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The Born–Oppenheimer (BO) equilibrium molecular structure (rBO
e ) of cis-methyl formate has been deter-

mined at the CCSD(T) level of electronic structure theory using Gaussian basis sets of at least quadruple-f
quality and a core correlation correction. The quadratic, cubic and semi-diagonal quartic force field in
normal coordinates has also been computed at the MP2 level employing a basis set of triple-f quality.
A semi-experimental equilibrium structure (rSE

e ) has been derived from experimental ground-state rota-
tional constants and the lowest-order rovibrational interaction parameters calculated from the ab initio
cubic force field. To determine rSE

e structures, it is important to start from accurate ground-state rotational
constants. Different spectroscopic methods, applicable in the presence of internal rotation and used in the
literature to obtain ‘‘unperturbed” rotational constants from the analysis and fitting of the spectrum, are
reviewed and compared. They are shown to be compatible though their precision may be different. The
rBO

e and rSE
e structures are in good agreement showing that, in the particular case of cis-methyl formate,

the methyl torsion can still be treated as a small-amplitude vibration. The best equilibrium structure
obtained for cis-methyl formate is: r(Cm–O) = 1.434 Å, r(O–Cc) = 1.335 Å, r(Cm–Hs) = 1.083 Å, r(Cm–
Ha) = 1.087 Å, r(Cc–H) = 1.093 Å, r(C@O) = 1.201 Å, \(COC) = 114.4�, \(CCHs) = 105.6�, \(CCHa) = 110.2�,
\(OCH) = 109.6�, \(OCO) = 125.5�, and s(HaCOC) = 60.3�. The accuracy is believed to be about 0.001 Å
for the bond lengths and 0.1� for the angles.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Methyl formate, HCOOCH3, exists in two different conformers, a
so-called cis and a so-called trans forms. The energy difference be-
tween them is large, DH = 4.75(19) kcal mol�1 as obtained by infra-
red spectroscopy in an Ar matrix [1]. Until very recently only the
cis conformer (the methyl group cis to the C@O bond, see Fig. 1)
has been observed in the gas phase. The laboratory spectrum and
an interstellar detections of the trans methyl formate conformer
were in fact reported this year [2].

Cis-methyl formate (CMF) may be considered as a prototypical
molecule for studying the internal rotation of the methyl group.
The potential hindering the internal rotation is not high,
V3 = 372.672(4) cm�1 [3]; thus, it produces large splittings of the
rotational transitions, even in the ground torsional state. Other
advantages of CMF are that its A rotational constant is rather small
[3] and that two components of the electric dipole moment are sig-
nificantly different from zero, la = 1.63 D and lb = 0.68 D [4]. The
ll rights reserved.

maison).
latter fact permits the measurement of many transitions, including
high-J transitions (J 6 80). On the other hand, the density of the
spectrum is increased by the existence of several low-lying vibra-
tions (torsion around 130 cm�1, COC bend at 318 cm�1, and an
out-of-plane bend at 332 cm�1) [5] and its assignment is thus
not straightforward. Furthermore, it is difficult to obtain a good
fit of all transitions because some splittings are very large and
the molecule is non-rigid. The most recent fit [3] included 10533
transitions and required 67 parameters. The first study of the
microwave spectrum is due to Curl [4] and a short review of the
microwave history of CMF is given in Ref. [3].

CMF is also an important interstellar molecule. It was first
detected towards SgrB2 in 1975 [6], it was then found ubiquitous
and it is known as an interstellar ‘‘weed” due to its dense radioas-
tronomical spectrum [7,8]. This prompted new spectroscopic stud-
ies of CMF, see again Ref. [3] for a review. The analysis of the first
excited torsional state led to the assignment of several new lines
towards Orion KL [9]. More recently, the measurements of the
spectra of the H13COOCH3, HCOO13CH3 [10], and DCOOCH3 [11]
isotopologues permitted the identification of these species in
Orion.

http://dx.doi.org/10.1016/j.jms.2009.11.007
mailto:jean.demaison@univ-lillel.fr
http://www.sciencedirect.com/science/journal/00222852
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Fig. 1. cis-Methyl formate.
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As the rotational spectra of many isotopologues of CMF have
been recently analyzed in great detail furnishing very accurate
rotational constants, it seemed worth investigating whether an
accurate equilibrium structure can be determined for CMF. The
experimental gas-phase structure of CMF was first determined by
Curl [4] using the rotational constants of eight isotopologues.
Assuming that the methyl group is symmetrical with its axis
through the carbon, he was able to obtain a substitution (rs) struc-
ture. More recently, another experimental structure was deter-
mined by gas electron diffraction furnishing ra parameters with
an assumed accuracy of 0.002–0.003 Å for the distances between
heavy atoms and 0.5� for the bond angles [12]. Several ab initio
equilibrium structures have been determined but the most accu-
rate one [13] seems to have been determined at the second-order
Møller–Plesset perturbation theory level (MP2) [14] with a basis
set of quadruple zeta quality.

This paper is organized as follows. Section 2 describes the ab ini-
tio calculation of the Born–Oppenheimer equilibrium structure of
CMF. In Section 3, its ab initio anharmonic force field is discussed
and some parameters calculated from this force field are compared
to the corresponding experimental values. Section 4 focuses on the
experimental determination of reliable ground-state rotational con-
stants. Depending on the method chosen, the internal rotation anal-
ysis leads to the determination of different sets of rotational
constants which are apparently incompatible. This has produced
some confusion and a clarification is obviously needed. In this pa-
per, we focus on the methods and codes previously used in the liter-
ature for analyzing and fitting the microwave and millimeterwave
spectra of CMF. The usefulness of the pseudo-inertial defect is also
discussed. Section 5 is devoted to the semi-experimental equilib-
rium structure. Finally, Section 6, the experimental internal rotation
parameters are compared to the values calculated from the equilib-
rium structure.
2. Ab initio structure

As part of this study the molecular geometry of CMF has been
optimized at the coupled cluster (CC) level of electronic structure
theory including single and double excitations [15] augmented by
a perturbational estimate of the effects of connected triple excita-
tions [CCSD(T)] [16] in conjunction with the correlation-consistent
polarized valence n-tuple-zeta basis sets, cc-pVnZ (abbreviated
hereafter as VnZ), with n 2 {D(2), T(3), Q(4), 5} [17]. It is well estab-
lished that the CCSD(T) technique usually provides reliable equilib-
rium structures [18] though exceptions exist [19]. As it is not obvious
that the CCSD(T) structural parameters are converged at the VQZ le-
vel, we also used a mixed basis set composed of VQZ on H and V5Z on
the other atoms. This basis set, denoted V(5,Q)Z, leads to little loss in
accuracy and reduces the computation time. To further reduce com-
putational cost, the V(5,Q)Z basis was employed only with MP2 [14].
The frozen-core approximation (hereafter denoted as fc), i.e., keep-
ing the 1s orbitals of C and O doubly occupied during correlated-level
calculations, was used in most calculations. To estimate the inner-
shell correlation effects, the weighted correlation-consistent polar-
ized core-valence n-tuple zeta (wCVnZ) [20,21] basis sets were also
employed at the MP2 level. For first-row atoms this correction is sub-
stantial [22] but it is sufficient to use the MP2 method to estimate its
magnitude [23]. The CCSD(T) calculations were performed with the
MOLPRO program package [24], while the MP2 calculations utilized
the Gaussian03 (g03) program [25].

At the MP2 level, enlargement of the basis set from VTZ to VQZ
shows that convergence is almost achieved for the CH bond lengths
and the CCH bond angles, but there are non-negligible changes for
the CO bond lengths, the C[carbonyl]–O bond being shortened by as
much as 0.0034 Å, see Table 1. Upon going from VQZ to V(5,Q)Z,
still at the MP2 level, the C[carbonyl]–O bond length decreases very
slightly by 0.0006 Å and the C[methyl]–O bond length by 0.0003 Å
indicating that convergence is almost achieved. As O is electroneg-
ative, diffuse functions play a significant role when the basis set is
small but it is well established that their effect rapidly decreases
with the size of the basis set and should be, thus, negligible at
the V5Z level [26]. To check this point, we have calculated the
structure at the MP2 level using the aug-cc-pVQZ (abbreviated as
AVQZ) basis set [27]. Going from VQZ to AVQZ, the effects are
small, the largest ones being an increase of the C[methyl]–O bond
length by 0.0017 Å and of the C@O bond length by 0.0012 Å. Corre-
lating all electrons at the MP2/wCVQZ level leads to the expected
shortening of the bonds: 0.0015 Å for CH, 0.0030 Å for C–O, and
0.0022 Å for C@O. The best ab initio rBO

e structure is obtained by
adding this core correlation correction to the CCSD(T)/VQZ struc-
ture and by taking into account the effects caused by the basis
set enlargement (MP2/cc-pVQZ ? MP2/cc-pV(5,Q)Z), except for
the CH bond lengths. This structure is given at the right of Table
1 (estimate I). As the effect of the diffuse functions was neglected,
the CO bond lengths might be slightly too small. Alternatively, tak-
ing into account also the effect of diffuse functions at the quadru-
ple zeta level leads to estimate II. In this case, the CO bond lengths
are probably slightly too large.

3. Ab initio anharmonic force field

The ab initio anharmonic force field [28] of CMF was calculated
in normal coordinates at the MP2 level of theory using the g03 pro-
gram [25]. It is widely accepted that, in most cases, the CCSD(T)
force field only provides a negligible improvement over the MP2
force field when determining semi-experimental equilibrium
structures [29]. The VTZ basis set was used in the frozen-core
approximation and also with all electrons correlated. The opti-
mized molecular geometry was calculated first. Then, the associ-
ated harmonic force field was evaluated analytically in Cartesian
coordinates at the optimized geometry in order to avoid the non-
zero force dilemma [30]. The cubic (/ijk) and semi-diagonal quartic
(/ijkk) normal coordinate force constants were determined with the
use of a finite difference procedure involving displacements [31]
along reduced normal coordinates and the calculation of analytic
second derivatives at these displaced geometries. Evaluation of
the anharmonic spectroscopic constants was based on second-order
rovibrational perturbation theory [32].



Table 1
Ab initio Born–Oppenheimer estimates of the equilibrium structure of cis-methyl formate (bond lengths in Å, angles in degrees).

Method MP2 CCSD(T) rBO
e

Basis set a VTZ VTZ(ae) VQZ V(Q,5)Z AVQZ wCVQZ wCVQZ(ae) VQZ Ib IIc

r(Cm–O) 1.4362 1.4313 1.4343 1.4346 1.4360 1.43402 1.43095 1.4366 1.4338 1.4355
r(O–Cc) 1.3400 1.3355 1.3366 1.3360 1.3370 1.3363 1.3336 1.3375 1.3343 1.3347
r(Cm–Hs) 1.0829 1.0797 1.0818 1.082 1.0821 1.0817 1.0801 1.0850 1.0834 1.0837
r(Cm–Ha) 1.0863 1.083 1.0852 1.0855 1.0856 1.0851 1.0836 1.0883 1.0868 1.0872
r(Cc–H) 1.0931 1.0883 1.0923 1.0928 1.0926 1.0923 1.0909 1.0945 1.0931 1.0934
r(C@O) 1.2056 1.2026 1.20355 1.20357 1.2047 1.2032 1.2100 1.2019 1.1997 1.2008
\(COC) 113.785 113.888 114.038 114.119 114.088 114.043 114.125 114.197 114.360 114.411
\(CCHs) 105.574 105.676 105.537 105.498 105.481 105.545 105.619 105.593 105.628 105.572
\(CCHa) 110.365 110.400 110.259 110.202 110.167 110.259 110.290 110.244 110.217 110.125
\(OCH) 109.092 109.191 109.261 109.334 109.345 109.273 109.324 109.444 109.569 109.653
\(OCO) 125.708 125.689 125.597 125.555 125.539 125.594 125.578 125.583 125.525 125.467
s(HaCOC) �60.307 �60.297 �60.295 �60.285 �60.284 �60.290 �60.278 �60.281 �60.259 �60.248

a Frozen core approximation unless otherwise stated, ae = all electrons correlated. m stands for methyl, c for carbonyl, s for symmetric (in-plane) and a for asymmetric (out-
of-plane), see Fig. 1.

b Estimate I: CCSD(T)/VQZ + MP2[V(Q,5)Z � VQZ + wCVQZ(ae) �wCVQZ].
c Estimate II: estimate I + MP2/AVQZ �MP2/VQZ.
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The experimental torsional ground-state (vs = 0) and the com-
puted equilibrium quartic centrifugal distortion constants are
compared in Table 2. Generally, this permits a check of the quality
of the harmonic part of the force field. There is no significant differ-
ence between the different ab initio calculations and the agreement
is best with the most recent experimental determination of the tor-
sional ground-state vs = 0 constants [33]. The centrifugal distortion
constants were also determined in Ref. [3] but the method used in
that work involved the diagonalization of matrices involving sev-
eral torsional vs states. Furthermore, they are not derived in the
Principal Axis System (PAS). Therefore, the values of the centrifugal
distortion constants derived in Ref. [3] cannot be directly com-
pared to the computed constants. It is worth noting the large var-
iation of the dK constant between the different experimental
studies but it is known that it is difficult to get accurate values
for this constant.

The harmonic vibrational frequencies, xi, and the vibrational
band centers, mi, for HCOOCH3 are given in Table 3. The agreement
between the calculated and the experimental vibrational frequen-
cies mi is good, the median of the absolute deviations is only
9.6 cm�1 (1%) at the MP2/VTZ(fc) level. This is comparable to or
even slightly better than the results found for many molecules of
this size. At the MP2/VTZ(ae) level, the median of absolute devia-
tions is 20.0 cm�1. As usual, the largest deviations are for the CH
bond stretches. What is truly interesting is that the deviations
are more systematic and that the agreement is much better for
the methyl torsional vibration at the MP2/VTZ(ae) level than at
the MP2/VTZ(fc) level. The harmonic part of the force field has also
been calculated at the MP2/AVTZ level of theory. This does not sig-
nificantly improve the agreement.

The lowest-order experimental vibration–rotation interaction
constants (as) have been determined as
Table 2
Experimental and ab initio quartic centrifugal distortion constantsa (kHz) for the ground t

Method Experimental

Ref./basis [33] [55] [56] [57]

DJ 6.049 5.890 6.018 6.178
DJK �21.229 �23.313 �27.862 �17.198
DK 77.806 75.401 85.137 82.358
dJ 1.886 1.857 1.869 1.950
dK 3.939 2.057 9.815 7.660

a The uncertainty is not given because it is much smaller than the difference between
aA
s ¼ Aðms ¼ 0Þ � Aðms ¼ 1Þ
ðand identical formula for aB

s and aC
s Þ ð1Þ

for the torsional mode of HCOOCH3 and H13COOCH3 [33]. They are
compared with their ab initio counterparts in Table 4. This compar-
ison is particularly interesting because, in this molecule, the torsion
may be considered as a well isolated mode which is not perturbed
by anharmonic resonances, at least for the ground and first torsional
states, isolated from the other small-amplitude vibrations, m12 (COC
bend) located at 318 cm�1 and m17 (out-of-plane bend) at 332 cm�1.
On the other hand, torsion is a large-amplitude motion and we
would expect that this severely affects the accuracy of the calcu-
lated anharmonic force field. At first glance, the agreement is com-
parable or better than that found for other molecules without large-
amplitude motion. Thus, it may be concluded that, in the particular
case of CMF, the torsion behaves as a small-amplitude vibration, at
least for the ground and first torsional mode vs = 0 and 1, which are
located very much below the top of the torsional barrier. The ques-
tion of the accuracy of the experimental as constants is still pending
because even though the vs = 0 and 1 torsional states fit to experi-
mental accuracy [3], it is not the case for vs = 2 state. The fit of
the second excited torsional state will require most likely the inclu-
sion of perturbations with the two low-frequency modes m12 and
m17, which, according to Ref. [3], lie very close to the third excited
torsional level and which could therefore affect vs = 2 through tor-
sional–rotation interactions. This effect has also been seen in Ref.
[33], where the values of A(vs = 2) � A(vs = 1) = �180.88 MHz and
B(vs = 2) � B(vs = 1) = 42.96 MHz are quite far away from the values
reported in Table 4.

The next step is to combine the theoretical a-constants deduced
from the ab initio force field with the experimental ground-state
rotational constants to yield the semi-experimental equilibrium
orsional state of HCOOCH3.

MP2 B3LYP

[58] VTZ(fc) VTZ(ae) VTZ

6.059 6.162 6.169 6.143
�21.290 �21.987 �22.922 �22.473

79.133 73.390 74.939 84.123
1.871 1.932 1.935 1.895
3.951 4.990 5.627 2.973

the different values.



Table 4
Experimental and ab initio (MP2/VTZ) vibration–rotation interaction constants (as)a

(MHz) for the torsional vibration in HCOOCH3 and H13COOCH3.

Exp.b fcc aed

HCOOCH3 aA �119.22 �114.30 �105.72
aB 67.08 68.93 65.03
aC 26.30 27.78 26.16

H13COOCH3 aA �118.64 �114.97 �105.26
aB 66.33 67.98 64.34
aC 25.94 27.76 25.79

a See Eq. (1).
b Ref. [33], the uncertainty is not given because it is much smaller than the

difference between the experimental and ab initio values.
c fc = frozen-core approximation.
d ae = all electrons correlated.

Table 3
Harmonic frequencies xi and vibrational band centers mi (cm�1) for HCOOCH3.

Mode Description Exp.a MP2/VTZ(fc) MP2/VTZ(ae)

mi xi mi mexp
i � mcalc

i
xi mi e � c

m1(a0) CH3 stretch 3045 3228.6 3096.9 �51.9 3231.0 3096.2 �51.2
m2(a0) CH3 stretch 2969 3112.2 2967.9 1.1 3119.4 3028.1 �59.1
m3(a0) CH stretch 2943 3100.9 3041.1 �98.1 3127.0 2978.3 �35.3
m4(a0) C@O stretch 1754 1792.1 1745.7 8.3 1803.6 1772.4 �18.4
m5(a0) CH3 def 1454 1520.9 1495.9 �41.9 1533.4 1492.2 �38.2
m6(a0) CH3 def 1445 1479.8 1455.9 �10.9 1489.2 1456.0 �11.0
m7(a0) CH bend 1371 1408.9 1376.7 �5.7 1424.4 1390.8 �19.8
m8(a0) C–O stretch 1207 1251.5 1209.7 �2.7 1261.4 1223.9 �16.9
m9(a0) CH3 rock 1166 1198.5 1171.6 �5.6 1204.5 1176.3 �10.3
m10(a0) O–CH3 stretch 924 964.7 945.7 �21.7 972.8 946.0 �22.0
m11(a0) OCO def 767 777.1 768.9 �1.9 782.9 773.3 �6.3
m12(a0) COC def. 318 309.9 337.0 �19.0 349.2 338.3 �20.3
m13(a00) CH3 stretch 3012 3193.5 3053.9 �41.9 3197.0 3061.5 �49.5
m14(a00) CH3 def. 1443 1508.1 1466.3 �23.3 1520.7 1478.9 �35.9
m15(a00) CH3 rock 1168 1192.7 1170.8 �2.8 1199.2 1174.4 �6.4
m16(a00) CH bend 1032 1054.2 1033.4 �1.4 1070.9 1044.9 �12.9
m17(a00) C–O tors. 332 346.9 335.2 �3.2 311.8 309.4 22.6
m18(a00) CH3 tors. 130 148.7 190.2 �60.2 161.9 139.5 �9.5
MADb 9.6 20.0

a Ref. [5].
b Median absolute deviation.
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rotational constants. However, it is first necessary to check the
accuracy of the experimentally deduced ground-state constants.
This is done in the next section.
4. Internal rotation analysis

The internal rotation of a ‘‘symmetric” rotor, like the methyl
group, generally produces A–E doublet splittings of the rotational
transitions. The model generally used to analyze the internal rota-
tion consists of two rigid groups connected by a bond. One of the
groups (the top) is quasi-symmetric, close to C3v symmetry (the
top rarely has a C3v local point-group symmetry in an asymmetric
top, as shown in Table 5, but this constraint is not really necessary
Table 5
Structure of a few methyl groups (distances in Å and angles in deg.).a

r(CHs) r(CHa) \(XCHs) \(XCHa)

(CH3)2Ob 1.086 1.095 107.6 111.3
CH3NH2

b 1.093 1.087 115.0 109.1
CH3OHc 1.086 1.091 106.8 112.0
HCOOCH3

d 1.083 1.087 105.6 110.2

a s = in-plane, a = out-of-plane.
b Ref. [59].
c Ref. [60].
d This work, see Table 1.
to derive the Hamiltonian [34]). The rigid frame-rigid top Hamilto-
nian is [35]

H ¼ Fðpa � PÞ2 þ VðaÞ þHR; ð2Þ

where HR is the rotational Hamiltonian, pa is the internal rotation
angular momentum conjugate to the torsional angle a, and

P ¼
X

g

qgJgðg ¼ a; b; cÞ; ð3Þ

where Jg is a component of the rotational angular momentum. The q
vector and the inverse reduced moment of inertia F are defined
using Ia0 the moment of inertia of the top, and ka, kb, and kc, the
direction cosines of the internal rotation axis i of the top in the prin-
cipal axis system, i.e., kg = cos(\(i,g). The components of q are

qg ¼
kgIa
Ig

ð4Þ

where Ig are the moments of inertia of the whole molecule in the
principal axis system.

The inverse reduced moment of inertia of the top is

F ¼ �h2

2rIa
ð5Þ

with

r ¼ 1�
X

g

k2
g

Ia
Ig
: ð6Þ

The potential corresponding to the methyl internal rotation has a
2p/3 periodicity [35] and is expressed in the usual Fourier series

VðaÞ ¼ 1
2
½V3ð1� cos 3aÞ þ V6ð1� cos 6aÞ þ � � �� ð7Þ
4.1. Principal axis method (PAM)

When the principal inertial axis system (PAS) is used as the
coordinate system, the inertial tensor of the whole molecule is
diagonal, and thus

HR ¼ AJ2
a þ BJ2

b þ CJ2
c þHCD: ð8Þ

In Eq. (8), A, B, and C are the rotational constants in the PAS and HCD

the usual centrifugal distortion Hamiltonian. To the best of our



Table 6
Ground-state rotational constants Bg

vs¼0 (g = a, b, c) in the PAS of cis-methyl formate
without taking into account the denominator correction (all values in MHz).

A B C

From Eq. (10)a 19 982.158 6913.968 5304.473
From Eq. (14)b 19 982.181(11) 6914.041(2) 5304.497(2)
‘‘Woods” CAMc 19 982.239(5) 6914.013(1) 5304.480(1)
‘‘Lille” CAMd 19 982.181(55) 6914.041(14) 5304.498(13)
ErHame 19 982.1953(6) 6914.0397(2) 5304.4979(2)
RAMf 19 985.192 6913.205 5304.871
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knowledge, in the methods and codes using purely the PAM, �2FpP
is considered as a perturbation1 which can be handled by successive
Van Vleck transformations. Consequently, an effective rotational
Hamiltonian is obtained for each vibrational state v and internal
rotation substate r = A, E [36,37] as

HPAM
vr ¼ HR þ F

X
n

W ðnÞ
vrPn þ 1

2
W ðdÞ

vr½½P;HR�;P�: ð9Þ

The coefficients W ðnÞ
vr and W ðdÞ

vr result from the Van Vleck perturba-
tional treatment. They were tabulated [38] and can be calculated
easily [36,39].

The coefficient W ðdÞ
vr is worth a comment because it may affect

the structure. In the Van Vleck transformations, the denominators
are differences of the type DE = ERT � ER0T0 where R represents the
rotational quantum numbers and T the torsional ones. It is as-
sumed that the rotational contribution to these differences is neg-
ligible compared to the torsional contribution, i.e. DE � ET � ET0.
The error caused by ignoring the smaller rotational contribution
can be corrected by expanding the denominators in a Taylor series
and this is called the denominator correction. One interesting
property of W ðdÞ

vr is that it is almost the same for r = A and r = E.
Thus, it does not significantly contribute to the splittings but it af-
fects the rotational constants. Usually, this denominator correction
is not taken into account in the analysis of the spectra but some
authors argued that it is important to consider it during an accu-
rate structure determination [40]. However, we propose that it is
better to simply neglect it for reasons shown in Section 4.4.

From a fit of the spectrum, the following parameters are usually
derived: A, B, C, V3, Ia, and the spherical angles h and u (or the direc-
tion cosines kg) defining the position of the internal rotation axis i.
In PAM, the A and E torsional levels can be fit separately and each
torsional level vs is also fit separately.

For the A-levels, W ð2nþ1Þ
vA � 0 [36], hence there are no odd-order

terms in the effective Hamiltonian of Eq. (9), and it is possible to fit
the A-lines to a standard Watson Hamiltonian. The relation be-
tween the fitted rotational constants, AvA, BvA, and CvA and the
‘‘unperturbed” rotational constants, A, B, and C is (correct to fourth
order)

AvA ¼ Aþ Fq2
aW ð2Þ

vA þ F½3q2
bq

2
c � 2q2

aq
2
b � 2q2

aq
2
c �W

ð4Þ
vA

þ ½q2
bðC � AÞ þ q2

c ðB� AÞ�W ðdÞ
vA ð10aÞ

BvA ¼ Bþ Fq2
bW ð2Þ

vA þ F½3q2
aq

2
c � 2q2

aq
2
b � 2q2

bq
2
c �W

ð4Þ
vA

þ ½q2
aðC � BÞ þ q2

c ðA� BÞ�W ðdÞ
vA ð10bÞ

CvA ¼ C þ Fq2
c W ð2Þ

vA þ F½3q2
aq

2
b � 2q2

aq
2
c � 2q2

bq
2
c �W

ð4Þ
vA

þ ½q2
aðB� CÞ þ q2

bðA� CÞ�W ðdÞ
vA ð10cÞ

For the E-levels the odd-order terms may be important and, in this
case, it is necessary to add to the Watson Hamiltonian at least the
linear terms

Hlin ¼
X

g

DgJg þ � � � ð11Þ

with

Dg ¼ FqgW ð1Þ
vE : ð12Þ

An interesting property of the W ð2nÞ
vr coefficients is that [36]

W ð2nÞ
vA ¼ �2W ð2nÞ

vE : ð13Þ
1 This is of course true if the barrier is high and the internal splittings are small or if
q and/or the rotational quantum number K (associated with the projection of the
rotational angular momentum along the symmetry axis of the molecule) are small so
that the splittings can be treated as a power series.
If we neglect the denominator correction, it is possible to obtain
the ‘‘unperturbed” ground-state rotational constants (i.e., without
the internal rotation contribution) from the A- and E-constants as

A ¼ AA þ 2AE

3
; ð14Þ

and similar equations hold for B, and C.
In summary, there are two ways to obtain the ‘‘unperturbed”

rotational constants of the molecule from a PAM analysis [41]: (i)
by determining the rotational constants of the A-lines and
correcting them with the help of Eqs. (10), for results see first line
of Table 6, where no denominator correction (i.e. W ðdÞ

vr = 0) was
applied; and ii) by determining the rotational constants of the A-
and E-lines using Eq. (14), for results see the second line of Table 6.
4.2. Rho-axis method (RAM)

The problem of the PAM is that the HPAM
vr Hamiltonian, Eq. (9),

converges very slowly (especially if the barrier is small). For this
reason, it has been proposed to use different axis systems which
eliminate the 2FqxpJx term. In the case of a molecule with an
(a b) symmetry plane (which is the most frequent case treated in
the literature up to now and which applies in particular for CMF)
and the Ir representation [(a, b, c) = (z, x, y)], the Coriolis cross-term
2FqypJy does not exist. One coordinate axis is coincident with the q
vector. In the particular case of an (a b) symmetry plane (the gen-
eral case where the frame of the molecule has no plane of symme-
try is treated in the Appendix), this corresponds to a rotation about
the c axis by an angle b, which is also called hRAM in the BELGI code
[42], given by:

tan b ¼ qb

qa
ð15Þ

The Hamiltonian may be written as

HRAM ¼ HT þHR þHCD þHINT; ð16Þ

where HT is a torsional Hamiltonian, HR a rotational Hamiltonian,
HCD the usual centrifugal distortion Hamiltonian, and HINT contains
higher-order torsional–rotational interaction terms:

HT ¼ Fðpa � qJaÞ
2 þ 1

2
V3ð1� cos 3aÞ þ � � � ð17Þ

HR ¼ ARAMJ2
a þ BRAMJ2

b þ CRAMJ2
c þ DabðJaJb þ JbJaÞ ð18Þ

It is straightforward to establish the relationship between the
rotational constants A, B, C in the principal axis system and the
constants ARAM, BRAM, CRAM, and Dab in the rho-axis system using
a From vs = 0 data of Ref. [57].
b From vs = 0 data of Refs. [55,57].
c Ref. [58], vs = 0 data.
d Ref. [56], vs = 0 data, denominator correction neglected.
e Ref. [33], from a fit of vs = 0 data, ‘‘combined” method, see text.
f Ref. [3], from a global fit of vs = 0 and 1 data and use of Eq. (20) with experi-

mental values of Ref. [33] for the a-constants, see Table 7.



Table 7
Rotational constants (MHz) from the RAM analysis.

A B C Dab

RAM, vs = ea 17 629.39(21) 9242.94(13) 5318.021(78) –4925.72(4)
PAS, vs = ea,b 19 925.58(30) 6946.75(21) 5318.021(78) 0
as(exp)c –119.224(3) 67.08217(83) 26.30104(36) 0
PAS, vs = 0d 19 985.19(30) 6913.21(21) 5304.871(78) 0

a Experimental ‘‘torsionless” values from Ref. [3].
b Principal axis system values, obtained by diagonalization of the tensor of the

RAM values of previous line.
c Ref. [33].
d Ground-state values in the principal axis system obtained using Eq. (20) and the

data of the two previous lines.
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the definition of b or by diagonalizing the 3 � 3 matrix of RAM
rotational constants. In the particular case of an (a b) symmetry
plane, it gives

tan 2b ¼ 2Dab

ARAM � BRAM
: ð19Þ

There are different variants of the RAM. From a fit of the spec-
trum, the following parameters may be derived: V3, F, ARAM, BRAM,
CRAM, Dab, and the modulus q (plus higher-order parameters). This
is the method chosen in the computer program BELGI [42]. The
internal rotation angle b is derived from Eq. (19). See the Appendix
for the case of a molecule without a plane of symmetry and for the
transformation of the PAM parameters into RAM parameters and
vice versa. This method is quite efficient for fitting spectra. How-
ever, it induces large correlations between the rotational constants
and Dab, especially if the dataset contains rotational transitions
only within the ground torsional state vs = 0 (which would allow
to float only the potential barrier V3 or the internal rotation con-
stant F). In this case, the internal rotation splittings rarely carry en-
ough information to completely break down this correlation.
Furthermore, a fit with BELGI is very time consuming for high-J val-
ues. For this reason, some authors prefer to transform the PAM
rotational constants into RAM rotational constants using the inter-
nal rotation angle b (and c if the q vector does not lie in the (a b)
plane, see Appendix) and to fit the PAM rotational constants. This
is the ‘‘combined axis method” (CAM) chosen in the effective rota-
tional-torsional Hamiltonian (ErHam) approach [43] as well as in
the method chosen by Woods, which was called historically Inter-
nal Axis Method (IAM) [39,44], or in the XIAM method [45]. The
CAM delivers constants which do not need to be corrected by
removing contributions from higher torsional levels as it allows
to fit each torsional state separately, see third and fourth lines of
Table 6 for the CAM methods and line five for the ErHam method.
The results for the ground-state rotational constants derived from
the RAM method used in the BELGI code are shown on line six of
Table 6. They needed to be corrected to remove the effects of high-
er excited torsional states, as explained in Section 4.3.

4.3. BELGI [42]

In the version BELGI of the RAM, sometimes referred to as a
‘‘global approach”, all torsional states are included in the matrix
associated with the Hamiltonian (up to a certain truncation level
carefully checked so that this truncation does not affect the energy
levels) and fitted simultaneously. In that sense the internal rota-
tion is treated as a rotation, not as a vibration. This approach is par-
ticularly useful when dealing with low barriers (or for torsional
levels close to the top of the barrier) where the matrix elements
connecting different torsional states are important and cannot be
neglected. However, the drawback is that for this reason, the rota-
tional constants derived, after transformation in the PAM, Bg

PAM are
‘‘torsionless” because, in BELGI, the torsion is not considered as a
vibration but is treated separately. To obtain the ground-state rota-
tional constants Bg

vs¼0, the following correction has to be applied

Bg
vs¼0 ¼ Bg

PAM �
1
2
ag

s; ð20Þ

where ag
s ¼ Bgðvs ¼ 0Þ � Bgðvs ¼ 1Þ is the vibration–rotation inter-

action constant corresponding to the torsional vibration. The trans-
formation is given in Table 7 where the first line shows the values of
the rotational constants obtained from the RAM analysis [3] and the
second line shows the rotational constants transformed into their
PAM values, by the diagonalization of the inertia tensor. After
applying Eq. (20) to the PAM values, i.e., substracting 1/2ag

s derived
experimentally from Maeda et al. [33] and reported in the third line
of Table 7, one obtains the values for Bg

vs¼0 (fourth line of Table 7).
Those ground-state vs = 0 values of the rotational constants are also
the ones reported in the fourth column of Table 6 as ‘‘RAM cor-
rected” derived values.

The agreement between the different sets of rotational con-
stants is fair enough to prove that the method is correct. However,
the agreement is not very good for two reasons:

(i) The molecule is considered as a semi-rigid molecule
whereas the torsion is a large-amplitude motion, thus Eq.
(20) is approximate. Furthermore, the correction applied
with Eq. (20) is an estimation because the RAM rotational
constants do not only carry the contribution of vs = 1 but
also from all the torsional stack (vs = 0, 1, 2,. . .9) because
in the CMF molecule quite large cos 3a cos 6a terms connect
different vs’s and those rotation–torsion interaction terms
are explicitly present in the Hamiltonian matrices used in
BELGI.

(ii) And, more importantly, the rotational constants derived
from the RAM analysis are not very accurate because of cor-
relation problems discussed above. Furthermore, Dab is not
very accurate in the particular case of CMF. The reduced bar-
rier is actually rather large and q is small (0.08), thus not
much torsional information is transferred to the rotational
transitions. The same type of situation occurred with our
study of the ester of the dialanine [46], for the case of the
methyl group which has the ‘‘high” barrier: Dab was not so
well determined, so the cosine angles between the PAS and
the symmetry axis of the methyl group have also a few
degrees discrepancy and the rotational constants have large
standard deviations.

4.4. Comments on the denominator correction

If the denominator correction is neglected, the unperturbed fre-
quency of a rotational line is given, see Eqs. (13) and (14), by

m ¼ mA þ 2mE

3
ð21Þ

This is the frequency which would be obtained in the absence of
internal rotation and, when fitted, it is in perfect agreement with
the unsplit lines. On the other hand, even when all the lines are un-
split, as in HCOOCD3, there is still a non-negligible denominator
correction (in MHz): DA = �1.37; DB = �0.76 and DC = 2.13 (calcu-
lated with W ðdÞ

0 � 0:0299 obtained by interpolation from Ref. [38]).
Thus, it seems that this correction should not be taken into account
during the structure determination of CMF. A further argument
supporting this comes from the following analysis of the pseudo-
inertial defect.
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At equilibrium, CMF possesses a plane of symmetry with one
pair of equivalent out-of-plane hydrogen atoms. The equilibrium
distance de

HH between the hydrogens of this pair is given by

2Pe
c ¼ mHðde

HHÞ
2 ¼ Ie

a þ Ie
b � Ie

c ¼ I0
a þ I0

b � I0
c þ Dvib ð22Þ

where Dvib is the vibrational contribution to the inertial defect. It is
often assumed that the anharmonic contribution to Dvib may be ne-
glected, as for planar molecules [47]. Thus, Dvib might be easily cal-
culated from the harmonic force field and de

HH may be derived using
Eq. (22). Unfortunately, as seen by comparing the harmonic contri-
bution Dharm to Dvib in Table 8, this assumption is not a valid one.

Another approximation which is often made is to assume that
Dvib does not change upon the isotopic substitution CH3 ? CD3

[48]. As can be seen in Table 8, which shows the vibrational contri-
bution for different isotopologues of CMF, this assumption is not
verified either.

On the other hand, once the cubic force field in normal coordi-
nates is known, it is straightforward to calculate Dvib and, as this
correction is small, it is possible to determine the de

HH distance.
The results are reported in Table 8 with and without the denomi-
Table 8
Inertial defects (in uÅ2) and de

HH (in Å) for the symmetrical isotopologues of cis-methyl
formate.

Species 2P0
c

a 2Pe
c

b Dvib
c Dharm

d de
HH

–e –f

HCOOCH3 3.1124 3.1652 0.0567 0.0232 1.7722 1.7653
DCOOCH3 3.1152 3.1647 0.0535 0.0191 1.7720 1.7657
HCOOCH2Ds 3.1585 3.1752 0.0207 �0.0007 1.7750
HCOOCD3 6.3284 6.3301 0.0055 �0.0224 1.7728 1.7650
H13COOCH3 3.1116 3.1649 0.0573 0.0236 1.7721 1.7658
HCOO13CH3 3.1102 3.1646 0.0584 0.0247 1.7720 1.7654
HC18OOCH3 3.1088 3.1652 0.0601 0.0296 1.7722 1.7657
HCO18OCH3 3.1090 3.1656 0.0605 0.0224 1.7723 1.7652
HCOOCD2H 6.2772 6.3200 0.0463 0.0019 1.7714
Mean 1.7724(10)g 1.7654(3)

a 2P0
c ¼ I0

a þ I0
b � I0

c , without denominator correction (derived from the ‘‘unper-
turbed” experimental ground-state rotational constants, A0, B0, C0 from Table 9).

b 2Pe
c ¼ Ie

a þ Ie
b � Ie

c , without denominator correction (derived from the semi-
experimental equilibrium rotational constants ASE, BSE, CSE from Table 9).

c Dvib ¼ 2Pe
c � 2P0

c .
d Harmonic contribution to Dvib, calculated from the MP2/VTZ harmonic force

field.
e Calculated from 2Pe

c without denominator correction.
f Calculated from 2Pe

c with denominator correction.
g rBO

e value: 1.7711 Å, see Table 1.

Table 9
Experimental ground-state rotational constants, MP2/VTZ rovibrational corrections, and s

Isotopologuea Ground-state Rovib. corrections Se

A0 B0 C0 Ae � A0 Be � B0 Ce � C0 AS

HCOOCH3 19 982.18 6914.04 5304.50 35.69 105.04 67.34 20
DCOOCH3 18 475.71 6768.41 5109.70 36.94 101.82 63.45 18
HCOOCH2Ds 19 921.59 6415.27 5004.27 52.18 90.39 59.16 19
HCOOCH2Da 18 516.73 6730.19 5164.96 38.45 96.93 63.58 18
HCOOCD3 17 261.81 6101.92 4778.01 53.09 81.36 54.07 17
H13COOCH3 19 798.73 6864.76 5262.52 32.78 103.75 66.25 19
HCOO13CH3 19 765.12 6742.65 5188.08 32.61 102.61 65.94 19
HC18OOCH3 19 525.80 6617.19 5097.25 37.58 99.10 64.31 19
HCO18OCH3 19 323.00 6848.97 5219.01 32.71 102.28 64.88 19
HCOOCHD2s 17 281.94 6540.60 5041.99 38.62 92.93 60.73 17
HCOOCHD2a 18 482.05 6261.07 4884.21 53.76 83.51 56.22 18

a s = atom in the symmetry plane; a = atom out of the symmetry plane.
b ASE = A0 + rovibrational correction + electronic effect (see text).
c Residuals of the least-squares fit, values calculated using parameters of last column
d Reference for the ground-state rotational spectra.
nator correction. The comparison of these results with the ab initio
equilibrium value, de

HH = 1.7711 Å, confirms that the denominator
correction has to be left out for a structure determination. Note
that the value from HCOOCH2Ds is an outlier, it is due to the fact
that the A rotational constant of this isotopologue is not accurate.
This is further discussed in the next section. Dropping this value
decreases the standard deviation of the mean of the de

HH values
from 0.0010 to 0.0004 Å.

A final point has to be discussed. The denominator correction
introduces a non-diagonal term in the rotational Hamiltonian of
the form [40]

1
2
qaqbðAþ B� 2CÞW ðdÞ

vrðJaJb þ JbJaÞ: ð23Þ

This induces a rotation of axes of 0.004� which has a negligible ef-
fect on the rotational constants.

5. Semi-experimental equilibrium structure, rSE
e

The theoretical a-constants deduced from the ab initio cubic
force field were combined with the known experimental ground-
state rotational constants A0, B0, C0 of Table 9 to yield the semi-
experimental equilibrium rotational constants ASE, BSE, CSE. For
each isotopologue, it was checked that Eqs. (10) and (14) and the
CAM methods give compatible results when internal rotation split-
tings are present in the spectrum. Table 9 also shows the results for
various isotopologues of CMF. When there is no internal rotation
splitting (–CD3, –CH2D, and –CHD2 species), a standard Watson
Hamiltonian was used. These derived semi-experimental equilib-
rium constants were corrected for a small magnetic effect using
the experimental g-constants of Ref. [49]. The corrected values of
the rotational constants are given by the relation [50]

Bn
corr ¼

Bn
exp

1þ m
Mp

gnn

ð24Þ

where gnn is expressed in units of the nuclear magneton, m is the
electron mass, Mp the proton mass, and n = a, b, c. This correction
is found to be rather small (DA = 1.38 MHz, DB = 0.15 MHz and
DC = 0.05 MHz for the parent species) and does not significantly af-
fect the structure. The equilibrium structure was calculated from a
weighted least-squares fit of the semi-experimental moments of
inertia. As it is difficult to estimate the precision of the moments
of inertia, the iteratively reweighted least-squares method was used
[51]. At the end of the iterations, similar weights are obtained for all
moments of inertia. However, note that the residuals are larger for
emi-experimental equilibrium rotational constants (all values in MHz).

mi-experimentalb Residuals of the fitc Ref.d

E BSE CSE ASE � Acalc BSE � Bcalc CSE � Ccalc

019.25 7019.23 5371.88 0.03 –0.02 –0.01 [3,33]
513.83 6870.37 5173.19 0.13 0.01 –0.01 [11]
975.14 6505.79 5063.48 –1.86 –0.01 0.27 [53]
556.37 6827.26 5228.58 0.71 0.34 –0.07 [53]
315.93 6183.39 4832.12 –0.58 –0.11 0.09 [4]
832.87 6968.66 5328.82 0.01 0.01 –0.02 [33]
799.08 6845.40 5254.06 –0.35 0.03 –0.04 [10]
564.70 6716.43 5161.61 0.38 –0.02 0.03 [1]
357.00 6951.40 5283.94 0.10 –0.00 0.03 [61]
321.60 6633.67 5102.76 1.35 0.22 –0.05 [62]
537.00 6344.70 4940.47 –1.24 –0.64 0.00 [62]

of Table 10.



Table 10
Structures of cis-methyl formate (bond lengths in Å, angles in degrees).

Parametera rs [4]b ra [12]b,c MP2/VQZ [13] rBO
e ðIÞ

d rBO
e ðIIÞ

d rSE
e

e

r(Cm–O) 1.437(10) 1.435(3) 1.4344 1.4338 1.4355 1.4341(5)
r(O–Cc) 1.334(10) 1.340(2) 1.3370 1.3343 1.3347 1.3345(4)
r(Cm–Hs) 1.086(15) 1.0817 1.0834 1.0837 1.0793(10)
r(Cm–Ha) 1.086(15) 1.0851 1.0868 1.0872 1.0871(3)
r(Cc–H) 1.101(10) 1.122(12) 1.0922 1.0931 1.0934 1.0930(5)
r(C@O) 1.200(10) 1.202(2) 1.2035 1.1997 1.2008 1.2005(5)
\(COC) 114.8(10) 115.9(5) 114.0 114.360 114.411 114.32(4)
\(CCHs) 108.2(16) 105.5 105.628 105.572 106.05(16)
\(CCHa) 108.2(16) 110.3 110.217 110.125 110.19(2)
\(OCH) 109.3(10) 109.3(10) 109.2 109.569 109.653 109.60(5)
\(OCO) 125.9(10) 125.4(5) 125.6 125.525 125.467 125.50(5)
s(HaCOC) 60.3 60.259 60.248 60.28(3)

a m stands for methyl, c for carbonyl, s for symmetric (in-plane) and a for asymmetric (out-of-plane), see Fig. 1.
b Methyl group assumed to be symmetric.
c Electron diffraction structure.
d See Table 1.
e Semi-experimental equilibrium structure, see text.
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the –CH2D and CHD2 species, see Table 9. The semi-experimental
equilibrium structure is in excellent agreement with the ab initio
Born–Oppenheimer equilibrium structure approximated at the
CCSD(T)/V5Z level, except for the distance r(CHs) and the angle
\(CCHs). These two parameters are highly correlated, correlation
coefficient q = �0.9737 with a rather large condition number,
j = 511. This correlation may be partly explained by the fact that
the in-plane hydrogen of the methyl group is close to the principal
b-axis, b(Hs) = �0.246 Å. It is indeed well established that it is diffi-
cult to obtain an accurate value for a small coordinate [52]. Further-
more, the residuals of the fit are particularly large for the species
which determine the position of Hs, i.e. the –CH2Ds species (see Ta-
ble 9). One possible explanation is that there is a weak interaction
between the levels of the –CH2Ds and the –CH2Da species which
happen to be quite close [53]. This explanation also applies for
the –CHD2 species. However, the fit of the rotational transitions to
a standard Watson Hamiltonian is good from a statistical point of
view and the quartic centrifugal distortion constants do not appear
to be significantly perturbed. They have indeed the expected order
of magnitude and they are furthermore close to the ab initio values.
6. Discussion

It is worth noting that the different structures (rs, ra, re(MP2/
VQZ),. . .) are in fair agreement, except for the structure of the
methyl group. Actually, the methyl group is found to be highly
asymmetric. with r(Cm–Ha) � r(Cm–Hs) = 0.0035 Å and \(CCHa) �
\(CCHs) = 4.55�. The r(Cc–H) value at 1.093 Å is large but smaller
than the value found in HCOOH, 1.098 Å [54]. Likewise, the r(O–
Cc) value at 1.334 Å is smaller than in HCOOH where it is
1.347 Å. On the other hand, the r(C@O) value at 1.200 Å is larger
than in HCOOH, 1.192 Å.

It is interesting to check whether the internal rotation parame-
ters are compatible with the equilibrium structure. The equilib-
rium value of the principal moment of inertia of the methyl
group calculated from the equilibrium structure is Ia0 = 3.198 uÅ2.
Ia can be obtained from the experimental value of |q| =
0.0842153 and the derived values of the direction cosines [3], see
Eq. (4), it gives Ia0 = 3.22 uÅ2, not too far from the equilibrium va-
lue. However, it gives F = 5.648 cm�1, see Eq. (5); rather far from
the experimental value of 5.505 cm�1 [3]. On the other hand, start-
ing from Fexp, which gives rIa0 one deduces Ia0 = 3.315 uÅ2. This dis-
crepancy indicates that the non-rigidity effects are important for Ia
and that it is better to consider Ia as a fitting parameter.
It is also possible to compare the values obtained for the inter-
nal rotation angle h = \(i, a). The experimental value deduced from
the RAM analysis is h = 52.989�, rather far from the equilibrium va-
lue \(a, OC) = 58.07�. However, the methyl top is quite asymmet-
ric. If we take into account the asymmetry, we get from the
equilibrium structure \(i, a) = \(a, OC) � \(i, OC) = 54.64� (where
\(i, OC) = 180 � \(OCHs) � \(i, CHs)). The discrepancy is strongly
reduced but not eliminated. In conclusion, the internal rotation
parameters Ia and h (or |q| and b) are significantly affected by
non-rigidity effects and cannot be used for an accurate structure
determination. Moreover, the values of these parameters are sensi-
tive to the approximations made during the analysis and different
analyses often give incompatible parameters.
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Appendix A:. Transformation formulas

The principal axis system (PAS) used in the principal axis meth-
od (PAM) is defined by three orthonormal unit vectors a, b, c. In
addition, we define an unit vector i in the direction of the internal
axis, see Fig. 2. To define the position of i in the PAS, we use spher-
ical coordinates: i is projected onto the (b c) plane giving y: \(y,
b) = u and \(a, i) = h with 0 6 h 6 180� and 0 6 u 6 360�.

The direction cosines of i are: (ka, kb, kc) = (cosh, sinh cosu, sinh
sinu).

We also define the vector q = (qa, qb, qc) where

qg ¼ kg
Ia
Ig
ðg ¼ a; b; cÞ ðA:1Þ

hence

q ¼ Ia
K1
ðA cos h; B sin h cosu; C sin h sin uÞ ðA:2Þ

with



Fig. 2. Definition of the internal rotation angles h = \(a, i) and u = \(y, b) and of the
vector i in the PAM (y is the projection of i onto the (b c) plane.

Fig. 3. Definition of the internal rotation angles b = \(a, q) and c = \(c, y) and of the
vector q in the RAM. The half line y is perpendicular to the plane defined by the
a-axis and q and points in the direction such that q, a, and y form a right-handed
system (^ means vector product.
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K1 ¼
h

8p2 ¼ 505379:07 MHz uA�2 ðA:3Þ

In the rho-axis method (RAM), we define two new angles b and c. b
is the angle between q and the principal axis a: b = \(a, q), see
Fig. 3. Note that the angle b is often called hRAM by people using BEL-
GI. c is the angle between the principal axis c and the half line y,
which is perpendicular to the plane defined by a and q, and points
in the direction such that q, a, and y form a right-handed system:
i.e. define the new axis y in the (b c) plane along the direction
q^a where ^ means cross product. c = \(c, y) and the vector q can
now be defined with these angles

q ¼ qðcos b;� sin b cos c; sin b sin cÞ ðA:4Þ

Likewise, the vector i can be written

i ¼ q
Ia
ðIa cos b; �Ib sin b cos c; Ic sin b sin cÞ ðA:5Þ

And the rotation matrix which rotates the PAS towards the rho-axis
system (RAS) may be written

R ¼
cos b � sin b cos c sin b sin c
sin b cos b cos c � cos b sin c

0 sin c cos c

0
B@

1
CA ðA:6Þ

In the frequent case where q lies in the (a b) plane, c = 0.

A.1. PAM ? RAM

It is easy to transform the PAM parameters into RAM
parameters
tan b ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

b þ q2
c

q
qa

¼ 1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 cos2 uþ C2 sin2 u

q
tan h ðA:7Þ

tan c ¼ �qc

qb
¼ �C

B
tan u ðA:8Þ

and

q ¼ Ia
K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 cos2 hþ ðB2 cos2 uþ C2 sin2 uÞ sin2 h

q
ðA:9Þ

Finally,

r ¼ 1�
X

g

k2
gð

Ia
Ig
Þ2 ¼ 1� q � i ðA:10Þ

F ¼ K1

rIa
¼ Ia

K1
½A cos2 hþ ðB cos2 uþ C sin2 uÞ sin2 h�

� ��1

ðA:11Þ
A.2. RAM ? PAM

tan h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
i2
b þ i2

c

q
ia

¼ 1
Ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
b cos2 cþ I2

c sin2 c
q

� tan b ðA:12Þ

tan u ¼ ic

ib
¼ � Ic

Ib
tan c ðA:13Þ

Ia ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
a cos2 bþ ðI2

b cos2 cþ I2
c sin2 cÞ sin2 b

q
ðA:14Þ
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