50] with the result that for

semirigid molecules these computations are able to yield

highly accurate results, especially for species containing no

hydrogens [52].

It must be stressed that there are problems with

describing the ZPE of 3CH2 with VPT2. VPT2 is only

valid as long as each internal coordinate described is

contained in a deep well. The PES of 3CH2 is rather shallow

along the bending mode, with the barrier to linearity being

less than 2000 cmK1 and a bending frequency of only

963.1 cmK1. Thus, for this state simple VPT2 offers a

somewhat unreliable approach. This observation could be at

least partially responsible for the larger than usual, around

50 cmK1, overestimation [6] of the experimentally observed

n2 value by the VPT2 approach for 3CH2 (see relevant data

of Table 2). Nevertheless, VPT2 results are expected to be

perfectly reliable for the stretching modes.
3.2. Variational computations

The most effective way to compute lower-lying

rovibrational energy levels of triatomic molecules

involves a discrete variable representation (DVR) [53–

60] of the rovibrational Hamiltonian. This choice enables

the potential energy matrix elements to be evaluated very

efficiently. The numerical efficiency of the method as a

whole is best if one can choose an orthogonal coordinate

system so that there are no cross-derivative terms in the

kinetic energy operator. If this is possible, one can often

find a set of basis functions in which the kinetic energy

matrix elements can be evaluated analytically and

speedily, yielding results that can easily be incorporated

into the DVR framework.

Assuming that an orthogonal system is chosen, the

rotation–vibration Hamiltonian, which incorporates the

radial part of the Jacobian, is

Ĥrv ZK
1

2m1

v2

vR2
1

K
1

2m2

v2

vR2
2

K
1

2m1R2
1

C
1

2m2R2
2

� �
1

sin q

v

vq
sin q

v

vq
K

ĵ
2
z

sin2q

 !

C
1

2m1R2
1

ðĴ
2
K2ĴzĵzKĴCĵKKĴKĵCÞ

CVðR1;R2; qÞ;

(1)
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where m1 and m2 are effective masses related to the actual

masses in a way that depends on how precisely the

orthogonal coordinate system is chosen, R1 and R2 are two

radial internal coordinates whose form may be chosen at

will within the limits imposed by the coordinate orthogon-

ality constraint, q is the angle between the two radial

coordinates, while Ĵ and ĵ refer to the appropriate [60]

rotational angular momenta. The molecular plane is the x–z

plane with the y-axis perpendicular to it. One of the radial

coordinates is taken to lie along the z-axis. The coordinate

choices made determine the precise form of ĵz and the

physical meaning of the reciprocal radial operator ð2m1R2
1Þ

K1

multiplying the angular momentum term.

It is not always computationally best to make an

orthogonal coordinate choice and even when making such

a choice, one particular scheme can prove to be better than

another, as can a particular choice of the positioning of the

molecule in the frame. Great care in making appropriate

choices must be exercised in order to perform effective

variational calculations.

The present nuclear motion calculations are performed in

the orthogonal Jacobi internal coordinates, choosing CH as

the diatom defining the z-axis so that R1 is the diatomic bond

length and m1R2
1 is the diatomic moment of inertia. This

body-fixed reference frame corresponds to the R1 embed-

ding [60]. The coordinates and the embedding chosen

proved to be effective for CH2 though may be far from being

optimal for other systems [61,62].

It is always useful to have in mind a suitable set of basis

functions to set up the matrix representation of Ĥrv. The

details of the function choice should reflect the coordinate

and embedding choices made. A typical basis function is

written as

cn1
ðR1Þcn2

ðR2ÞF
K
[ ðqÞC

Jp
MKð4;c;jÞ; (2)

where fcnj
ðRjÞg

NjK1

njZ0 , jZ1, 2, represents a one-dimensional

DVR basis of the radial coordinates (with fqij
g
Nj

ijZ1

quadrature points), fFK
[ ðqÞg

LK1CK;J
[ZK;KZð0=1Þ, where (0/1) refers to

(odd/even) parity solutions (vide infra), form the associated

Legendre-DVR basis, used exclusively in this study, f, c

and j are the usual Euler angles [63], and C
Jp
MK is the

rotation function (parity-adapted symmetric-top eigenfunc-

tions) formed by combining the normalized Wigner rotation

functions, DJ
MGK , as

C
Jp
MK Z ½2ð1 CdK0Þ�

K1=2½DJ
MK C ðK1ÞJCKCp

D
J
MKK�; (3)

where p stands for parity [63], while M and K are the

usual quantum numbers corresponding to space- and

body-fixed projections of the rotational angular momen-

tum on the appropriate z-axes. Although the most

common choice for the radial functions is the

Laguerre-DVR basis, involving Morse-like functions, in

the present work a Hermite–DVR basis is used for

fcnj
ðRjÞg

NjK1

njZ0. For the present application, the two basis

sets exhibited similar convergence characteristics.
The matrix elements of the radial derivative parts of the

kinetic energy operator,

ðKa!aÞnj ;n
0
j
Z hcnj

ðRjÞjK
1

2mj

v2

vR2
j

jcn0
j
ðRjÞi; (4)

can be obtained analytically [64], where aZN1 or N2.

Representation of the angular derivative parts can be

similarly calculated and represented in DVR form as

LL!L
K Z ðTq

KÞ
T ~LTq

K ; (5)

where ð ~LÞ[[0 Z[ð[C1Þd[[0 , [ZK;KC1;.;LK1CK, is a

diagonal matrix and the Tq
K transformation matrix between

the finite basis representation (FBR) and the DVR is built

from the eigenvectors of the coordinate matrix QK having

matrix elements

ðQKÞ[;[0 Z hPK
[ ðcos qÞjcos qjPK

[0 ðcos qÞi

ZK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð[ CKÞð[KKÞ

ð2[ C1Þð2[K1Þ

r
d[;[0C1

K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð[KK C1Þð[ CK C1Þ

ð2[ C1Þð2[ C3Þ

r
d[;[0K1; (6)

where fPK
[ g

LK1CK
[ZK are the associated Legendre polynomials.

Representations of the multiplicative operators expressed in

radial coordinates, ð2mjR
2
j Þ

K1, jZ1 or 2, are diagonal in the

DVR:

ðRjÞnj ;n
0
j
Z

1

2mjr
2
nj

dnj ;n
0
j
: (7)

In the case of a Hermite–DVR basis

rnj
Z

qnj

qNj

Rmax
j KRmin

j

2
C

Rmax
j CRmin

j

2
; (8)

where qnj
s are the appropriate Gaussian quadrature points.

Consequently, all grid points are defined in the interval

½Rmin
j ;Rmax

j �. This way one can ensure that all grid points are

in a physically meaningful region. Up to this point operators

only for the pure vibrational motion have been considered

[44]. The last term of the kinetic energy operator describes

the rotational motion of the system.

For setting up the matrix representation of the last term of

the kinetic energy operator of the rovibrational Hamiltonian

we take advantage of the rotational functions C
Jp
MK which

are eigenfunctions of Ĵ
2

and Ĵ
2
z with eigenvalues

proportional to J(JC1) and K2, respectively. Therefore,

one has to set up the K-dependent matrix representation of

ð2m1R2
1Þ

K1½JðJC1ÞK2K2� for the R1 embedding as:

ð ~R
K
1 Þn1;n

0
1

Z
JðJ C1ÞK2K2

2m1r2
n1

dn1;n
0
1
: (9)

To compute the matrix elements of the terms involving

the raising and lowering operators, note that the effect of

these two operators on the chosen angular functions is
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ĴCC
Jp
MK Z ½2ð1 CdK0Þ�

K1=2½LC
JKD

J
MKC1

C ðK1ÞJCKCpLC
JKD

J
MKKC1� (10a)
and
ĴKC
Jp
MK Z ½2ð1 CdK0Þ�

K1=2½LK
JKD

J
MKK1

C ðK1ÞJCKCpLK
JKD

J
MKKK1�: (10b)
The FBR matrix of ðKĴCĵKKĴKĵCÞ is then written as
ðBGFBR
K Þ[;[H1 ZKð1 CdK0 CdK 00Þ

1=2LG
JKLG

[K ; (11)
where LG
hK Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðhC1ÞKKðKG1Þ

p
, h is either J or [ as

appropriate, and all the unspecified matrix elements are

equal to zero. The corresponding DVR matrix can be

obtained as
BG
K Z ðTq

KG1Þ
TBGFBR

K Tq
K ; (12)
where the Tq
KG1 and Tq

K are transformation matrices defined

earlier.

To set-up the matrix representation of those parts of the

Hamiltonian that involve rotational operators, it is useful to

group the basis functions into separate sets of even and odd

parity. Let Kmax be JC1 and J for odd and even parity

solutions, respectively, where J is the total rotational

quantum number. In other words, the total rovibrational

Hamiltonian matrix for a given J is built up of blocks

(Fig. 1) and one cycles through K to build the Hamiltonian

matrix, where K also denotes the index of this cycle, and for

odd-parity energy levels K runs from 0 to J, while for even-

parity solutions K runs from 1 to J.

The total rotation–vibration Hamiltonian matrix can be

written as a sum of direct products, each of four matrices,

and adding to it the diagonal potential matrix
L
L

N2L

N
2L

H(K,K) H(K,K+1) or H

Fig. 1. Pictorial representation of the shape and the nonzero elements of the matric

N2Z4). In this figure, the total rovibrational Hamiltonian matrix, HDVR, is given
HDVR Z IKmax!Kmax 5KN1!N1 5IN2!N2 5IL!L

CIKmax!Kmax 5IN1!N1 5KN2!N2 5IL!L

C
XJ

KZð0=1Þ

½E
Kmax!Kmax

K;K 5R
N1!N1

1 5IN2!N2

5LL!L
K CE

Kmax!Kmax

K;K 5IN1!N1 5R
N2!N2

2

5LL!L
K CE

Kmax!Kmax

K;K 5 ~R
K
1 5IN2!N2 5IL!L

CE
Kmax!Kmax

K;KC1 5R
N1!N1

1 5IN2!N2 5BC
K

CE
Kmax!Kmax

K;KK1 5R
N1!N1

1 5IN2!N2 5BK
K�CV; (13)

where Ih!h is the identity matrix of size h!h. The

E
Kmax!Kmax

K;K ; E
Kmax!Kmax

K;KK1 ; and E
Kmax!Kmax

K;KC1 matrices are of size

Kmax!Kmax, having only one nonzero element equal to one

at the element indicated by the subscripts. In a DVR the

diagonal matrix of the potential energy operator V̂ðR1;R2;

cos qÞ is formed as

ðVÞKn1n2[;K 0n0
1
n0

2
[0 Z Vðrn1

; rn2
; qK

[ ÞdKn1n2[;K 0n0
1
n0

2
[0 ; (14)

where the K-dependent qK
[ are the eigenvalues of QK

[Eq. (6)].

The final Hamiltonian matrix, HDVR, is a

N1N2LðJC1Þ!N1N2LðJC1Þ- or N1N2LJ!N1N2LJ-

dimensional sparse symmetric matrix of special structure.

Fig. 1 shows the structure of the Hamiltonian matrix,

whereby

HðK;KÞ Z KN1!N1 5IN2!N2 5IL!L CIN1!N1 5KN2!N2

5IL!L C ~R
K
1 5IN2!N2 5IL!L CR

N1!N1

1

5IN2!N2 5LL!L
K CIN1!N1 5R

N2!N2

2 5LL!L
K (15)

and

HðK;KC1Þ Z R
N1!N1

1 5IN2!N2 5BC
K and

HðK;KK1Þ Z R
N1!N1

1 5IN2!N2 5BK
K

(16)
H(K,K-1) H(K,K) H(K,K+1)

H(K,K-1) H(K,K)

HDVR(K,K-1) 

H(K,K-1) H(K,K) H(K,K+1)

N
1N

2L

N1N2L

H(K,K) H(K,K+1)

K
 =

 (
3/

4)
 K

= 
(2

/3
) 

K
 =

 (
1/

2)
 K

= 
(0

/1
)

es appearing in Eqs. (13), (15), and (16) (for the sake of clarity, N1Z3 and

for JZ(3/4) for (odd/even) parity.



Table 3

Representative calculated rotational transitions, in cmK1, on the ground

vibrational state (000) of ~X
3
B1

12CH2 and their deviations from

experimenta,b

Transition Calculated Residual

404)313 2.876 0.566

212)303 14.229 K0.558

505)414 20.355 0.574

1 )2 30.894 K0.553
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One can take advantage of the sparsity and special

structure of the Hamiltonian matrix by employing an

iterative algorithm, in the present case that of Lanczos

[65], specialized for sparse matrices for computation of the

required eigenvalues.

The computer code developed as part of this study, based

on Eqs. (1)–(16), is called DOPI3R as its predecessor

vibrational counterpart was named DOPI3 [44].

11 02

110)101 63.334 K0.549

211)202 64.620 K0.545

312)303 66.577 K0.538

413)404 69.234 K0.530

615)606 76.810 K0.501

111)000 77.768 K0.553

212)101 92.267 K0.559

422)515 96.568 K0.975

322)413 96.697 K1.038

523)514 157.534 K1.045

542)431 381.342 K1.095

643)532 397.472 K1.096

642)533 397.478 K1.096

744)633 413.604 K1.097

743)634 413.621 K1.097

a The standard notation [63] JKaKc
has been invoked in denoting the pure

rotational levels involved in the transitions. The variational nuclear motion

calculations utilized the all-electron aug-cc-pCVQZ CCSD(T) quartic force

field in (SPF, SPF, BEND) coordinates as a PES. The residuals are defined

as calculatedKexperimental.
b The experimental data are taken from Ref. [14].

Table 4

Representative calculated rotational transitions, in cmK1, on the ground

vibrational state (000) of ~X3
B1

12CD2 and their deviations from

experimenta,b

Transition Calculated Residual

111)202 16.962 K0.230

110)101 33.317 K0.239

211)202 33.866 K0.238

312)303 34.701 K0.235

111)000 40.710 K0.245

212)101 48.121 K0.252

313)202 55.277 K0.260

422)515 58.417 K0.527

322)413 59.580 K0.553

221)312 68.463 K0.554

515)404 68.865 K0.278

523)514 90.393 K0.576

422)413 91.449 K0.572

321)312 92.336 K0.569

220)211 93.027 K0.566

322)313 95.452 K0.560

423)414 96.593 K0.558

322)211 116.863 K0.583

a The standard notation [63] JKaKc
has been invoked in denoting the pure

rotational levels involved in the transitions. The variational nuclear motion

calculations utilized the all-electron aug-cc-pCVQZ CCSD(T) quartic force

field in (SPF, SPF, BEND) coordinates as a PES. The residuals are defined

as calculatedKexperimental.
b The experimental data are taken from Ref. [14].
4. Rotational transitions

The precision of theory that can be expected for

variational computation of rotational transitions can be

judged from results obtained for water [41,66]. There the

rotational transitions could be reproduced on the order of

0.001 cmK1 using a high-quality purely ab initio PES [66].

Note, however, that this extensive PES of water, denoted as

CVRQD [41], included relativistic [67,68], quantum

electrodynamic (Lamb-shift) [69], DBOC [70], and non-

adiabatic [71] effects, as well as a considerably better

treatment than CCSD(T) of the valence and core correlation

effects. Therefore, a similar precision cannot be expected in

this study employing a much lower level of theory and

quartic force field expansions of the Born–Oppenheimer

PESs of 3CH2 and 1CH2.

4.1. ~X
3
B1 CH2 and CD2

To the best of our knowledge, all available rotational

transitions measured for and in between vibrational states of
3CH2 and 3CD2 have been collected by Jensen and Bunker

[14]. The empirical PES employed in this study was

computed by the same authors [14] from all the known

vibration–rotation data on 3CH2. Their surface reproduces

the observed transitions to better than 0.2 cmK1. Therefore,

there is no reason to include the variational results based on

this PES in any of the tables of this paper. Our computed

variational results are always compared to measured

rotational transitions. Tables 3 and 4 show computed

rotational transitions on the (000) states of ~X
3
B1 CH2 and

CD2, respectively, and their residuals. Table 5 shows

rotational transitions on the (010) state of ~X
3
B1 CH2,

while Table 6 shows similar data for the n2 band of ~X
3
B1

CD2.

As is clear from Tables 3 and 4, the all-electron aug-cc-

pCVQZ CCSD(T) quartic force field representation of the

PES of 3CH2 does not yield results of accuracy comparable

to those obtained for water [41,66] for the observed

rotational transitions. This is clearly due both to short-

comings of the electronic structure approach applied for this

highly flexible molecule and to the force field representation

of the PES. Nevertheless, the results are reasonably

accurate, none of the transitions on the (000) vibrational

ground state of 12CH2 and 12CD2 deviate more than 1.1 and

0.6 cmK1, respectively, from their experimental



Table 5

Representative calculated rotational transitions, in cmK1, on the (010) band

of ~X
3
B1

12CH2 and their deviations from experimenta,b

Transition Calculated Residual

414)523 804.565 K0.385

413)524 817.823 K0.321

524)633 817.654 K1.513

313)422 823.574 K0.383

312)423 831.447 K0.350

404)515 832.830 0.724

422)533 833.869 K1.512

423)532 833.843 K1.524

211)322 845.616 K0.368

322)431 849.962 K1.537

321)432 849.971 K1.535

111)220 859.030 K0.388

202)313 860.170 0.678

110)221 860.321 K0.382

220)331 866.012 K1.178

101)212 874.443 0.661

414)423 883.614 K0.403

313)322 886.669 K0.384

212)221 888.972 K0.388

211)220 892.772 K0.373

312)321 894.207 K0.353

404)413 896.053 0.657

514)523 898.214 K0.299

202)211 901.748 0.654

524)533 912.307 K1.519

523)532 912.344 K1.508

423)432 912.781 K1.534

422)431 912.800 K1.528

322)331 913.153 K1.543

313)220 933.825 K0.387

202)111 935.474 0.662

303)212 951.667 0.690

414)505 1034.728 K1.951

212)303 1070.006 K1.955

111)202 1086.878 K1.955

211)202 1120.620 K1.936

312)303 1122.498 K1.920

514)505 1128.377 K1.863

111)000 1133.875 K1.832

212)101 1148.042 K1.957

313)202 1161.673 K1.955

414)303 1174.665 K1.956

a The standard notation [63] JKaKc
has been invoked in denoting the pure

rotational levels involved in the transitions. The variational nuclear motion

calculations utilized the all-electron aug-cc-pCVQZ CCSD(T) quartic force

field in (SPF, SPF, BEND) coordinates as a PES. The residuals are defined

as calculatedKexperimental.
b The experimental data are taken from Ref. [14].

Table 6

Representative calculated rotational transitions, in cmK1, on the ground

vibrational state (010) of ~X
3
B1

12CD2 and their deviations from

experimenta,b

Transition 12CD2

Calculated Residual

111)202 45.517 K0.347

211)202 61.836 K0.887

312)303 62.744 K0.898

111)000 68.534 K0.903

212)101 75.925 K0.901

313)202 83.073 K0.907

414)303 89.974 K0.930

221)312 115.699 K1.372

321)312 139.512 K1.385

220)211 140.066 K0.731

221)212 141.785 K1.371

221)110 156.485 K1.382

220)111 157.024 K0.844

a The standard notation [63] JKaKc
has been invoked in denoting the pure

rotational levels involved in the transitions. The variational nuclear motion

calculations utilized the all-electron aug-cc-pCVQZ CCSD(T) quartic force

field in (SPF, SPF, BEND) coordinates as a PES. The residuals are defined

as calculatedKexperimental.
b The experimental data are taken from Ref. [14].

Table 7

Representative calculated rotational transitions, in cmK1, on the ground

vibrational state (000) of ~a1A1
12CH2 and their deviations from experimenta

Transition 12CH2

Calculated Residual

202)000 53.757 0.142

625)441 60.262 K2.048

313)111 80.407 0.086

331)111 182.739 1.351

422)202 186.325 1.215

532)414 212.842 1.600

432)212 225.333 1.419

440)220 259.014 2.673

542)322 299.309 3.019

550)330 336.856 3.067

725)505 351.797 2.607

652)432 374.946 3.216

a The standard notation [63] JKaKc
has been invoked in denoting the pure

rotational levels involved in the transitions. The variational nuclear motion

calculations utilized the all-electron aug-cc-pCVQZ CCSD(T) quartic force

field in (SPF, SPF, BEND) coordinates as a PES. The residuals are defined

as calculatedKexperimental. See Ref. [34] for the experimental data.
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counterparts (Tables 3 and 4). It is interesting to observe that

the residual errors of the transitions do not change

appreciably with J, they scatter either around K0.5,

C0.5, or K1.0 cmK1 for the parent isotopolog 12CH2

(Table 3). This behavior of the residuals is not easily

explicable though it is clearly connected to tendencies in the

Ka dependence of the error in the computed rotational term

values.
4.2. ~a1A1 CH2

Tables 7 and 8 show the computed rotational transitions

on the (000) and (010) states of ~a1A1 CH2 and their residuals

[34], respectively. There is nothing unusual about the

rotational term values and transitions of this state, they show

the precision that can be expected from a high-quality

quartic force field representation of the PES. In particular,

for a given J the deviation between computed and measured

term values increases considerably with Ka, a discrepancy

which gets reflected in the computed transition energies.



Table 8

Representative calculated rotational transitions, in cmK1, on the ground

vibrational state (010) of ~a1A1
12CH2 and their deviations from experimenta

Transition Calculated Residual

211)111 45.501 K0.762

312)110 101.768 0.488

514)414 138.510 0.865

330) 212 165.025 2.785

615)515 171.663 0.743

431)313 193.493 2.923

532)414 227.868 3.068

716)514 233.463 0.891

652)532 302.285 4.515

651)533 306.714 4.444

a The standard notation [63] JKaKc
has been invoked in denoting the pure

rotational levels involved in the transitions. The variational nuclear motion

calculations utilized the all-electron aug-cc-pCVQZ CCSD(T) quartic force

field in (SPF, SPF, BEND) coordinates as a PES. The residuals are defined

as calculatedKexperimental. See Ref. [34] for the experimental data.
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The residuals for the rotational transitions of ~a1A1 CH2 are

highly similar to those obtained for the ground electronic

state, i.e. the internal coordinate quartic force field

representations of the PESs of ~X
3
B1 and ~a1A1 CH2 are

reasonably accurate and able to reproduce the measured

rovibrational transitions with an expected precision. There-

fore, (a) the precision of the equilibrium structure and the

vibrational fundamentals for 1CH2 and 3CH2 should be

highly similar; and (b) none of the rotational data calls into

question the utility of these PES representations for

predicting the stretching fundamentals and the ZPEs of

either state.
5. Stretching fundamentals and zero-point energy

of 3CH2

The vibrational fundamentals of ~a1A1 CH2, 2805.9

(a1), 1352.6 (a1), and 2864.5 (b2) cmK1, have been

measured [29,34] directly and accurately. As is clear

from the VPT2 results of Ref. [6] and from Tables 1 and

2 of this study, for semirigid 1CH2 the all-electron aug-

cc-pCVQZ CCSD(T) force field, when used within the

standard VPT2 formulas, yields highly accurate

vibrational fundamentals and, consequently, a zero-point

energy of similar accuracy. This statement is further

supported by the NRLH results of Ref. [6] and by the

fully variational vibrational results of this study (Tables 1

and 2). The final ZPE estimate of 1CH2, 3605G15 cmK1,

corresponds to the first eigenvalue of the converged

variational nuclear motion calculation of this study based

on the all-electron aug-cc-pCVQZ CCSD(T) quartic force

field, corrected by the sum of half the differences

between the computed and measured fundamentals. It is

expected that the error estimate given is a conservative

2s estimate, augmented to include a correction due to the

Renner–Teller effect [16].
There is no reason not to expect a similar accuracy for the

all-electron aug-cc-pCVQZ CCSD(T) quartic force field in

representing the lower part of the PES of 3CH2. Never-

theless, as this electronic state does not satisfy the

requirement for semirigidity, the straight application of

VPT2 formulas leads to a wrong bending fundamental.

However, for the stretching fundamentals nonrigidity

should present no problems. The nuclear motion calcu-

lations in 1D (NRLH) and 3D (DOPI3R) support this view.

Namely, while the VPT2 and the fully variational and

NRLH bending fundamentals differ by 44 cmK1, similar

differences for the stretching fundamentals do not exceed

5 cmK1. As expected, the NRLH and VPT2 stretching

fundamentals differ by less than 4 cmK1. These obser-

vations add to the confidence in the calculated fundamentals

of the present study.

All published fully ab initio high-level computations of

the harmonic frequencies of 3CH2 indicate (for a partial list

see Table 1) that once a reasonably large Gaussian basis set,

of at least triple-zeta quality, and an extensive treatment of

electron correlation, of at least CCSD(T) quality, is used for

the electronic structure calculations, the equilibrium

structure and the harmonic frequencies of 3CH2 change

very little. The differences among CCSD(T) results also

depend very little on whether an unrestricted or a restricted

formalism has been used for the open-shell computations.

This also suggests that the CCSD(T) level of theory

provides a dependable estimate of the harmonic vibrational

fundamentals of 3CH2.

As noted several times before, see, e.g. Ref. [42], the

anharmonic contribution to the vibrational fundamentals

can be computed rather dependably at relatively low levels

of theory. Therefore, the anharmonic correction results to

the stretching fundamentals obtained in this study at the

aug-cc-pCVQZ CCSD(T) level are expected to be highly

reliable. Furthermore, it is generally accepted that

anharmonic stretching fundamentals computed with the

help of VPT2 formulas have a precision usually exceeding

that of variational treatments using the same quartic force

field. In the present case, the largest difference between the

VPT2 and variational fundamentals is less than 5 cmK1

(Table 2). Consequently, the computed anharmonic stretch-

ing fundamentals should be accurate.

In summary, the stretching vibrational fundamentals of

the ~X
3
B1 electronic state of CH2, 3035G7 (a1) and 3249G7

(b2) cmK1, have been established with confidence. The ZPE

of this state, 3733G10 cmK1, is also well established

through the present variational nuclear motion calculations.

This 3ZPE estimate corresponds to the first eigenvalue of the

converged variational nuclear motion calculation of this

study based on the all-electron aug-cc-pCVQZ CCSD(T)

quartic force field, corrected by half of the difference

between the computed and measured bending fundamental.

It is expected that the error estimate given is a conservative

2s estimate.
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6. On the determination of T0ð ~a
1A1Þ

Since one of the strongest arguments in favor of the

correctness of 3ZPE calculated in this study ab initio

involves T0ð ~a
1A1Þ, it is worth checking how T0ð ~a

1A1Þ was

obtained. Most importantly, T0ð ~a
1A1Þ has not been

measured directly and its determination [11,14,16], yielding

3147G5 cmK1, employed a mixture of experimental and

theoretical components.

The direct spectroscopic measurements leading to

T0ð ~a
1A1Þ are laser-magnetic-resonance (LMR) tran-

sitions involving known rovibrational levels of 1CH2.

Normally, singlet levels cannot be observed in LMR

experiments because their energies are unchanged by

a magnetic field. The existence of the observed

transitions can only be explained by assuming that

the singlet levels are perturbed by rovibrational levels

of 3CH2 through spin–orbit interactions.

Let the perturbed singlet and the perturbing triplet

levels have energies, relative to the rovibrational ground

state of 3CH2, E1CT0 and E3, respectively. From the

spectroscopic observations, combined with pure ab initio

determinations of the singlet-triplet spin-orbit matrix

elements, it was possible to obtain T0ZE3KE1KDEZ
3147 cmK1, using unperturbed values of E3 and E1

calculated with MORBID [30] and the fitted empirical

PESs of Bunker and Jensen [14], and a DE obtained by

manipulation of a 2!2 matrix to include coupling

between the two levels.

The empirical PESs employed in the determination of

T0ð ~a
1A1Þ are the same as those utilized in this study. The

accuracy of the stretching part of the 3CH2 PES has been

questioned in this study. Fortunately, the states with

energies E3 involve bending vibrational excitation only so

it is likely that the MORBID calculations gave accurate

energies for them. Furthermore, although the stretching

levels of 3CH2 do change following the present treatments,

the ab initio vibronic matrix elements (Table 10 of Ref.

[11]) indicate that the stretching fundamentals have much

smaller spin-orbit coupling matrix elements with the ~a1A1

(0 0 0) state than do the highly rotationally excited (0 2 0)

and (0 3 0) bending states utilized in obtaining T0ð ~a
1A1Þ.

Therefore, the empirical determination of T0ð ~a
1A1Þ is to be

trusted though further studies might show small deviations

from the present mean value.
7. Conclusions

The 0–0 transition between the lowest two electronic

states of CH2 has been established empirically as T0ð ~a
1A1Þ

Z3147G5 cmK1 [11,14,16]. A value of Teð ~a
1A1ÞZ3262C29

K16

cmK1 was obtained in a highly accurate computation [6], by

two of the authors of the present study, after establishing the

all-electron complete basis set (CBS) full configuration

interaction (FCI) limit and augmenting this result with
relativistic and diagonal BornKOppenheimer corrections

(DBOC) in the spirit of the focal-point approach (FPA).

The high-accuracy empirical T0 and the ab initio Te

values are only compatible if not the available empirical

estimates [10–16], ranging from K171 to C100G
140 cmK1, are used for the difference between the

singlet and triplet ZPEs but computational, purely ab

initio estimates, obtained either variationally or perturba-

tionally. The required nuclear motion calculations,

performed in Ref. [6] and here, include both the

nonrigid-rotation-large-amplitude-internal-motion Hamil-

tonian (NRLH) approach of Szalay and a fully

variational treatment. They both employed accurate

quartic force field representations of the potential energy

surfaces (PES) of ~X
3
B1 and ~a1A1 CH2. The fully

perturbational calculations remained within the frame-

work of VPT2. All ab initio estimates of the vibrational

fundamentals and ZPEs of 3CH2 and 1CH2 are very

similar. Furthermore, the vibrational fundamentals for

semirigid 1CH2 are in excellent agreement with the

available experimental data, none of the deviations are

larger than 8 cmK1. The computed bending fundamentals

of nonrigid 3CH2 are also in good accord with the only

experimentally available fundamental of 3CH2, except, as

expected, when the VPT2 approach is used for its

determination. These observations suggest that the

stretching fundamentals of 3CH2 should also be accurate,

corresponding to a highly accurate estimate of the ZPE

of this electronic state.

To further check the accuracy of the quartic force

field representations of the PESs, rotational transitions

have been computed using a newly developed code,

DOPI3R, described here in detail. While the fitted

empirical PES of 3CH2 obtained by Jensen and Bunker

[14] reproduces, in a converged variational calculation,

the available experimental rotational transitions very

accurately these transitions proved to be insufficient to

fix the true form of the PES of 3CH2. Consequently, the

stretching fundamentals obtained from this empirically

refined PES are in quite large error, deviating up to

44 cmK1 from the dependable pure ab initio results. The

similar precision of the prediction of the rotational term

values observed for 3CH2 and 1CH2 provide further

evidence about the claimed high precision of the force

field PES of 3CH2.

While the present calculations provide accurate estimates

of the stretching fundamentals, 3035G7 (a1) and 3249G7

(b2) cmK1, of 3CH2 facilitating their eventual experimental

detection considerably, the low intensity of these bands [72]

should hinder their detection in the near future.

The detailed high-level ab initio investigation of the

vibrational fundamentals and the rotational transitions of the

lowest triplet and singlet states of methylene allows us to

obtain the following dependable ZPE estimates: 3ZPEZ
3733G10 cmK1, 1ZPEZ3605G15 cmK1, and DZPEZ
128G18 cmK1.
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