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An anharmonic force field is defined as a higher-order Taylor-series expansion
of the molecular potential energy surface (PES) around a reference geometry,
usually chosen to be an equilibrium structure. Force field expansions provide
excellent local approximations to PESs, one of the most important theoretical
constructs of chemistry. This review deals principally with the definition and
physical interpretation of anharmonic molecular force fields, their determination
via techniques of electronic structure theory, their transformation among dif-
ferent rectilinear and curvilinear representations, and their utilization. Physical
and technical factors leading to more precise and more accurate force fields are
also discussed. C© 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

T he concept of potential energy (hyper)surfaces
(PESs) is fundamental to the understanding of

most branches of chemistry. Mass-independent PESs
are defined within the Born–Oppenheimer (BO) sep-
aration of the motions of the ‘light’ electrons and
the ‘heavy’ nuclei.1,2 PESs describe the variation of
the total energy of a chemical system as a function
of the position coordinates of the constituent nuclei.
Adiabatic corrections to the BO-PES relax the strict
separation, defining what one might call an adiabatic3

PES, which is mass dependent.
In theoretical investigations of larger systems,

increase in the dimensionality of the nuclear mo-
tion problem (there are 3N–3 degrees of freedom
for an N-atomic molecule) precludes (nearly) com-
plete treatments such as variational computation of
rotational–vibrational energy levels. The complete
characterization of the global, multidimensional PES
of polyatomic molecules, depending on all the vibra-
tional degrees of freedom, proves to be extremely
challenging.4–8 Therefore, simplifications must be in-
troduced. Fortunately, in many areas of physical
chemistry, the nuclear motion can be considered to
be restricted to the vicinity of a single minimum. In
this region, local characterization of the PES is of-
ten adequate. The most viable approach to the de-
scription of local PESs of larger polyatomic molec-
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Eötvös University, Budapest, Hungary

DOI: 10.1002/wcms.75

ular systems involves the evaluation of anharmonic
(usually quartic) force fields, defined as elements of
a Taylor-series expansion of the PES around a ref-
erence geometry,9–14 usually taken as the equilibrium
position. Local PES representations should not be em-
ployed for molecular motions for which the harmonic
oscillator model of vibrations cannot be considered
as a good zeroth-order approximation, such as inter-
nal rotations/torsions with low barriers, pseudoro-
tations, ring puckerings, and other cases of large-
amplitude motions (LAM). Even for systems which
exhibit LAM, the determination of anharmonic force
fields about salient points on the PES can be used to
solve the complementary-mode-coupling problem in
the isolation of the floppy vibrations of concern in
a vibrationally averaged Hamiltonian of reduced di-
mensionality. Overall, in many cases, an anharmonic
force field representation of the PES should provide at
least the first important stepping stone to understand
the complex internal dynamics of the system.

Apart from the usual difficulties associated with
‘inverse problems’,15 a major hindrance to the exper-
imental determination of anharmonic force fields is
the burgeoning number of force constants at higher
orders as compared with the information content of
the accessible data. As a consequence, reliable experi-
mental anharmonic force fields are available for only a
small number of exceedingly simple molecules. It can-
not be hoped that experiments will provide complete
anharmonic force fields even in the future. Determina-
tion of force fields via electronic structure computa-
tions is thus the only way forward. Ab initio electronic
structure computations can yield high-quality global
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TABLE 1 Names, Symbols, and Units for Vibrational Coordinates and Force Constants

Name Symbol SI Unit Customary Unit

Vibrational coordinates
Cartesian X m Å
Internal

Bond stretching Ri, ri m Å
Angle bending αi , �i radian radian
Linear angle bending λi radian radian
Out-of-plane bending γ i radian radian
Torsion τ i radian radian

Symmetry Si (varies) (varies)
Normal

Mass adjusted Qr kg1/2 m u1/2 Å
Dimensionless qr 1 1

Vibrational force constants
In internal coordinates fijk ... (varies) (varies)
In symmetry coordinates Fijk ... (varies) (varies)
In dimensionless normal coordinates φrst ... m−1 cm−1

and semiglobal PESs,5,8,16–20 here determination of
the functional form underlying the PES fitting is one of
the largest obstacles. In the local, force field represen-
tation of the PES, this difficulty does not arise, anhar-
monic force fields can be computed and transformed
straightforwardly. Complete anharmonic force fields
have been determined for a large number of species.
Molecules for which complete, at least quartic force
fields have been obtained ab initio prior to 1998 are
given in Table 1 of Ref 13. A few further representa-
tive examples of force field determinations are given
in Refs 21–47. This list is highly incomplete, omission
of articles is by no means intentional. Complete quar-
tic force fields have been determined by wavefunc-
tion methods for molecules as large as the free amino
acids glycine42 and proline40 (in the latter case, the
force field for the 17-atom molecule with no symme-
try contains 62,835 unique elements in the internal
coordinate space).

Because of severe space limitations, the current
review cannot be comprehensive in covering all rel-
evant aspects of anharmonic force field determina-
tions, not even those related to electronic structure
computations, and it generally focuses on work from
our group. Thus, probably several significant papers
well worth reading are left out. In what follows, an
attempt is made to cover, however briefly, the most
important methodological aspects of computing an-
harmonic force fields.

THEORETICAL BACKGROUND

Molecular force fields are dependent upon the coor-
dinate system and the reference structure chosen. The

former determines the number of unique force con-
stants, whereas both the former and the latter affect
the accuracy of the force field determined and how
the computed force field can be transformed from one
coordinate representation to another. Given that an
appropriate basis set and level of electronic structure
theory are chosen, the necessary computations can be
performed after one has considered how to obtain
the high-order force constants from low-order ana-
lytic information without (much) loss of precision.

Definition and Interpretation of Force
Constants
Expansion of the PES around a reference configura-
tion is written in the following form:

V = V0 +
∑

i

f i Ri + 1
2

∑

i j

f i j Ri R j

+ 1
6

∑

i jk

f i jkRi R j Rk + 1
24

∑

i jkl

f i jkl Ri R j RkRl

+ 1
120

∑

i jklm

f i jklmRi R j RkRl Rm

+ 1
720

∑

i jklmn

f i jklmn Ri R j RkRl RmRn + . . . ,

(1)

where R denotes an arbitrary set of complete and
nonredundant nuclear displacement coordinates. If
the expansion is set about a stationary point (e.g.,
an equilibrium geometry as usual), the gradient term
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in Eq. (1) disappears. In theoretical approaches,
the force constants are evaluated directly; thus,
introduction of redundant coordinates is usually an
unnecessary complication, which should be avoided.
Although in principle all complete and nonredundant
coordinate sets are equivalent, some may have more
desirable properties for certain applications than oth-
ers. The factor (1/n!) in front of the nth-order sum
in Eq. (1) ensures that the force constants are equal
to the true derivatives of the potential energy V with
respect to R = {Ri }3N−6

i=1 taken at the reference con-
figuration:

f i jk... = ∂nV
∂ Ri∂ R j∂ Rk . . .

(2)

where the so-called quadratic, cubic, quartic, quintic,
and sextic force constants will have 2, 3, 4, 5, or 6 su-
perscripts, respectively. It is rare that complete force
fields are determined up to sixth order,26,27,31 usually
only quartic force fields are obtained. Some authors
prefer to use restricted summation in Eq. (1). The gen-
eral relationship between force constants f i jk...

restricted and
f i jk... is f i jk...

restricted = f i jk...
∏

ar !, where ar is the number
of equal indices of the rth type in the force constant in
question. An f i jk... is generally not well defined unless
all the displacement coordinates, including those not
explicitly involved in f i jk..., are specified.

The kinetic energy of a molecule is most eas-
ily expressed in (mass weighted, rectilinear) Carte-
sian coordinates. The potential energy has its most
clear physical interpretation in (curvilinear) inter-
nal coordinates. When force constants are used to
evaluate spectroscopic constants via second-order vi-
brational perturbation theory (VPT2),23,25,48–50 (di-
mensionless) normal coordinates are employed. Thus,
there are three important coordinate classes for the
description of distortions from a reference structure:
Cartesian, internal, and normal displacement coor-
dinates. The recommended and customary usage of
symbols and units for these coordinates and the re-
lated force constants are summarized in Table 1. Most
researchers avoid the use of SI units, and define en-
ergies in aJ, and bond stretching and angle bending
internal or symmetry coordinates in Å and radians,
respectively. Therefore, the related force constants be-
come, at nth order, aJ Å

−n
for stretching and aJ rad−n

for bending coordinates. Units of interaction force
constants follow these definitions.51

Force fields in Cartesian coordinates have no
useful physical meaning. Higher-order normal coor-
dinate force constants are also hard to interpret. How-
ever, force constants in most applied internal coordi-
nate systems do have a clear physical interpretation.

Higher-order, diagonal stretching force con-
stants almost always follow the patterns of rel-
ative signs and magnitudes of diatomic Morse
oscillators52,53

VM(r ) = De[1 − exp(−a	r )]2, (3)

where 	r is the displacement from equilibrium in
the bond stretching coordinate, De is the dissociation
energy from equilibrium, and a determines the har-
monic force constant around equilibrium. The nth-
order derivative of VM around equilibrium is given
as

f (n)
M ≡ ∂nVM

∂rn
= 2(−1)n(2n−1 − 1)an De. (4)

Thus, simple relations connect the higher-order
constants to lower-order ones, for example, f (3)

M =
−3a f (2)

M and f (4)
M = 7a2 f (2)

M . As a is around 2 Å−1 for
a large number of diatomics,54 these relations allow
semiquantitative estimates of higher-order stretching
force constants. Note that the simple 1/r function as
well as the Fues potential,55 V(r) = a0 + a1/r + a2/r2,
also yield the signs and magnitudes of higher-order
stretching force constants.

Simple, chemically intuitive arguments would
suggest that a quadratic, vicinal stretch–stretch cou-
pling constant is positive: only in this case would
elongation of one of the bonds lead to a decrease
of the other. Indeed, most such force constants are
positive. A simple counterexample is the case of the
water molecule, where the frr′

coupling constant has
a value of −0.1 aJ Å−2. Another notable exception is
frR of HCN,25 where r and R represent the CH and
CN stretches, respectively. Stretching a bond to the
extreme results in a fragmentation of HCN into a di-
atom and an atom, and of the two possible products,
H + CN is the more stable. The bond length of X 2
+

CN is 1.172 Å, actually longer than that of HCN, that
is, 1.153 Å. Thus, the negative sign of frR of HCN is
explained.

A simple way to rationalize quadratic stretch–
bend interactions in molecular force fields is provided,
for example, by the hybrid orbital force field model
of Mills.56 The stretch–bend interaction constants of
polyatomics can be either positive or negative and are
often quite large, suggesting that the effective bend-
ing motion does not occur along a circular arc, corre-
sponding to no change in the associated bond length.
A possible way to visualize higher-order off-diagonal
force constants is through derivative relations such as
f λλR = ∂ f λλ/∂ R, where R denotes a stretching and λ

a bending coordinate. In triatomics, stretching a bond
eventually drops fλλ to zero, thus the corresponding
cubic derivatives are expected to be negative in the
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equilibrium structure, assuming that over the course
of bond formation, fλλ increases monotonically. Mag-
nitudes and signs of many higher-order coupling con-
stants are not at all straightforward to rationalize.

Displacement Coordinates
There are several requirements set forth for anhar-
monic force fields, which determine the best choice of
vibrational displacement coordinates:

(1) The force field expressed in the coordinate
system chosen should be isotope indepen-
dent. Only Cartesian and customary inter-
nal coordinates satisfy this desirable require-
ment, normal coordinates do not, because
only Cartesian and the usual internal coordi-
nates are strictly geometrically defined (i.e.,
no masses enter their definition).

(2) The force field ought to be diagonally domi-
nant at all orders, i.e., choice of the coordi-
nates should lead to minimized interactions
among them. Cartesian and normal coordi-
nates are rectilinear by definition, whereas
motion of the atoms of molecular systems
happens along curved paths, i.e., the mo-
tion is curvilinear. Therefore, even when rel-
atively small displacements are considered,
the use of Cartesian and normal coordinates
is disadvantageous.

(3) The expansion of the potential should have
rapid convergence. This can be achieved
most easily with a careful choice of internal
coordinates. However, this does not mean
that a truncated power series expansion will
behave correctly farther away from the ref-
erence geometry; the usual expansions may
lead to convergence problems,57 although to
a different degree based upon the choice of
the coordinates.

(4) The coordinate system chosen should help
the transfer and comparison of force con-
stants between related molecules. Transfer of
force constants from one molecule to another
is facilitated, as a general principle, by the use
of local coordinates, which extend to as few
atoms as meaningful. Normal coordinates,
besides being mass dependent, clearly do not
satisfy this criterion but internal coordinates
may. In accordance with the local-mode
description of higher overtone bands,58 an-
harmonicity in stretching distortions is con-
centrated mainly in individual bonds. Thus,

using individual bond–stretch coordinates,
the diagonal terms strongly dominate in the
potential, facilitating transfer and compar-
ison of (higher-order) force constants be-
tween related molecules.

In summary, (curvilinear) internal, often sym-
metrized, displacement coordinates are by far the
best choice to represent anharmonic force fields. Then
the question arises whether one could choose a best
set of internal coordinates to represent the stretch-
ing and bending motions of molecular systems. For
the representation of quadratic force fields, spectro-
scopists have long been using symmetry and local in-
ternal coordinates.59 In quantum chemistry, the use of
these coordinates, sometimes called natural internal
coordinates,60,61 received acceptance especially after
automatic generation of these coordinates for most
molecular systems was achieved.61 For ring systems,
removal of redundancies is facilitated by the use of
natural internal coordinates. It is noted in passing
that the use of redundant internal coordinates has be-
come widespread62 for quadratic force fields but not
for higher-order ones.

A truncated expansion in the simple bond-
stretching coordinate, R or R − Re, may result in
energy values, which go to negative infinity for large
R. The ensuing convergence problems will hinder
the use of the PES if extended coordinate regions
are to be sampled, for example, in variational nu-
clear motion computations.63 Therefore, alternative
expansion coordinates have been advocated,64,65 in-
cluding 1/R, ρ = (R − Re)/R, 2 (R − Re)/(R + Re),
{1 − (Re/R)−a−1}, and {1 − exp[−a (R − Re)]},
where a is an adjustable parameter. It is straightfor-
ward to see that (a) the last expansion coordinate
is closely related to the Morse potential; (b) the in-
verse stretching coordinate (R−1), the Simons–Parr–
Finlan coordinate (ρ),64 and the subsequent expres-
sions should have similar convergence characteristics;
and (c) there are simple relations connecting some of
these coordinates.9 All these coordinates give faster
convergence in the expansion of the potential than the
traditional stretching coordinate.63 Modifications of
angle bending coordinates have also been proposed.
The use of out-of-plane versus torsion coordinates in
variational nuclear motion treatments may also affect
the accuracy of the computed results.

As indicated in Table 1, there are two differ-
ent normal coordinate systems. The mass-weighted
one is determined from a harmonic force field
via the first-order relationship S = LQ, where the
L matrix defines the transformation between the
internal coordinates S and the normal coordinates
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TABLE 2 Number of Independent Force constants in Anharmonic Force Fields of Polyatomic
Molecules Exhibiting Different Point-Group Symmetries

Terms Linear XY2 (D∞h) Bent XY2 (C2v) XY3Z (C3v) X6Y6 (D6h)

Linear fi 1 2 3 2
Quadratic fij 3 4 12 34
Cubic fijk 3 6 38 237
Quartic fijkl 6 9 102 1890
Quintic fijkm 6 12 249 12,031
Sextic fijkmn 10 16 562 69,448

Q. The dimensionless normal coordinates, qr, are
defined as qr = γ

1/2
r Qr , where γ r/u−1Å−2 =

2πcω̃r/h̄ = [(ω̃r/cm−1)/33.715258] = λ
1/2
r /h̄, ω̃r are

the harmonic vibration wavenumbers, and the λr val-
ues are the force constants in mass-weighted normal
coordinates. Expansion of the potential in dimension-
less normal coordinates is written as

V/hc = 1
2

∑

r

ωrq2
r + 1

6

∑

rst

φrstqrqsqt

+ 1
24

∑

rstu

φrstuqrqsqtqt + · · · (5)

The term harmonic force field should be used
only in a situation when the vibrations are completely
separable and harmonic in each normal coordinate
(i.e., the force field has no higher-order force con-
stants in the normal coordinate representation); in all
other cases, the second-order potential constants form
part of a quadratic force field.

Unique Force Constants
As the related Hamiltonian needs to remain invari-
ant under all the symmetry operations of the molec-
ular symmetry group, the potential energy expan-
sion, see Eq. (1), may contain only those terms which
are totally symmetric under all symmetry operations.
Consequently, a simple group theoretical approach,
based on properties of the permutation groups, can
be devised,26,66,67 which yields the number and sym-
metry classification of the unique anharmonic force
constants. The burgeoning number of constants at
higher orders can be appreciated from the entries in
Table 2. Note that the number of independent linear
terms determines the number of independent struc-
tural parameters of a molecule.

It should also be pointed out that for molecules
with degenerate vibrations, including electronic states
of linear molecules not affected by the Jahn–
Teller effect,68 there are some dependent force con-
stants, which have to be included in the power se-

ries expansion fixed by symmetry (e.g., for linear
molecules, cylindrical symmetry results in simple rela-
tions among some of the bending force constants69).
The inclusion of these constants in the force field is
mandatory in order to make the expansion maintain
correct symmetry properties.

Reference Structure
In theoretical prediction of molecular force fields, var-
ious choices can be implemented for the reference
structures: (a) an optimized BO equilibrium (rBO

e )
geometry, obtained at the level of electronic struc-
ture theory used in the force field evaluation; (b)
an experimental or empirical re or some form of a
(ro)vibrationally averaged r0, rs, rz, ra, rg, rm, rρ

m, rc,
or rα structure70–72; (c) an optimum geometry (rBO

e )
from a higher level of electronic structure theory; or
(d) an empirically corrected theoretical geometry pro-
viding an improved estimate of rBO

e . Conceptually, op-
tion (a) is preferred as evaluation of force constants
at a point other than the optimized theoretical struc-
ture introduces nonzero forces on the atoms and the
system is not at equilibrium. Nevertheless, moderate
levels of electronic structure theory yield optimum ge-
ometric parameters containing substantial errors. In
these cases, the corresponding force constant predic-
tions are deteriorated merely as a consequence of the
choice of a deficient reference geometry. This prob-
lem led to the recommendation of choice (b).60,73,74

Unfortunately, for most polyatomic molecules of in-
terest, accurate experimental (equilibrium) structures,
consistent within a set of similar molecules, are simply
not available.71 Selection of the reference structure ac-
cording to options (c) or (d) generally improves the ac-
curacy of the theoretical anharmonic force field,75,76

without establishing a dependence on experimental
structure determinations.

Excellent agreement between experimental and
calculated (anharmonic) force fields is meaningful
only if the reference geometry chosen for the calcula-
tion coincides with the true (equilibrium) structure of
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the molecule, which is extremely difficult to determine
experimentally.71,77 As clear from the definition of the
PES and its derivatives, a ‘correct’ force constant ob-
tained at an incorrect reference geometry means that
the nuclear–nuclear repulsion Vnn derivative is incor-
rect, and therefore the electronic energy derivative
determined by the actual level of calculation must be
in error as well. Thus, the following points need to be
emphasized76,78 about aspects of choosing a reference
structure for the electronic structure computations of
anharmonic force fields:

(1) The potential energy is composed of two
sizeable terms which are opposite in sign
and similar in magnitude, electronic (Ee)
and nuclear–nuclear repulsion (Vnn) contri-
butions. As the Vnn contribution and its
derivatives can be calculated exactly and the
Ee contributions and its derivatives only ap-
proximately, computation of force field ele-
ments becomes a rather unbalanced proce-
dure.

(2) The Ee and Vnn contributions to the forces
and the quadratic force constants almost
cancel each other, whereas for the an-
harmonic force constants the Vnn deriva-
tives become increasingly dominant. Thus,
higher-order bond-stretching derivatives de-
pend strongly on the reference structure at
which they are evaluated. As the approxi-
mate electronic derivatives make smaller and
smaller contributions to force constants of
higher and higher order, anharmonic force
constants can be calculated to higher accu-
racy than equilibrium structures or quadratic
force constants, especially if the reference
structure is accurate.

(3) For small reference bond length variations
(δri), the percentage change in the pre-
dicted harmonic frequency at a given level
of electronic structure theory is approxi-
mately 50(fiii/fii) δri. Thus, for most simple
molecules, even a small δri ≈ +0.002 Å dis-
crepancy gives rise to a frequency change of
about −0.7%.79

Let us now concentrate on a force field expan-
sion in Cartesian space, which can be the result of
an electronic structure computation. When a Carte-
sian force field is used in a nonvariational vibra-
tional analysis, one possibility for circumventing the
effects caused by the linear terms (forces) in the ex-

pansion is to neglect the Cartesian forces. This pro-
cedure, however, must be considered invalid as the
PES, upon which the analysis is based, is not rota-
tionally invariant, resulting in the appearance of three
nonzero ‘rotational’ frequencies. Rotational depen-
dence of the local PES may be removed by projection
techniques designed to construct rotationally invari-
ant PESs without reference to any particular set of in-
ternal coordinates.76,78 The form P = AB of the first-
order projection matrix employed for quadratic force
fields is widely utilized, where B is the rectangular
El’yashevich–Wilson B matrix,59 whereas A is its gen-
eralized inverse. Higher-order projection protocols,
most importantly the Cartesian projection scheme
(CPS), have been developed76 and modify the orig-
inal Cartesian force fields at all orders.

If the anharmonic force field is evaluated at a
nonstationary reference geometry in internal coordi-
nates, the internal coordinate forces can be neglected
and the vibrational analysis performed as if based on
a stationary reference geometry. This procedure has
been widely employed.75 With the usual choices of in-
ternal coordinate systems, the results obtained in this
way for semirigid molecules turn out to be rather ac-
curate. In variational nuclear motion treatments, the
forces could be kept but there is some evidence63 that
even in this case it is better to get rid of them.

In summary, it is often advantageous to choose
a nonstationary reference structure for the evaluation
of force fields. There exists no one, unique solution
how to deal with the forces thus appearing in the
expansion. In favorable cases, for example, for semi-
rigid molecules, neglect of forces in a suitable internal
coordinate system or using the CPS technique will
lead to similar but not identical results. For systems
having floppy vibrations or weak intermolecular in-
teractions, it is perhaps best to avoid the use of non-
stationary reference geometries during (anharmonic)
force field studies.78

COMPUTATION OF ANHARMONIC
FORCE FIELDS

Because of the concerted effort of a considerable
number of electronic structure theorists, efficient
techniques to compute analytic first and second
derivatives exist for many wavefunction techniques,
a partial list of important contributions is given in
Refs 80–91. Beyond second order, analytic deriva-
tive techniques are available only for the simplest
levels of electronic structure theory.86 Therefore, it
is a technical difficulty to obtain anharmonic force
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constants from low-order data. The two basic meth-
ods for determining derivatives of the PES numerically
are least-squares fitting and the use of finite-difference
expressions.6,92–94 An unpleasant feature of both ap-
proaches is that the inherent uncertainties in the data
set are magnified at higher orders.

Determination of anharmonic force fields
through least-squares fitting from energy points alone
represents a simple approach and amounts to the cal-
culation of total energies at several nuclear configura-
tions in which some coordinates have been displaced,
whereas others are kept at their reference values. A
polynomial surface is then fitted to the various ener-
gies, see, for example, Ref 92. The large number of
parameters requires that the number of points along
each coordinate be considerably larger than the de-
gree of the polynomial used. Partial solutions to the
problem that different combinations of energy points
yield different force constants have been advocated:
(a) calculations can be performed on points selected
according to the roots of a Chebyshev polynomial
thus facilitating interpolation and (b) averaging of the
results obtained from different, appropriate selection
schemes. Sophisticated approaches, such as the in-
terpolative moving least-squares fitting method, have
also been proposed to minimize the number of ab ini-
tio points required and the cost of the fitting as well
as to allow the use of derivative information.94

To minimize errors of the numerical derivative
approximations, it is preferable to employ central dif-
ferences in the finite-difference formulas92 when the
basis functions depend on the perturbation, which
they do for geometrical derivatives. A broad variety
of such formulas follow by differentiation of appro-
priate collocating polynomials. Forces and diagonal
quadratic force constants may then be determined
from displacements along a single coordinate by, for
example, the following three- and five-point central-
difference formulas:

f i = (2	i )−1(F1 − F−1) + O( f (i i i)) and

f ii = 	−2
i (F−1 − 2F0 + F1) + O( f (iv)) (6)

or

f i = (12	i )−1(F−2 − 8F−1 + 8F1 − F2)

+ O( f (v)) and

f ii = (
12	2

i

)−1(−F−2 + 16F−1 − 30F0

+ 16F1 − F2) + O( f (vi)), (7)

where 	i is the displacement along internal coordi-
nate i, the Fs are total energies, their subscripts refer
to positive (single) (e.g., F1) or negative (double) (e.g.,

F−2) displacements, and the last terms refer to trun-
cation errors. The rapidly increasing complexity of
the formulas with increasing number of points and
decreasing formula error is obvious. The complex-
ity of the formulas also increases for mixed deriva-
tives. If analytic derivative information is available to
a given order, all information could be employed to
obtain certain derivatives from a reduced number of
points or to check the precision of the determination
of the anharmonic force field. In general, the F’s of
the finite-difference formulas presented may be either
the total energies or its analytic first, second, third,
and so on derivatives with respect to the geometric
coordinates. In general, the use of finite differences is
recommended over the use of least-squares fitting as
this way less points are needed and higher precision
can usually be achieved. A robust methodology based
on computer algebra has been implemented.95

Numerical precision of computed anharmonic
force fields depends on at least the following factors:
(a) the precision of the optimized reference structure;
(b) the precision of the calculated analytic data; (c)
the truncation and round-off errors; and (d) the dis-
placement sizes. Although, in general, sizeable errors
are anticipated in approximate higher derivatives de-
termined numerically, in careful anharmonic force
field computations all error factors can be minimized
straightforwardly.

Determination of Cartesian coordinates for a
polyatomic molecule distorted by a specified amount
along one or some of the non-Cartesian coordinates
is not trivial. The simplest approach96 in the case of
curvilinear internal coordinates is based on the itera-
tive application of the first-order equation connecting
Cartesian, X, and internal, S, displacement coordinate
sets according to

Xn+1 = Xn + A (S − Sn). (8)

For usual displacement sizes, convergence can
be easily accomplished in a few steps. The program
INTDER97,98 can perform the internal to Cartesian
inversion using higher-order B tensors.

If analytic second derivatives are available and
the normal coordinate force field is to be used only
in a VPT2 calculation of spectroscopic constants, all
normal coordinate force constants required can be
determined99 by a reduced number of simple finite-
difference formulas utilizing displacements along sin-
gle normal coordinates. If quartic force fields of larger
molecular systems are needed in a spectroscopic anal-
ysis, this technique, although of limited utility in gen-
eral, can be particularly advantageous.
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TRANSFORMATION OF FORCE
FIELDS

As in electronic structure computations derivatives of
the total energy of molecular systems with respect
to geometrical coordinates are obtained in Carte-
sian coordinates, transformation of these derivatives
to coordinate systems of more practical use, for ex-
ample, internal or normal coordinates, needs to be
discussed.69,97,100–102

If two distinct sets of displacement coordinates
are denoted by vector components ri and qr, a non-
linear transformation would take the general form,

ri =
∑

r

Xr
i qr + 1

2

∑

rs

Xrs
i qrqs + 1

6

∑

rst

Xrst
i qrqsqt

+ 1
24

∑

rstu

Xrstu
i qrqsqtqu + · · · (9)

The transformation coefficients evaluated at the
reference geometry, Xrs...

i , are the appropriate deriva-
tives of ri with respect to qr.

When the X elements are used to transform the
potential energy, V, from the r representation to the q
representation, somewhat complex, nonlinear trans-
formation equations are obtained involving sums over
many permutations of the indices. The brace nota-
tion, detailed in Refs 76 and 97, can be used to cast
the complex formulae in possibly the simplest form.

Because the molecular PES does not depend on
the external variables (translation and rotation) of
the system [thus, the BO PES depends upon 3N −
6(3N − 5) degrees of freedom for nonlinear (linear)
molecules], the components of the Cartesian gradient
can be determined via a linear, tensorial transforma-
tion of the internal forces alone,

Vr =
∑

i

Vi Br
i , (10)

where Vr and Vi denote Cartesian and internal coor-
dinate potential energy derivatives, respectively, the
summation goes through the number of internal co-
ordinates, and Br

i are elements of the B matrix.59 The
higher-order transformation expressions arise by di-
rect differentiation of Eq. (10). Closed analytic for-
mulae for the transformation coefficients, collectively
called B tensor elements, may be obtained by differen-
tiating the relevant internal coordinates with respect
to the Cartesian displacements, much the same way
that the B matrix elements have been obtained.59,97

A simplified method exists69,97 for setting up the
required nonlinear coordinate transformations from
curvilinear internal coordinates to simple normal co-
ordinates. The transformation coefficients are called

the L tensor elements and the transformation equa-
tion can be written in second order as

φrr = λr =
∑

i j

f i j Lr
i Lr

j . (11)

One convenient set of equations to calculate the
elements of the L tensor69 has been given for the five
basic types of internal coordinates (stretch, bend, lin-
ear bend, out-of-plane, and torsion).97

QUALITY OF AB INITIO FORCE FIELDS

When trying to assess the accuracy of anharmonic
force fields, it has to be realized that (ro)vibrational
wavenumbers, quantities straightforwardly related to
force fields, of semirigid molecules are determined
mainly by diagonal terms in an internal coordinate
force field. For example, in gaseous H2

16O, the main
contributions to the harmonic wavenumbers ω1 =
3832, ω2 = 1648, and ω3 = 3942 cm−1 come from
the quadratic force constants frr and fαα, provid-
ing contributions of 3879, 1676, and 3896 cm−1,
respectively.77,103 Therefore, diagonal force constants
can be determined rather accurately via simple models
relating the experimental observables, the transitions,
to structures and force fields (see, e.g., Ref 28). For
off-diagonal force constants, especially at higher or-
ders, theory provides the considerably more depend-
able values. The best force fields, harmonic or anhar-
monic, can be determined by a judicious combination
of experimental and theoretical information.

There are several factors which influence the
quality of ab initio force fields, whether harmonic
or anharmonic, including (a) choice of the electronic
Hamiltonian; (b) treatment of the many-body elec-
tron correlation problem; (c) selection of the one-
particle basis set expansion; and (d) the reference
geometry.13,44,76 Although importance of the first
three factors should be considered for almost all quan-
tities determined by methods of electronic structure
theory, the effect the choice of the reference geometry
has on computed anharmonic force fields (and related
spectroscopic quantities) involves subtle issues, ex-
plored above. The use of relativistic treatments104,105

is necessary for molecules containing atoms beyond
about nickel. For lighter atoms, relativistic effects
are usually reasonably small so that they can be ne-
glected completely or taken into account by a first-
order perturbative treatment.106,107 No further dis-
cussion on these two topics is offered here. In what
follows, we concentrate on electron correlation and
basis set effects. The rule of thumb is that basis set
incompleteness tends to lengthen, whereas neglect of
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higher-order electronic excitations tends to shorten
bonds. This almost in itself determines the quality
of the calculated stretching force constants at higher
levels of electronic structure theory.

A detailed discussion of the accuracy expected
for force constants computed with Hartree–Fock
(HF)108–110 wavefunctions was first given in the
1960s.73,74,111 As HF potentials often dissociate to
the wrong limits, one might expect that they yield
poor force constants even around equilibrium. This,
however, is rarely the case. When HF theory is ad-
equate, the error it introduces into force field pre-
dictions is usually systematic and causes these curves
to give too short distances and overestimated force
constants. Experience leads to the following general
conclusions on the overall accuracy of force fields de-
termined at the HF level with basis sets of at least
medium sp(d) quality:

(1) Notwithstanding the sometimes gross over-
estimation of stretching force constants at
theoretically optimized reference geometries,
correlation effects on the intrinsic curvature
of stretching potential curves are systematic
and usually do not exceed 5% for single
bonds and 10% for multiple bonds.112

(2) Changes in bond angles usually do not in-
volve breaking or making of bonds. There-
fore, HF wavefunctions should be able to
describe the related anharmonicity. Overes-
timation of quadratic diagonal bending force
constants is systematic, about 20%–30%. To
improve the description of angle bendings,
use of polarized basis sets is recommended.
For bending force constants genuine correla-
tion effects seem to be more important than
for stretching constants.

(3) For the wide variety of coupling (off-
diagonal) constants, the results are less sys-
tematic. The accuracy of their computation
is nevertheless very good.

Overall, the electronic energy and its derivatives
are typically predicted by HF theory to within a few
percent in the strongly bonding region of PESs, a re-
markable accuracy for this level of theory. Analytic
fourth derivatives have been made available88 at this
simplest level of ab initio electronic structure theory.

As numerical differentiation techniques place se-
vere requirements on the precision of the analytic
data, among all the procedures developed to obtain
electron correlation energies only those which by de-
sign result in (sufficiently) smooth potential surfaces

should be employed for anharmonic force field cal-
culations. The use of particular configuration inter-
action (CI) methods113 based on perturbation expan-
sions, techniques where configuration selection was
introduced for the sake of computational efficiency,
and density functional theory (DFT)114,115 methods,
without improving the numerical accuracy of their
integral evaluations, should be discouraged. Never-
theless, certain DFT functionals offer considerable
promise for anharmonic force field studies on larger
molecular systems.46,47,116,117

Some correlated electronic structure methods
employed with small basis sets are inappropriate for
the provision of the underlying structure and the force
field because the imbalance of basis set and correla-
tion errors creates a propensity for the overestima-
tion of bond lengths, resulting in greatly deteriorated
force field predictions. For many systems, coupled
cluster (CC) wavefunctions, for example, with sin-
gle and double excitations (CCSD),118 constructed
with polarized basis sets of moderate size constitute a
counterexample, as basis set incompleteness and the
neglect of higher-order excitations tend to advanta-
geously cancel in geometric structure determinations,
leading to increased apparent accuracy in the force
fields.

Well defined variational (CI-type),113 perturba-
tional (nth-order Møller–Plesset, MPn),119 and CC
techniques,120 including the gold standard CCSD(T)
method,121 have all been employed to determine an-
harmonic force fields. Important conclusions of these
studies24–31,33–36 include: (1) Near equilibrium, the
correlation energy is a low-order function of the bond
distances, even a linear approximation is meaningful.
(2) For open-shell species, spin contamination can sig-
nificantly deteriorate results if an unrestricted HF ref-
erence function is used. Therefore, use of procedures
based on restricted open-shell reference functions
is recommended. (3) Correlated methods converge
much slower with respect to basis set size than HF
methods. Thus, rather large basis sets, of at least spdf
quality, are required to obtain adequately converged
force fields, especially at the quadratic level.

As usual, the atom centered, Gaussian basis set
selected for an anharmonic force field computation
should be sufficiently complete to allow a reasonably
good description of the wavefunction and moderate
in size so that larger systems of interest could be han-
dled at an acceptable computational cost. In case of
anharmonic force field studies, the computational cost
can be substantial either in the case of a fully analytic
calculation or if calculations are carried out at a large
number of displaced geometries. In systematic stud-
ies of molecular families, it is probably worthwhile
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TABLE 3 Selected Anharmonic Force Constants of H2
16O Taken from the Literature1

Term CVRQD (Ref 103) CCSD(T) FC/aug-cc-pVTZ (Ref 31) Empirical (Set III, Ref 31) HMS (Ref 69)

rref 0.957 854 Å 0.95843 Å 0.95843 Å 0.9572 Å
�ref 104.500◦ 104.44◦ 104.44◦ 104.52◦
frr 8.460 8.493 8.456 8.454
fαα 0.703 0.697 0.708 0.709
frr

′ −0.103 −0.089 −0.115 −0.101
fr α 0.258 +0.260 0.277 0.219
frrr −58.68 −58.90 −58.49 −59.40
fααα −0.71 −0.68 −0.83 −0.88
frr

′α −0.51 −0.50 −1.02 −0.40
frrrr 362.6 365.3 366.0 384
fαααα −0.21 −0.33 −0.21 −0.1
frrαα −0.688 −0.16 −0.24 −1.4
frrrrr −2398.0 −2429.1 – –
frrrrrr 18157.0 16855.6 – –
frrrr

′r ′r ′
68.5 −44.3 – –

1Units of the force constants are consistent with energy measured in aJ, distances in Å, and angles in radian. The reference geometry
about which the force field was expanded is given by parameters rref and �ref .

choosing a basis set with which results have been ob-
tained for similar species.

In order to approach chemical accuracy for
equilibrium structure and force field predictions, it
seems necessary to include at least f-type functions
in the basis set for ‘heavy’ atoms and usually d-type
functions for hydrogen. The use of smaller basis sets
inevitably leads to less accurate predictions, espe-
cially with highly correlated wavefunctions. Correla-
tion consistent122 and ANO123 basis sets offer results
of similar quality. It is not relevant any more that cost
of the computation of integrals based on the former
choice is significantly less. Adequate description of
multiple bonds, especially triple bonds, requires con-
siderably more extended basis sets than that of single
bonds. Another difficulty is the description of atoms
with high electronegativity (like O and F), in which
case the use of diffuse functions should be considered.

Advances in the continuing development of
quantitatively accurate ab initio methods have re-
vealed the necessity of a full understanding of the
consequences of the inclusion of core correlation on
calculated force fields. It has been found79,124 that (a)
single and multiple bonds of diatomic molecules com-
prised of first-row atoms become shorter by about
0.001 and 0.002 Å, respectively; (b) the direct effect
of core correlation, that is, under the constraint of a
fixed internuclear distance, core correlation decreases
the quadratic force constant such that the frequency
is lowered; (c) core correlation decreases all higher-
order force constants as well, bringing them to bet-
ter agreement with experimentally determined values.

Still, if core correlation is considered in a conven-
tional, phenomenological sense as the difference be-
tween the harmonic frequency values for all-electron
and partial-electron treatments, the core correlation
can be said to increase the harmonic frequency, in
accord with the change in re.

Finally, it seems worth giving at least one exam-
ple in tabular form demonstrating numerically what
was described above. The anharmonic force field of
the water molecule has been determined at many lev-
els of electronic structure theory employing various
reference geometries (e.g., Refs 21, 31, 81, and 103
and references therein) as well as empirically (e.g.,
Refs 31 and 69). The ultimate quartic force field of
H2

16O was determined by numerical differentiation
of an exceedingly high quality composite ab initio PES
denoted CVRQD.8,103 The results are summarized in
Table 3.

APPLICATIONS OF AB INITIO
FORCE FIELDS

As anharmonic force fields provide an approximation
to the true PES of a molecule, they can be employed
in all modeling studies based on the concept of a PES.
Some applications are commented here.

The relation of certain spectroscopic constants
to elements of the anharmonic force field is indi-
cated in Table 4. Anharmonic force fields, whether
employed in perturbative or variational nuclear
motion techniques, lead to information about the
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TABLE 4 Relation of Spectroscopic Constants to Force Fields

Terms re f ij f ijk f ijkl

Rotational constant Be
α +

Harmonic vibrational wavenumbers ω̃r + +
Quartic centrifugal distortion constants De + +
Coriolis constants ξ

(α)
r s + +

Vibr. dependence of B, α
(α)
r + + +

Cubic (Fermi) resonance constants ϕrrs + + +
Sextic centrifugal distortion constants H + + +
l-Doubling constant q̄t + + +
Vibrational anharmonicities χ rs + + + +
Quartic resonance Krs;tu + + + +
Anharmonic constant χl tl t′ + + + +

assignment of low- and high-resolution rovibrational
spectra, particularly for vibrational band origins not
too far from the ground state. Vibrational anhar-
monicity also affects the transition intensities through
the mixing of vibration–rotation wavefunctions.

In statistical theories of chemical reaction rates,
a central role is assumed by the density of vibrational
states.125,126 The accurate a priori determination of
this density is a formidable challenge at high ener-
gies. If direct count of states based on a harmonic
model is unsatisfactory, an anharmonic model is the
next level of approximation. For small molecules,
this model works surprisingly well.5 Nevertheless, dis-
crepancies observed between direct state counts and
experiments127 suggest that at high energies still better
methods need to be employed.

The nature of energy flow, in other words
intramolecular vibrational energy redistribution
(IVR),128,129 within polyatomic molecules is an
important factor controlling chemical dynamics.
In many experimental IVR studies, for example,
Refs 130–132, a high vibrational state is prepared
before photolyzing the excited molecule. The disso-
ciation yield depends on the degree of mode mixing
in the intermediate state prepared. Mode mixing, in
turn, is determined and visualized by appropriate el-
ements of the anharmonic force field.

Molecular properties are often affected sig-
nificantly by the vibrations and rotations of
molecules.70–72,133,134 It must be stressed that in a
careful theoretical study, both nuclear motions should
be considered. Rotational–vibrational averaging can
be accomplished straightforwardly via variational nu-
clear motion computations if an accurate representa-
tion of the molecular PES is available. Around equilib-
rium position(s), the use of anharmonic force fields is
very convenient, as well as the use of simple perturba-

tive expressions. Averagings will lead to, for example,
interconversions of the many distance types encoun-
tered in structural studies.70,71 Consequently, the use
of anharmonic force fields in accurate structural stud-
ies of small molecules has a long history.70,133 Fur-
thermore, a relationship between stretching force con-
stants (anharmonic frequencies) and the correspond-
ing bond length has been established for a long
time,135–137 and in certain cases,136,137 it is still one of
the most accurate methods to determine bond lengths.

Thermodynamic quantities can also be pre-
dicted with an accuracy approaching or even surpass-
ing that of relevant experiments if the harmonic ap-
proximation is relaxed and an anharmonic force field
is used to represent the PES of the molecule.138

CONCLUSIONS

Experimental information alone is insufficient to
uniquely determine the anharmonic force fields of
polyatomic molecules. As accurate anharmonic force
field representations of PESs are useful in many
branches of physical chemistry, force fields obtained
from electronic structure computations are of consid-
erable importance and utility.

The precision of anharmonic force fields does
not deteriorate if the force field up to quartic terms is
determined from well selected, precise energy points.
For larger polyatomic systems with a large number
of constants, either fully analytic determination of
the force field is recommended (at present this can
be accomplished up to quartic terms only at the HF
level of theory) or information from analytic second
derivatives should be employed.

The overall accuracy of calculated anharmonic
force fields is as follows: (1) At a fixed reference ge-
ometry, most calculated cubic and quartic force con-
stants show surprisingly small variation with respect
to basis set extension and treatment of electron cor-
relation. Even results obtained at the HF level are
accurate, their error is systematic and rarely exceeds
10% if determined at a correct reference structure. (2)
Particularly accurate ab initio force fields can be ob-
tained if methods incorporating a large portion of the
electron correlation energy with extended basis sets
are used to evaluate these constants. Even small basis
set correlated-level electronic structure computations
can account for the highly structure-sensitive nondy-
namical electron correlation. (3) A substantial part
of the discrepancy between force constants calculated
at reference geometries stationary at the given level
of theory and force constants obtained from exper-
iments comes from the differences in the underlying
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geometries. Shifting the theoretical reference structure
close to the true equilibrium geometry results in force
constants which are usually in dramatically better
agreement with their experimental counterparts. (4)
Some of the higher-order force constants determined
experimentally (especially the quintic and sextic ones,
but in many instances the off-diagonal quartic ones,
as well) do not seem to have physical significance,
that is, they are not directly correspondent with the
associated derivatives of the PES. For these constants,
values from electronic structure theory should be con-
sidered to be more accurate. The best force fields can
be determined from a judicious combination of ex-
perimental and computed information.

An obvious question at this point is why the
usual anharmonic force fields include cubic and quar-
tic but not higher-order terms. Although cubic terms
are larger, they contribute only in the second order
of VPT, whereas the smaller quartic terms contribute

in first order. Thus, the magnitude of the contribu-
tion of cubic and quartic force fields to vibrational
energy levels is fairly similar (higher-order force con-
stants contribute in higher orders of perturbation the-
ory). Furthermore,139 analytic solution of the one-
dimensional Morse-potential problem results in the
same relation for energy levels as an approximate cal-
culation based on VPT2 and truncation of the expan-
sion of the Morse potential at the quartic term. This
suggests that the simple VPT2 scheme is considerably
more accurate than otherwise expected.

Finally, an obvious shortcoming of (truncated)
anharmonic force fields must be emphasized. Anhar-
monic force field approximations to PESs do not have
accurate asymptotic (dissociation) behavior, even if
improvements are made on the choice of the expan-
sion coordinates. Thus, force field-type expansions
should not be employed, for example, for studies on
highly excited (ro)vibrational states.
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