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Low-lying quasibound rovibrational states of H2
16O∗∗
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(Received 7 January 2013; final version received 28 March 2013)

A complex coordinate scaling (CCS) method is described allowing the quantum chemical computation of quasibound (also
called resonance or metastable) rovibrational states of strongly bound triatomic molecules. The molecule chosen to test the
method is H2

16O, for which an accurate global potential energy surface, a previous computation of a few resonance states via
the complex absorbing potential (CAP) method, and some Feshbach (J = 0, where J is the quantum number characterising
overall rotations of the molecule) and shape (J �= 0) resonances measured via a state-selective, triple-resonance technique
are all available. Characterisation of the computed resonance states is performed via probability density plots based on CCS
rovibrational wavefunctions. Such plots provide useful details about the physical nature of the resonance states. Based on
the computations and the resonance plots, the following useful facts about the resonance states investigated are obtained:
(a) Feshbach resonances are formed by accumulation of a large amount of energy in either the non-dissociative bending or
symmetric streching modes, excitations by more than five quanta are not uncommon; (b) there are several resonance states
with low and medium bending excitation, the latter are different from the states observed somewhat below dissociation by
the same triple-resonance technique; (c) several types of dissociation bahavior can be identified, varying greatly among the
states; (d) several pairs of J = 0 and J = 1 Feshbach resonance states can be identified which differ by rigid-rotor type
energies; and (e) the lifetimes of the assigned J = 1 rovibrational Feshbach resonances are considerably longer than the
lifetimes of their J = 0 vibrational counterparts.

Keywords: complex absorbing potential (CAP); complex coordinate scaling (CCS); water molecule; Feshbach and shape
resonances; probability density plots; tunneling

1. Introduction

An important characteristics of the fourth age of quantum
chemistry [1] is the method development related to nuclear
motion theory. A considerable challenge of such efforts is
the advancement of non-Hermitian techniques of computa-
tional quantum chemistry [2]. These techniques find many
applications in atomic and molecular physics and chemistry
[2–6], including unimolecular reactions, photodissociation
and photoassociation studies, and scattering phenomena.
Furthermore, they can be immediately applied in high-
resolution molecular spectroscopy to improve our under-
standing and modeling of the quasibound (ro)vibrational
states (also known as resonances or metastable states) of
molecules, the principal topic of this paper.

Quasibound or metastable states of molecular systems
have sufficient energy to brake up the system into sub-
systems. Such resonance states decay exponentially with
time. While a rigorous mathematical theory of quasibound
states does exist [7,8], resonance phenomena can also be
approached in a much more intuitive manner, still providing

∗∗This paper is dedicated to Professor Martin Quack, who made numerous experimental as well as theoretical contributions to advanced
areas of molecular physics and physical chemistry. For us, particularly instructive has been his work on the complex motions of highly
excited molecules studied via high-resolution molecular spectroscopy.

∗Corresponding author. Email: csaszar@chem.elte.hu

useful tools for a variety of practical applications. For ex-
ample [9,10], in the Schrödinger representation resonance
states can be associated with outgoing eigenfunctions of the
Hamiltonian, diverging exponentially at infinity. Due to the
outgoing boundary condition, resonance states are charac-
terised by complex eigenvalues. They are usually written
as Eres

n = εn − i
2�n, where εn = Re(Eres

n ) is the resonance
energy (with respect to the ground-state energy of the sys-
tem) and �n is the width of the resonance state, related to
the inverse lifetime at a given q point in coordinate space by
ρn(q, t) ∝ e−�nt (in atomic units), where ρn(q, t) = |�res

n |2
and �res

n is the nth resonance wavefunction.
In order to reach the goal of computing quasibound

(ro)vibrational states and to understand near-dissociation
high-resolution molecular spectra, one possible approach
among several [11,12], and the one pursued here, starts with
the computation of all the bound states of the molecule. For
strongly bound triatomic molecules even this task requires
a substantial amount of work both via electronic structure
and nuclear motion computations [1].

C© 2013 Taylor & Francis
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To construct a potential energy surface (PES) which is
accurate globally, i.e. all the way to the first dissociation
limit, is by itself a significant challenge, which has been
met for only a few molecules, for example, for the ground
electronic states of H2O [13,14], H3

+ [15], and HOCl [16].
Two related issues are noted. The first difficulty when trying
to construct a PES having correct dissociative behaviour is
the accurate computation of the great many energy values
far away from equilibrium, where usually several electronic
states come close to each other. Therefore, one may need
to resort to multireference methods of electronic structure
theory [17]. Computation of adiabatic Born–Oppenheimer
(BO) energy corrections (usually called DBOC) [18] with
multireference wavefunctions is not a standard technique
yet. Even if one is capable of producing the large number
of accurate PES points, which cover the coordinate space
sufficiently densely, a second difficulty arises, namely the
fitting of an analytical functional form to the energy points
toward the asymptotic region with high accuracy. This is
also a more or less unresolved task at present.

If an accurate global PES is at hand, the next step is
the computation of the bound rovibrational states up to dis-
sociation, as they also have a substantial interest. In order
to compute the usually thousands of bound rovibrational
states, one needs to use an effective algorithm which is ca-
pable of describing the diffuse, highly excited states where
the best choice of basis functions is less clear. Another diffi-
culty in computing highly excited states arises from singular
terms always present [19] in tailor-made Hamiltonians [20]
based on internal coordinates. If the so-called singular nu-
clear configurations, corresponding to singularities present
in the kinetic energy operator, are energetically accessible
by the nuclear motions investigated, special care must be
exercised to avoid the resulting numerical problems during
the variational computation of (ro)vibrational states. Theo-
retical techniques that do not treat these singularities may
result in unconverged eigenenergies; therefore, these meth-
ods cannot be employed when the goal is the determination
of the complete (ro)vibrational spectrum. An efficient al-
gorithm developed in our group for triatomic rovibrational
computations up to dissociation is the D2FOPI (mixed dis-
crete variable (DVR) [21] and finite basis (FBR) [21] rep-
resentation of the rovibrational Hamiltonian expressed in
orthogonal internal coordinates using a direct product basis
and an iterative eigensolver) algorithm. It is described for
the vibrational case in Ref. [14] and in more detail, includ-
ing the rovibrational case, in Ref. [22]. In previous studies
the D2FOPI code has been shown to be capable of comput-
ing (nearly) all the bound vibrational states of the H3

+ and
H2

16O molecules [13,14].
This work is aimed at developing an efficient algo-

rithm and computer code capable of yielding a large num-
ber of rovibrational resonances of strongly bound triatomic
molecules. In order to be able to compute resonance states,
which have asymptotically exponentially diverging wave-

functions, with the well-developed variational methods of
quantum chemistry based on square-integrable functions,
one needs to have some additional techniques to overcome
the complexity introduced by the asymptotic behaviour.
There are several algorithms explored in the past decades
to achieve this, see, for example, Ref. [2] and the introduc-
tion of Ref. [23].

In this study (ro)vibrational resonances are computed by
merging the D2FOPI algorithm, based on square-integrable
functions, with the complex coordinate scaling (CCS)
method. The CCS technique has been used in molecular
physics and computational chemistry for several decades.
Excellent application-oriented reviews [10,24,25] can be
found along with discourses on the rigorous mathematical
foundations of complex scaling [26–29]. Over the years sev-
eral variants of the ‘conventional’ complex scaling method
were proposed, such as the exterior complex scaling [10,30]
or the smooth exterior complex scaling [10,31], from which
one may obtain the complex absorbing potential (CAP)
method by using certain approximations [10]. Although
there exists at least three examples in the literature [32–34]
which apply the complex scaling method for the compu-
tation of vibrational resonances of polyatomic molecules,
at present such calculations are mainly carried out [35–39]
using the CAP technique. To the best of the authors’ knowl-
edge polyatomic rovibrational resonances were only stud-
ied within the CAP approach. Therefore, the present study
focuses on achievements obtained using CCS. In order to
devise a simple methodology and arrive at an efficient code
based on the D2FOPI-type protocol, only the ‘conventional’
complex scaling is considered. The use of alternative com-
plex scaling methods, such as the exterior complex scaling
technique, could provide improvements but their consider-
ation is left to the future.

Measuring transitions corresponding to (ro)vibrational
resonance states of strongly bound molecules is a complex
task; nonetheless, a limited amount of experimental data
has been generated. A prime example is the case of the
water molecule, where the resonance states have been in-
vestigated via state-selective, triple-resonance spectroscopy
by Boyarkin et al. [40]. The lines in these spectra of wa-
ter obtained are relatively sparse and have some experi-
mentally determined quantum numbers based on selection
rules, which help considerably in their theoretical interpre-
tation. Determination of the complete list of bound vibra-
tional states of water, up to near dissociation, has been the
subject of several previous studies [13,41–43]. The global
ab initio PES of Ref. [13], beyond making it possible to
compute nearly all bound states for the system, is fairly ac-
curate even in the asymptotic region. Although it exhibits
a dissociation energy some 38 cm–1 lower than the exper-
imental value, the vibrational band origins computed with
this PES are no more than 15 cm−1 off compared to the
available experimental results up to 39,500 cm−1 above the
ZPVE. Thus, this PES is suitable for the computation of
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accurate quasi-bound (resonance) states. Therefore, H2
16O

was chosen as our model molecule. In this sense, this study
extends work performed by Zobov et al. [44], who em-
ployed the PES developed in Ref. [13] and performed com-
putations using the CAP method in order to identify a few
measured vibrational and rovibrational Feshbach and shape
resonances of the H2

16O isotopologue and reported a num-
ber of J = 0 and 2 and one J = 1 resonances for H2

16O. In a
Feshbach resonance the extra energy is temporarily stored
in non-dissociative modes (e.g. the symmetric bending and
stretching modes in the case of H2

16O). In a shape resonance
the extra life beyond the dissociation limit is provided to the
molecule by a rotational barrier and the molecule trapped
behind this barrier can escape via quantum mechanical tun-
neling. Identification of these resonance behaviours is a
challenge of non-Hermitian quantum chemistry.

In the forthcoming sections the theoretical methods
used are summarised (Section 2), and after a brief overview
of the technical details (Section 3) the results on the low-
lying (ro)vibrational resonance states of the H2

16O water
isotopologue are presented along with their comparison to
experiment (Section 4). The paper ends with a summary of
the results (Section 5).

2. Theoretical foundations

2.1. The bound-state (ro)vibrational Hamiltonian

The Jacobi (also known as scattering) coordinate system
[45] and the R2 embedding [46,47] were chosen to set up
the rovibrational kinetic energy operator employed in this
work. The particularly simple form of this realisation of
the triatomic rovibrational Sutcliffe–Tennyson Hamiltonian
has been known for a long time [46,47], see, for example,
equation (2.12) of Ref. [48]. In this embedding, the z-axis of
the body-fixed frame is chosen to lie parallel to the atom(O)-
diatom(H2) vector described by the R2 coordinate. The other
two Jacobi-coordinates are the H–H distance (R1), and the
angle � between the vectors defining R1 and R2. Use of
this coordinate system and embedding makes it possible to
exploit a C2v(M) symmetry of the H2

16O molecule.
For obtaining the matrix representation of the chosen

Hamiltonian an orthogonal, normalised and symmetry-
adapted product basis of the form {χn1 (R1) χn2 (R2) P K

l

(cos �) C
Jp
MK (φ,χ,ψ)}N1,N2,J,K+NL−1

n1=1,n2=1,K=p,l=K was utilised,
where R1, R2, and � are the two stretching-type and one
bending-type Jacobi coordinates, χn1 (R1) and χn2 (R2) are
DVR basis functions, P K


 (cos �) is the 
th normalised

associated Legendre function, CJp
MK (φ, χ,ψ) are rotational

functions of the form

C
Jp
MK (φ, χ,ψ)

= [2 (1 + δK0)]−1/2 [
DJ

MK + (−1)p+K+J DJ
M−K

]
,

p ∈ {0, 1} ,K ∈ {p, p + 1, . . ., J − 1, J } ,

where p is a parity-like variable [49], M and K are the
usual quantum numbers corresponding to space- and body-
fixed projections of the rotational angular momentum on
the appropriate axes, and DJ

MK are the normalised Wigner
rotation functions [49]. The subsets of basis functions which
transform according to the four irreducible representations
of the C2v(M) molecular symmetry group are obtained by
setting p = 0 or 1 and by choosing 
 + K to be odd or even.

Due to the ‘almost’ direct-product nature of the basis set
(almost refers to the coupling between the P K


 (cos �) Leg-

endre functions and the C
Jp
MK (φ, χ,ψ) rotation functions

via K and the parity of (
 + K), the matrix representation
of the triatomic (ro)vibrational Hamiltonian can be written
as a sum of direct product matrices.

In order to have a compact basis expansion, χn1 (R1)
and χn2 (R2) were chosen to be ‘potential optimised’
(PO) DVR functions [50–52], i.e. DVR functions obtained
from the eigenfunctions of the 1-D effective Hamiltonian
Ĥ 1D

j = − 1
2μj

d2

dR2
j

+ V̂ (Rj ; Rj ′,�), j, j’ = 1, 2 or 2, 1 with

V̂ (Rj ; Rj ′,�) chosen to be a relaxed 1-D potential, i.e.
V̂ (Rj ; Rj ′,�) is obtained by optimising the Rj ′ and � co-
ordinates for each value of Rj .

Due to its direct product nature, the matrix represen-
tation of the Hamiltonian has a very sparse and a priori
known structure. This makes the use of an iterative eigen-
solver, e.g. the Lanczos algorithm [53–55] straightforward
for obtaining the required eigenpairs.

2.2. The complex coordinate scaling method

To compute energies of resonance states, one looks for solu-
tions of the time-independent Schrödinger equation having
wavefunctions with exponentially diverging asymptotic be-
haviour,

Ĥ�res = Eres�res, �res /∈ L2. (1)

Now, let’s introduce an invertible operator Ŝ to obtain a
similarity-transformed Schrödinger equation,

ŜĤ Ŝ−1Ŝ�res = EresŜ�res, (2)

such that the functions � ≡ Ŝ�res are square integrable,
i.e.

ŜĤ Ŝ−1� = Eres�, � ∈ L2. (3)

Equation (3) is an eigenvalue equation for the trans-
formed Hamiltonian ŜĤ Ŝ−1, whereby the eigenvalues are
the desired resonance eigenenergies and the correspond-
ing eigenfunctions are square integrable; thus, they can be
computed with well-developed L2 techniques of quantum
chemistry. In the conventional CCS method, a choice for
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the operator Ŝ is

Ŝθf (r) = f (reiθ ), (4)

where θ is a free parameter and r is the dissociation coor-
dinate. Therefore, the operator Ŝθ rotates the argument of a
function of the dissociation coordinate by θ in the complex
plane. If there is more than one dissociation coordinate,
each should undergo a CCS transformation.

It is well established in the literature [10,24–28] that
upon complex scaling by Ŝθ of Equation (4), (a) only
those resonance states will become square integrable for
which θ > 1

2 arctan (�/2 (ε − D0)) = 1
2Arg (Eres − D0),

(b) bound states remain square integrable for θ values of
physical interest, i.e. θ < π/4, and (c) the scaled Hamilto-
nian yields scattering wavefunctions containing combina-
tions of incoming and outgoing waves with bounded, non-
square integrable (scattering) asymptotic behaviour which
are associated with a continuum that is rotated into the
lower half of the complex energy plane by the angle 2θ

[24,25,27,28]. Thus, one can come up with a qualitative pic-
ture of the spectrum of the scaled Hamiltonian (within the
Hilbert-space and the space of bounded, Dirac-normalisable
functions), whereby (a) real discrete eigenvalues corre-
spond to bound states, (b) the scattering continuum is ro-
tated into the lower half of the complex plane by 2θ for each
dissociation channel, and (c) discrete complex eigenvalues
in the area between the real axis and the rotated scattering
continua correspond to resonance states.

Obtaining the form of the scaled Hamiltonian is rather
straightforward in the case of conventional complex scal-
ing: for differential operators of the dissociation coordinate
r one simply needs to make the change ∂

∂r
→ ∂

∂r
e−iθ , while

for the coordinate operators the change r → reiθ is re-
quired [24,25]. This naturally leads to the evaluation of the
PES at complex coordinate values, which can be done for
PESs having a fitted analytical form by rewriting the PES
subroutine into complex arithmetic.

During this work, the matrix representation of the scaled
Hamiltonian is obtained in two steps. In the first step, all
the bound states of the unscaled Hamiltonian are computed,
using D2FOPI, along with many eigenpairs having ‘energies
above the dissociation limit’, i.e.

Ĥ�k = Ek�k, k ∈ {1, 2, . . ., N} , (5)

is solved, with N somewhat larger than the number of bound
states. In the second step, using a subset of the computed
eigenvectors as an orthonormal basis set, the matrix of the
scaled Hamiltonian is constructed,

Hθ
kl = 〈

�k

∣∣ Ŝθ Ĥ Ŝ−1
θ

∣∣�l

〉
, (6)

resulting in a very compact matrix representation. Finally,
eigenvalues of the scaled Hamiltonian are obtained via sim-
ple direct diagonalisation of the matrix of Equation (6).

Naturally, resonance eigenvalues with a physical mean-
ing should be independent of the scaling parameter θ . How-
ever, in practice, when one uses finite basis sets, this is not
necessarily true. By changing the scaling parameter, one
changes the form of the wavefunctions, thus also changes
the ‘goodness’ of the basis. Therefore, the basis set error
and hence the computed eigenvalues depend on the scaling
parameter. Nevertheless, it has been demonstrated [56] that
resonance eigenvalues can be identified in the CCS formal-
ism by locating stationary points in eigenvalue trajectories
obtained by varying the scaling parameter θ . In practice,
this can be achieved by computing the spectra of the scaled
Hamiltonian for a large number of θ values and examining
the eigenvalue trajectories numerically or visually.

3. Computational details

The global PES of H2
16O employed is taken from Ref. [13].

This PES is based on high-level electronic structure com-
putations (2200 energy points computed at the all-electron
aug-cc-pCV6Z IC-MRCI(8,2) level) and includes relativis-
tic one-electron mass-velocity and Darwin (MVD1) correc-
tions [57]. For all nuclear-motion computations, the nuclear
masses mO = 15.990526 u and mH = 1.00727647 u are used.

To ascertain the convergence of the resonance states
with respect to basis set size, four sets of ‘bound-state’
computations (see Equation 5) are performed for J = 0. The
four sets of computations involve (n1,n2,np) = (75,95,50),
(85,105,50), (95,115,55) and (100,120,55) vibrational basis
functions, whereby (n1,n2,np) means n1 and n2 potential-
optimised (PO) spherical-DVR functions [14] (with 400
primitive spherical functions) for the two distance-type co-
ordinates and np odd- or even-parity Legendre basis func-
tions for the angle-type coordinate in the case of B2 or A1

symmetry computations, respectively. Following Ref. [14],
the spherical oscillator basis functions of the R1 and R2 co-
ordinates had the following parameters: Rmax

1 = 19.0 and
Rmax

2 = 11.0 in the first set, Rmax
1 = 20.0 and Rmax

2 = 12.0
in the second set, Rmax

1 = 20.5 and Rmax
2 = 12.5 in the third

set, and and Rmax
1 = 21.0 and Rmax

2 = 13.0 in the fourth set
(all values are in units of Bohr). The eigenvectors obtained
are used for constructing the matrix representation of the
CCS J = 0 Hamiltonians, see Equation (6). From the four
sets, 700, 850, 900 and 992 eigenvectors are taken to con-
struct the Hamiltonian matrices of Equation (6). It is noted
that the number of J = 0 bound states with A1 and B2

symmetry for H2O is around 630 and 525, respectively.
For the J > 0 computations the (85 105 50) vibra-

tional basis was used with the complete set of rotational
basis. In the J = 1 case, for constructing the matrices of
the CCS Hamiltonians 800 eigenvectors were included for
the A1 and B2 symmetry states, while 1400 eigenvectors
were included for the A2 and B1 symmetry states. To obtain
the eigenvalue trajectories within the CCS method, the scal-
ing parameter θ was changed between 0.000075 and 0.0030
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Table 1. B2-symmetry J = 0 Feshbach resonances of the water molecule, obtained from measurement (Expt.) or computation by using
the complex coordinate scaling (CCS) technique. Energies and inverse lifetime parameters (Г) are given in cm−1.

Expt.a CCSb CCS conv.c

Energy Г Energy Г Energy Г

41 172.67(E) 0.21 41 175.28 <0.001d 0.03 <0.001
41 203.73(F) 0.22 41 205.81 0.024 −0.77 0.022
41 221.23(H) 1 41 211.95 0.006 −7.07 −0.348
41 225.99(I) 0.42 41 225.11 0.004 0.53 −0.008
41 263.56(K) 0.09 41 256.31 0.364 −3.18 −0.312
41 268.09(L) 0.36 41 268.71 0.052 −0.08 0.048
41 295.77(O) 0.52 41 288.17 0.256 0.33 −0.224
41 309.76(B) 2.4 41 307.10 0.156 −0.34 −1.12

a Results are taken from Ref. 44 and they correspond to those reported in Ref. 40. The bold capital letter labels given in parentheses are taken from table
1 of Ref. 44.
b Values obtained using the (100 120 55) basis set, see Section 3 for details.
c Convergence (conv.) is with respect to results obtained with the (95 115 55) basis set.
d The < symbol indicates that the eigenvalue trajectory cusp used to identify the resonance eigenvalue is partly located in the negative Г region of the
complex energy plane; thus, Г is only approximated taking into account the size of the region the trajectory samples near the cusp.

Table 2. J = 0 Feshbach resonances of the H2
16O molecule, computed with either the complex absorbing potential (CAP) or the

complex coordinate scaling (CCS) resonance determining methods. Energies and inverse lifetime parameters (Г) are given in cm−1.

B2 symmetry A1 symmetry

CAPa CCSb CCS conv.c CCSd CCS conv.e

Energy Г Energy Г Energy Г Energy Г Energy Г

– – 41111.12 <0.001f −0.08 <0.001 41109.90 0.0045 −0.23 −0.0021
41119.69 0.01 41113.59 <0.001 0.03 <0.001 41133.57 0.048 −0.43 −0.018

– – 41137.73 <0.001 – – 41168.15 0.0095 −0.15 0.0049
41140.49 2.03 – – – – 41212.13 0.018 – –
41175.29 0.002 41175.28 <0.001 −0.03 <0.001 41214.44 0.020 – –
41206.29 0.33 41205.81 0.024 −0.77 0.022 41247.00 0.0071 – –

– – 41211.95 0.006 −7.07 –0.348 41259.42 0.185 −0.17 −0.037
41224.39 0.3 41225.11 0.004 0.53 –0.008 41277.35 0.125 0.87 −0.013
41257.79 0.03 41256.31 0.364 −3.18 –0.312 41286.30 0.13 1.84 0.14
41268.99 0.12 41268.71 0.052 −0.08 0.048
41275.09 20.14 – – – –

– – 41288.17 0.256 0.33 –0.224
– – 41307.10 0.156 −0.34 –1.12

a Results taken from Ref. [44].
b Values were obtained using the (100 120 55) basis set, see Section 3 for details.
c Convergence is with respect to results obtained with the (95 115 55) basis set, missing convergence values indicate that those resonances were only
identified using the largest (100 120 55) basis set.
d Values were obtained using the (85 105 50) basis set, see Section 3 for details.
e Convergence is with respect to results obtained with the (75 95 50) basis set, missing convergence values indicate that those resonances were only
identified using the (85 105 50) basis set.
fThe < symbol indicates that the eigenvalue trajectory cusp used to identify the resonance eigenvalue is partly located in the negative Г region of the
complex energy plane; thus, Г is only approximated taking into account the size of the region the trajectory samples near the cusp.

in thirteen steps and the resonance cusps were identified by
visual inspection.

4. Results and discussion

Table 1 lists computed B2-symmetry J = 0 Feshbach reso-
nance energies and inverse lifetime parameters Г obtained
in this study, along with their experimental counterparts
[40] up to about 210 cm−1 above the dissociation limit.

Although theoretical results are available for much higher
energies as well, this energy range is considered throughout
this work. Table 2 provides computed J = 0 Feshbach res-
onances of this study and their comparison with previous
theoretical results obtained with the CAP method. A list
of J = 1 rovibrational resonances computed as part of this
study are presented in Table 3. Two-dimensional sections
of the computed |Ŝθ�

res|2 probability density functions are
provided on Figures 1–8 and 9–19 for J = 0 and 1 states,
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Table 3. J = 1 rovibrational resonances of the H2
16O molecule, computed with the complex coordinate scaling (CCS)a method. Energies

and inverse lifetime parameters (Г) are given in cm−1.

A1 symmetry A2 symmetry B1 symmetry B2 symmetry

Energy Г Energy Г Energy Г Energy Г

41144.52 2.04E-01 41117.14 <3.00E-03b 41108.30 1.70E-03 41128.00 6.00E-04
41145.74 7.60E-01 41117.58 <5.00E-03 41117.15 <3.00E-03 41132.52 5.36E-02
41155.84 1.29E-03 41124.44 <3.00E-03 41124.45 <3.00E-03 41139.95 1.85E-02
41163.73 9.70E-04 41129.36 9.64E-03 41129.73 4.98E-03 41144.92 4.56E-02
41174.18 1.83E-02 41135.05 9.02E-03 41132.96 2.90E-02 41158.50 2.52E-02
41210.69 9.07E-04 41136.44 4.78E-02 41135.06 3.08E-02 41166.13 6.62E-02
41213.39 8.08E-03 41142.07 2.60E-02 41137.07 <6.00E-03 41184.50 7.10E-03
41223.65 3.86E-05 41145.27 1.32E-02 41137.88 5.98E-01 41191.05 8.30E-02
41246.56 1.69E-02 41146.16 2.64E-01 41141.70 3.14E-02 41210.72 2.28E-03
41304.73 8.33E-05 41150.29 2.04E-01 41145.65 3.34E-03 41214.06 4.58E-03
41315.32 7.12E-01 41162.85 1.61E-01 41146.17 1.16E-01 41247.96 2.18E-02

41170.38 2.18E-01 41150.60 2.52E-02 41298.60 2.38E-04
41178.35 1.87E-02 41166.63 2.50E-02
41191.67 1.87E-01 41186.47 1.77E-01
41199.61 3.70E-02 41193.16 <4.00E-03
41194.54 <2.00E-03 41199.86 3.20E-02
41211.66 2.62E-01 41212.05 1.53E-01
41214.50 5.60E-02 41215.08 1.18E-02
41222.96 1.20E-01 41234.93 3.80E-01
41224.61 3.22E-01 41241.29 <4.00E-05
41272.60 1.03E-01 41272.26 2.88E-01
41280.15 8.28E-01 41278.32 8.22E-02
41283.52 1.49E-01 41290.61 5.38E-01
41290.73 2.24E-01 41295.63 1.45E-02
41297.80 5.56E-01 41298.22 <1.00E-03
41307.37 4.02E-01

aValues were obtained using the (85 105 50) basis set, see Section 3 for details.
bThe < symbol indicates that the eigenvalue trajectory cusp used to identify the resonance eigenvalue is partly located in the negative Г region of the
complex energy plane; thus, Г is only approximated taking into account the size of the region the trajectory samples near the cusp.

respectively. These figures, corresponding to B2 and A1

symmetry for J = 0 and 1, respectively, are presented in
order of increasing energy. For the J = 1 cases, integration
along the rotational coordinates was carried out prior to
drawing the figures.

4.1. Vibrational (J = 0) resonances

In order to test our algorithms and codes, developed dur-
ing this study based on the CCS method described in
Section 2.2, the CAP-based J = 0 nuclear motion results
of Zobov et al. [44] are used as benchmark values. This

Figure 1. Two-dimensional sections of the wavefunction corresponding to the J = 0 resonance at 41,111 cm−1 with � = 0.0001 cm−1,
obtained by fixing (a) Cos(θ ) = 0.65, (b) R1 = 1.9 Bohr, and (c) R1 = 2.8 Bohr, where R1 and R2 are the two OH bond lengths and θ is
the HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).
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Figure 2. Two-dimensional sections of the wavefunction corresponding to the J = 0 resonance at 41,114 cm−1 with � = 0.002 cm−1,
obtained by fixing (a) Cos(θ ) = −0.65, (b) R1 = 1.9 Bohr, and (c) R1 = 3.0 Bohr, where R1 and R2 are the two OH bond lengths and θ is
the HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).

Figure 3. Two-dimensional sections of the wavefunction corresponding to the J = 0 resonance at 41,175 cm−1 with � = 0.00015 cm−1,
obtained by fixing (a) Cos(θ ) = −0.1, (b) R1 = 1.9 Bohr, and (c) R1 = 2.9 Bohr, where R1 and R2 are the two OH bond lengths and θ is
the HOH bond angle. The area near the equilibrium structure is shown enlarged in a).

Figure 4. Two-dimensional sections of the wavefunction corresponding to the J = 0 resonance at 41,202 cm−1 with � = 0.244 cm−1,
obtained by fixing (a) Cos(θ ) = 0.1, (b) R1 = 1.9 Bohr, and (c) R1 = 2.9 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).
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Figure 5. Two-dimensional sections of the wavefunction corresponding to the J = 0 resonance at 41,225 cm−1 with � = 0.032 cm−1,
obtained by fixing (a) Cos(θ ) = 0.5, (b) R1 = 1.9 Bohr, and (c) R1 = 3.0 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).

Figure 6. Two-dimensional sections of the wavefunction corresponding to the J = 0 resonance at 41,258 cm−1 with � = 0.002 cm−1,
obtained by fixing (a) Cos(θ ) = 0.1, (b) R1 = 1.9 Bohr, and (c) R1 = 3.5 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).

Figure 7. Two-dimensional sections of the wavefunction corresponding to the J = 0 resonance at 41,269 cm−1 with � = 0.095 cm−1,
obtained by fixing (a) Cos(θ ) = 0.2, (b) R1 = 1.9 Bohr, and (c) R1 = 3.5 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).
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Figure 8. Two-dimensional sections of the wavefunction corresponding to the J = 0 resonance at 41,286 cm−1 with � = 0.572 cm−1,
obtained by fixing (a) Cos(θ ) = 0.1, (b) R1 = 1.9 Bohr, and (c) R1 = 3.5 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).

comparison is feasible as both computations utilise the same
global PES of H2

16O [13].
When comparing their computed resonance energies

with experiment, Zobov et al. [44] shifted theoretical en-
ergy values above the first dissociation limit by 38 cm−1,
to account for the following weakness of the PES: it ex-
hibits a dissociation energy of D0 = 41,108 cm−1, which
is 38 cm−1 lower than the experimental value [58] of
41,145.94 ± 0.15 cm−1. Resonance wavefunctions, al-
though damped by the CAP, were considered to have a
structure similar to the bound-state wavefunctions with en-
ergies just below dissociation, i.e. they were considered
to be localised in the asymptotic region of the PES. Al-
though some features of the experimental spectra were re-
constructed, energy differences often reached a few tens
of cm−1 for several of the features A through R discussed
there.

In Table 1 of this study vibrational Feshbach resonances
computed as part of this work of the most abundant water
isotopologue are presented. Experimental values and their
assignment are taken from Refs. [40,44], while theoretical
values computed with complex scaling, and their conver-
gence with respect to basis set size, are from this work.
Assignment of the results from complex scaling was done
by simply matching energies with experimental values. It is
remarkable that the resonance energies obtained with com-
plex scaling reproduce the experimental values with con-
siderable accuracy, despite the fact that no energy shifting
is applied.

Comparison of the theoretical results obtained with the
CAP method and without shifting the energies is sum-
marised in Table 2. As far as the energy values are concerned
the computations show good agreement with experiment.
The inverse lifetime parameter � seems to converge much
more slowly than the energy; therefore, lifetimes are not
taken into account when matching the computed eigenval-

ues obtained via the CAP and CCS techniques. It is impor-
tant to point out that there are resonance states, which are
obtained with only one of the computational methods. It is
not surprising to have some results only determined with
the CCS method, since the CAP method is not guaranteed
to identify ‘all’ resonance states, as already seen, for ex-
ample, in Ref. [32]. As to eigenvalues computed only by
the CAP method, they have large Г parameters (thus, short
lifetimes), so they remain ‘hidden’ in the range of θ used
in the CCS computations.

Based on Tables 1 and 2, one may conclude that the
energy shifting used in Ref. [44] was unnecessary for the
J = 0 Feshbach resonances; therefore, the present work
suggests changes in the previous assignments.

A possible qualitative explanation for why the com-
puted J = 0 Feshbach resonances do not need the energy
shifting may lie in the very nature of this type of resonance.
Feshbach resonances arise when the system has enough
energy to dissociate; however, a considerable amount of
energy is localised in non-dissociative vibrational modes.
If for a given Feshbach resonance state of water a signif-
icant portion of the energy is stored in non-dissociative
modes, such as the bending or the symmetric streching
modes, this leads to less energy in the dissociative stretch-
ing mode, which in turn means that the wave function
is less delocalised in the dissociative coordinate. There-
fore, the inaccuracies in the PES which are responsible
for the discrepancy in the dissociation energy, and which
are restricted to the asymptotic regions of the stretching
coordinates, are not sampled dominantly by Feshbach res-
onance states. This qualitative explanation can be justi-
fied at least for some of the resonances by inspecting the
appropriate J = 0 probability density plots. These plots
are discussed separately in Section 4.3, in particular Fig-
ures 1, 3, 5–7 are relevant for supporting the argument
presented.
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4.2. Rovibrational, J = 1, resonances

Computation of rovibrational resonance eigenpairs and
their comparison with vibrational resonances can lead to
interesting observations about the question whether a com-
puted resonance is of Feshbach or of shape type or perhaps
a mixture of the two and what effect rotation has on Fes-
hbach resonances. Altogether 74 J = 1 resonances were
identified up to around 210 cm−1 above D0, which is some-
what more than three times the number of J = 0 resonances
found in this energy region. This indicates that even for
the low rotational quantum number of J = 1, formation
of shape resonances seems to occur. Discussion of these
resonances is postponed to Section 4.3. Sorting the shape
resonances could not be achieved in this study. Therefore,
possible tunneling effects are not investigated.

4.3. Plots of resonance states

In this subsection selected plots of probability densities
(Figures 1–19), obtained from the computed eigenfunctions
(using the (85 105 50) basis) corresponding to resonance
eigenvalues, are presented and discussed. It is noted that
although the underlying computations were carried out in
Jacobi coordinates, the eigenfunctions on Figures 1–19 are
presented as functions of the internal OH stretch and HOH
bend angle coordinates in order to have figures whose in-
terpretation is more natural and intuitive. It is important to
emphasise that the functions obtained from CCS resonance
computations are not the �res resonance wavefunctions but
the CCS wavefunctions, i.e. Ŝθ�

res. Therefore, one needs
to examine the physical significance of the probability den-
sity functions |Ŝθ�

res|2. A possible route is the inspection
of the probability density functions of bound states, which
can be obtained both with and without the use of CCS.
Comparison of the |Ŝθ�

bound|2 and |�bound|2 functions of
three bound states with excitation energies 11,032, 39,511,
and 41,046 cm−1 clearly show (not detailed here) that, as
expected, CCS does not change the probability density vis-
ibly in the non-asymptotic coordinate regions, i.e. up to
OH lengths of 10 Bohr no change is visible. Therefore, in-
terpretation of the CCS probability densities of resonance
states might be done in a similar manner as usually done
for bound states.

Although strictly speaking there are no distinct vibra-
tional modes for a non-harmonic coupled system and one
would expect extreme vibrational coupling at the high en-
ergies of the resonance states, a great deal of qualitative
information can be gathered from the probability den-
sity plots generated. Clearly, detailed inspection of the
density functions reveals much about the intrinsic nature
of the low-lying rovibrational resonance states of H2

16O.
There are several questions which probability density plots
should help to answer: (1) Which non-dissociative vi-
brational modes are highly excited during formation of

Feshbach resonances (it has been argued [44] that reso-
nance states with (m,0)± v2 in local mode notation with v2

= 0, 1 or 2 should be the observable ones as below disso-
ciation these states are the ones most easily observed and
they have [44] the strongest dipole transitions)? (2) How
regular are the resonance states (it has been argued before
[59,60] that ‘chaotic’ resonance states couple strongly to the
continuum and thus have no significant lifetimes)? (3) Can
one distinguish between Feshbach and shape resonances at
the low J = 1 rotational excitation investigated here? (4)
What effect does the inclusion of rotation have on Feshbach
resonances?

The J = 0 plot of Figure 7 shows nine nodes along
the antisymmetric stretching coordinate and around three
nodes along the symmetric stretch, while only two bending
nodes are present. This low level of bending excitation is
the expected behaviour for resonance states. While the J
= 0 states of Figures 4 and 8 have high excitation in their
stretching modes, Figures 2 and 5 demonstrate a pattern of
symmetric and antisymmetric stretches similar to Figure 7.

The J = 0 states of Figures 4 and 5 show a completely
different resonance behaviour, as these states contain at least
10 nodes along the bending motion. This is an unexpected
result of the present study.

By further inspecting Figures 1, 3, 5–7, it seems that
for H2

16O purely vibrational (J = 0) Feshbach resonances
can be formed via the accumulation of the energy in either
the bending, the symmetric streching, or the antisymmetric
streching modes. Naturally, dissociation must occur along
the stretching of an OH bond, while the other OH bond
is fixed approximately between 1.7 and 2.0 Bohrs. This is
represented by the correlation between the shortening of the
state lifetime (increase in Г) with respect to the excitation
of the stretching motion.

Wavefunction plots should also provide insight into the
state-specific dissociation dynamics of the water molecule.
For example, in panels (b) of Figures 4, 5 and 7 one can see
a horse-shoe type feature in the density function, indicating
that dissociation occurs by first closing and then opening
of the HOH bond angle as one of the H atoms leaves the
molecule. The opposite route of closing the HOH angle as
one of the H atoms dissociates can be observed in panel
(b) of Figure 19, while panels (b) of Figures 9, 10, 13–15
show more or less constant HOH bond angles at which
dissociation can occur, resulting in the H atom leaving the
molecule either perpendicular (Figures 9, 10 and 13) or
parallel to the OH diatom bond.

An interesting feature of the plots is the remarkable
similarity between the rovibrational (J = 1) and the vibra-
tional (J = 0) resonance density functions when comparing
Figures 7 and 18 as well as Figures 3 and 16. Clearly, one
can relate the rovibrational resonance states of Figures 16
and 18 to the vibrational resonance states of Figures 3 and
7, respectively. The increase in energy with the inclusion of
rotation is 49 and 36 cm−1 for the vibrational states at
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Figure 9. Two-dimensional sections of the wavefunction corresponding to the J = 1 resonance at 41,145 cm−1 with � = 0.204 cm−1,
obtained by fixing (a) Cos(θ ) = 0.1, (b) R1 = 2.0 Bohr, and (c) R1 = 3.8 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).

Figure 10. Two-dimensional sections of the wavefunction corresponding to the J = 1 resonance at 41,146 cm−1 with � = 0.76 cm−1,
obtained by fixing (a) Cos(θ ) = 0.1, (b) R1 = 1.9 Bohr, and (c) R1 = 3.1 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is also shown enlarged in (a).

Figure 11. Two-dimensional sections of the wavefunction corresponding to the J = 1 resonance at 41,156 cm−1 with � = 0.0013 cm−1,
obtained by fixing (a) Cos(θ ) = 0.5, (b) R1 = 1.9 Bohr, and (c) R1 = 3.4 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).
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Figure 12. Two-dimensional sections of the wavefunction corresponding to the J = 1 resonance at 41,164 cm−1 with � = 0.0010,
obtained by fixing (a) Cos(θ ) = 0.4, (b) R1 = 1.9 Bohr, and (c) R1 = 2.8 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).

Figure 13. Two-dimensional sections of the wavefunction corresponding to the J = 1 resonance at 41,174 cm−1 with � = 0.018 cm−1,
obtained by fixing (a) Cos(θ ) = 0.1, (b) R1 = 1.9 Bohr, and (c) R1 = 3.0 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).

Figure 14. Two-dimensional sections of the wavefunction corresponding to the J = 1 resonance at 41,211 cm−1 with � = 0.0009 cm−1,
obtained by fixing (a) Cos(θ ) = 0.5, (b) R1 = 1.9 Bohr, and (c) R1 = 3.6 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).
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Figure 15. Two-dimensional sections of the wavefunction corresponding to the J = 1 resonance at 41,213 cm−1 with � = 0.0081 cm−1,
obtained by fixing (a) Cos(θ ) = 0.5, (b) R1 = 1.9 Bohr, and (c) R1 = 3.6 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).

Figure 16. Two-dimensional sections of the wavefunction corresponding to the J = 1 resonance at 41,224 cm−1 with � = 0.00004,
obtained by fixing (a) Cos(θ ) = −0.1, (b) R1 = 1.9 Bohr, and (c) R1 = 2.9 Bohr, where R1 and R2 are the two OH bond lengths and θ is
the HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).

Figure 17. Two dimensional sections of the wavefunction corresponding to the J = 1 resonance at 41,247 cm−1 with � = 0.017 cm−1,
obtained by fixing (a) Cos(θ ) = 0.1, (b) R1 = 1.9 Bohr, and (c) R1 = 3.0 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).
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Figure 18. Two-dimensional sections of the wavefunction corresponding to the J = 1 resonance at 41,305 cm−1 with � = 0.00008 cm−1,
obtained by fixing (a) Cos(θ ) = 0.2, (b) R1 = 1.9 Bohr, and (c) R1 = 3.5 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).

Figure 19. Two-dimensional sections of the wavefunction corresponding to the J = 1 resonance at 41,315 cm−1 with � = 0.71 cm−1,
obtained by fixing (a) Cos(θ ) = 0.5, (b) R1 = 1.9 Bohr, and (c) R1 = 3.0 Bohr, where R1 and R2 are the two OH bond lengths and θ is the
HOH bond angle. The area near the equilibrium structure is shown enlarged in (a).

41,175 and 41,269 cm−1, respectively. It is surprising to
see a rigid-rotor type effect of the rotation at such high en-
ergies for the strongly bound system of H2

16O. We also note
that recent studies show the breakdown of the clear rigid-
rotor picture around the barrier to linearity [61]. Thus, the
rovibrational resonances at 41,224 and 41,305 cm−1 should
definitely be called Feshbach resonances. This assignation
possibility appears to be a valuable tool to identify at least
some rovibrational Feshbach resonances and distinguish
them from shape resonances. Finally, it is noted, that the life-
times of the two J = 1 rovibrational Feshbach resonances of
Figures 16 and 18 are considerably longer than the lifetimes
of their J = 0 vibrational counterparts of Figures 3 and 7,
respectively.

A systematic and quantitative comparison of rovibra-
tional and vibrational resonance density functions in order
to assign rovibrational Feshbach resonances and thus dis-
tinguish them from shape resonances might be a fruitful

exercise in the future, for which the algorithms and codes
developed originally for rovibrational quantum label as-
signments on the basis of the rigid-rotor decomposition
[62] protocol should prove useful.

5. Summary

In this work, an efficient method applicable to the compu-
tation of rovibrational resonance states of strongly bound
triatomic molecules is developed. The molecule H2

16O is
employed to test the method. The computations are based
on constructing the matrix representation of a CCS Hamil-
tonian on the basis of eigenfunctions obtained from bound-
state computations of the system (a subset of all bound
states and many additional eigenvectors with correspond-
ing eigenvalues above dissociation are used as a basis during
the resonance computations). Bound-state computations
are carried out using the D2FOPI code, with which the
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CCS method could be effectively merged. This is helped
by the fact that the wavefunctions obtained from D2FOPI
are partially represented on a DVR basis; thus, the evalua-
tion of the CCS Hamiltonian matrix elements (in particluar
the matrix elements of the CCS PES) is straightforward to
carry out.

The vibrational resonances of H2
16O computed via CCS

are in good agreement with previous results obtained us-
ing the CAP method as long as resonance positions are
concerned. Due to the much slower convergence of reso-
nance lifetimes, these often differ substantially. Beyond the
identification of new resonances, the CCS results of this
study seem to suggest the reassignment of the previously
computed resonances.

J = 1 rovibrational resonances are also computed in the
energy region up to around 210 cm−1 above the first disso-
ciation limit. The 74 states found indicate, when compared
with the 20 J = 0 resonances identified in the same energy
region, that shape resonances seem to occur even for the
low rotational quantum number of J = 1.

Plots of probability density functions computed from
CCS wavefunctions are generated and analysed, which re-
sult in the following observations: (a) resonance density
functions often show a surprisingly simple nodal struc-
ture which one expects to see for low-lying bound states;
(b) Feshbach resonances can be formed by accumulation
of a large amount of energy in either the non-dissociative
bending or symmetric streching modes; (c) several types
of dissociation behaviour can be identified varying consid-
erably among the states; (d) some rovibrational Feshbach
resonances can be found and assigned based on the sim-
ilarity of their density plots with the J = 0 vibrational
resonance density plots and (e) the lifetimes of the as-
signed J = 1 rovibrational Feshbach resonances are con-
siderably longer than the lifetimes of their J = 0 vibrational
counterparts.

Several extensions of the work presented is planned. We
plan, for example, to extend our general GENIUSH algo-
rithm [63] with the CCS technique and compute resonance
states for systems containing more than three nuclei. This
extension would also allow the computation of resonance
states of reduced-dimensional models. Further investiga-
tion of probability density plots and other type of analy-
ses of the rovibrational wavefunctions of resonance states
should shed light on the interesting behaviour of these ex-
otic molecular states.
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[52] V. Szalay, G. Czakó, Á. Nagy, T. Furtenbacher, and A.G.

Császár, J. Chem. Phys. 119, 10512 (2003).
[53] C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950).
[54] J.K. Cullum and R.A. Willoughby, Lanczos Algorithms for

Large Symmetric Eigenvalue Computations (Birkhauser,
Boston, 1985).

[55] Y. Saad, Iterative Methods for Sparse Linear Systems (So-
ciety for Industrial and Applied Mathematics, Philadelphia,
PA, 2003).

[56] N. Moiseyev, S. Friedland, and P.R. Certain, J. Chem. Phys.
74, 4739 (1981).

[57] G. Tarczay, A.G. Császár, W. Klopper, and H.M. Quiney,
Mol. Phys. 99, 1769 (2001).

[58] P. Maksyutenko, T.R. Rizzo, and O.V. Boyarkin, J. Chem.
Phys. 125, 181101 (2006).

[59] P.D. Chowdary and M. Gruebele, Phys. Rev. Lett. 101,
250603 (2008).

[60] P.D. Chowdary and M. Gruebele, J. Chem. Phys. 130, 024305
(2009).
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