
This article was downloaded by: [ETH Zurich]
On: 16 July 2015, At: 13:53
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place,
London, SW1P 1WG

Click for updates

Molecular Physics: An International Journal at the
Interface Between Chemistry and Physics
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tmph20

Modelling rotations, vibrations, and rovibrational
couplings in astructural molecules – a case study based
on the H+

5 molecular ion
János Sarkaab, Csaba Fábric, Tamás Szidarovszkybd, Attila G. Császárab, Zhou Line & Anne B.
McCoye

a Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös University,
Budapest, Hungary
b MTA-ELTE Complex Chemical Systems Research Group, Budapest, Hungary
c Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
d Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
e Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
Published online: 18 Mar 2015.

To cite this article: János Sarka, Csaba Fábri, Tamás Szidarovszky, Attila G. Császár, Zhou Lin & Anne B. McCoy (2015)
Modelling rotations, vibrations, and rovibrational couplings in astructural molecules – a case study based on the H+

5 molecular
ion, Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 113:13-14, 1873-1883, DOI:
10.1080/00268976.2015.1020074

To link to this article:  http://dx.doi.org/10.1080/00268976.2015.1020074

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2015.1020074&domain=pdf&date_stamp=2015-03-18
http://www.tandfonline.com/loi/tmph20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00268976.2015.1020074
http://dx.doi.org/10.1080/00268976.2015.1020074
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Molecular Physics, 2015
Vol. 113, Nos. 13–14, 1873–1883, http://dx.doi.org/10.1080/00268976.2015.1020074

INVITED ARTICLE

Modelling rotations, vibrations, and rovibrational couplings in astructural molecules – a case
study based on the H+

5 molecular ion
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One-dimensional (1D) and two-dimensional (2D) models are investigated, which help to understand the unusual rovibrational
energy-level structure of the astronomically relevant and chemically interesting astructural molecular ion H+

5 . Due to the very
low hindering barrier characterising the 1D torsion-only vibrational model of H+

5 , this model yields strongly divergent energy
levels. The results obtained using a realistic model for the torsion potential, including the computed (near) degeneracies,
can be rationalised in terms of the model with no barrier. Coupling of the torsional motion with a single rotational degree
of freedom is also investigated in detail. It is shown how the embedding-dependent rovibrational models yield energy
levels that can be rationalised via the 2D vibrational model containing two independent torsions. Insight into the complex
rovibrational energy level structure of the models and of H+

5 is gained via variational nuclear motion and diffusion Monte
Carlo computations and by the analysis of the wavefunctions they provide. The modelling results describing the transition
from the zero barrier limit to the large barrier limit should prove to be useful for the important class of molecules and
molecular ions that contain two weakly coupled internal rotors.

Keywords: variational nuclear motion theory; reduced-dimensional models; coupling of rotation and vibration; weakly
coupled internal rotors; astructural molecules; tunneling; H+

5

1. Introduction

The simplest and exactly solvable quantum chemical mod-
els that are traditionally employed to understand high-
resolution spectra of gas-phase molecules are based on the
harmonic oscillator (HO) and rigid rotor (RR) approxima-
tions of the vibrations and the rotations, respectively. In
cases when the results based on the RRHO approximation,
perhaps after a slight extension based on second-order per-
turbation theory [1–5], provide a good qualitative and even
a semiquantitative understanding of spectral regularities,
the molecule of interest can be considered to be ‘semi-
rigid’. These are molecules for which the electronic state
that is being investigated contains a single, well-defined,
and relatively deep minimum. For semirigid molecules, the
timescales for the vibrational and rotational motions are suf-
ficiently different to allow their approximate separation, the
vibrational spacing decreases as the vibrational excitation
increases, the vibrational states have well-defined symme-
tries provided by the point group characterising the unique
equilibrium structure, and the rotational states can be as-
signed to a certain vibrational state. The RRHO treatment is
familiar to most chemists as excellent textbooks exist which
describe slightly anharmonic molecular vibrations [6,7] as

∗
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well as slow molecular rotations [8]. Nevertheless, there are
many molecules and higher energy spectral regions where
this simple picture is insufficient for understanding the mea-
sured high-resolution spectra.

Nicholas C. Handy was among the pioneers in the area
of study developing variational techniques to solve the nu-
clear Schrödinger equation and thus allowing the commu-
nity to move far beyond the RRHO approximation [9–14].
Furthermore, his studies of internal coordinate kinetic en-
ergy operators [15], some performed with one of the au-
thors [16,17], opened the door to the studies of a broad
array of molecules that explore regions of the potential en-
ergy surface (PES) where the RRHO approximation begins
to break down. There is a special class of molecules where
the simple RRHO picture as well as its low-order PT cor-
rections [1] provide an incorrect zeroth-order description
and one must consider new models with ‘unusual’ charac-
teristics to understand the high-resolution spectra of these
molecules even at very low excitation energies. We call
these molecules astructural [18].

For an astructural molecule, consideration of a single
minimum on the PES is insufficient to interpret the observed
spectra, when the structure is averaged over the vibrational

C© 2015 Taylor & Francis
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ground state, it is significantly different from the equilib-
rium Born–Oppenheimer one, rotational and vibrational
spacings are of the same magnitude, the usual simple tools
provided by the RRHO approximation are unable to yield a
reasonable estimate of even the lowest rotational and rovi-
brational energy levels, and simple perturbative treatments
based on the RRHO approximation fail already for the low-
est nuclear motion states. Studies of such complex, astruc-
tural systems require alternative zero-order pictures to the
separable RRHO treatment that has been demonstrated to
be effective for semirigid molecules. Often these more so-
phisticated models involve explicit couplings between the
rotation and one or more of the large-amplitude vibrational
motions. Considerable attention has been placed in develop-
ing such model Hamiltonians for molecules like methanol,
that include a large-amplitude internal rotor [19–21], as well
as for molecules that contain virtually no barrier to internal
rotation [22,23]. As to the spectra of these molecules, the
small barriers lead to rotation/vibration structure that de-
viates substantially from the RRHO model and from those
used to describe semirigid molecules, and to very surprising
rotational structures [18,24,25].

An example of such an astructural molecule, and one
which recently attracted considerable experimental and the-
oretical attention [18,26–31], is H+

5 . This molecular ion
with five hydrogen atoms lacks the usual central atom that
can form multiple strong bonds, which is typical of virtu-
ally all other small molecular species. Unlike the semirigid
molecules, this lack of structure makes the spectrum of H+

5
particularly challenging to anticipate and interpret. As is
usually done for semirigid molecules or for molecules with
a single large amplitude motion, to obtain an improved un-
derstanding of the rovibrational energy level structure of
the astructural H+

5 molecule, low (one- and two-) dimen-
sional model Hamiltonians must be developed by freez-
ing the remaining rotational-vibrational degrees of freedom
(dof). These reduced-dimensional Hamiltonians replace the
full-dimensional (12D) rovibrational Hamiltonian and are
used to provide physical insight into the motions of the
atoms of H+

5 . The vibrational and rovibrational levels of
H+

5 have been computed both by variational nuclear motion
[29,30,32,33] and diffusion Monte Carlo (DMC) [31,34,35]
techniques. The full- and reduced-dimensional variational
computations performed by three of the present authors
[18] utilised the GENIUSH algorithm and code [36–38].

In the present contribution, we explore the rota-
tion/torsion coupling in this astrochemically important
molecule, focusing on reduced-dimensional models. Such
an analysis provides insights into the expected rotational
energy progressions. It also lays the foundation for inter-
preting the results of full-dimensional treatments. While the
focus of this paper is on H+

5 , similar ‘astructural’ behaviour
is seen in any molecule or molecular ion in which the bar-
rier to internal rotation is small. These species include,
for example, the NH+

4 ·H2O complex, which was recently

studied experimentally by Lee and co-workers [25], and
dimethyl acetylene, which is a molecule of long-standing in-
terest [22,23]. The models also provide limiting behaviours
on which one can model the spectroscopy of species with
slightly larger torsion barriers.

2. Coordinates and embeddings

Using the internal coordinate set, see Figure 1, applied pre-
viously [18], two embeddings that differ in the definition of
the xz plane can be defined for the H+

5 molecule as follows:
either one of the H2 units can be constrained to lie along
the xz plane and the other H2 unit is rotated from that plane
by φ degrees, or the xz plane is defined to bisect φ and the
two H2 units are rotated by φ

2 degrees in opposite directions
(Figure 2). We shall call the first and the second choices
the geometric (GE) and the bisector (BE) embeddings,
respectively.

Figure 1. Internal coordinates of H+
5 employed in this study.

Figure 2. The difference between the geometric, GE, (left panel)
and bisector, BE, (right panel) embeddings, viewed from the pos-
itive z direction.
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3. Rovibrational coupling

Although the form of the rotational-vibrational Hamilto-
nian depends on the applied set of coordinates and the em-
bedding of the molecule-fixed coordinate system, the rovi-
brational energy levels resulting from a full-dimensional
variational solution based on the Hamiltonian must be coor-
dinate and embedding independent. Nevertheless, conver-
gence of the eigenstates toward the ‘exact’ solution during
a variational treatment may depend appreciably on the co-
ordinates, the embedding, and the basis set. To obtain con-
verged rotational-vibrational energy levels, it is desirable
to test the chosen set of coordinates, the different embed-
dings, and the basis sets. Since the rovibrational G matrix
[6,15] determines the kinetic energy operator, studying the
elements of the G matrix provides important insight into the
differences between distinct internal coordinate and body-
fixed embedding choices.

Extremely low potential barriers along the torsional co-
ordinates on the PESs of molecules can result in effec-
tively barrierless motions. Coupling between the different
rotational-vibrational dofs has a considerable influence on
the rovibrational energy levels. The rovibrational coupling
accompanied with the almost free torsion has a direct effect
on the rovibrational energy level structure. The astructural
H+

5 molecule is a prototypical example for strong torsional-
rotational coupling. In this study, we show the effect of the
torsional-rotational coupling on the rovibrational energy
level structure of H+

5 utilising several 1D and 2D model
Hamiltonians.

To construct the required reduced- and full-dimensional
rovibrational Hamiltonians, one needs to derive first the G
matrix elements in the GE and BE embeddings. The nuclear
position vectors in the geometric embedding, using the nine
internal coordinates of Figure 1, are

rGE
1 =

(
− r1

2
sin θ1, 0,− r1

2
cos θ1 + R

2

)
,

rGE
2 =

(
r1

2
sin θ1, 0,

r1

2
cos θ1 + R

2

)
,

rGE
3 =

(
− r2

2
sin θ2 cos φ,− r2

2
sin θ2 sin φ,

r2

2
cos θ2 − R

2

)
,

rGE
4 =

(
r2

2
sin θ2 cos φ,

r2

2
sin θ2 sin φ,− r2

2
cos θ2 − R

2

)
,

rGE
5 = (x, y, z) . (1)

In the bisector embedding, the nuclear position vectors are
defined as

rBE
1 =

(
− r1

2
sin θ1 cos

φ

2
,
r1

2
sin θ1 sin

φ

2
,− r1

2
cos θ1 + R

2

)
,

rBE
2 =

(
r1

2
sin θ1 cos

φ

2
,− r1

2
sin θ1 sin

φ

2
,
r1

2
cos θ1 + R

2

)
,

rBE
3 =

(
− r2

2
sin θ2 cos

φ

2
,− r2

2
sin θ2 sin

φ

2
,
r2

2
cos θ2 − R

2

)
,

rBE
4 =

(
r2

2
sin θ2 cos

φ

2
,
r2

2
sin θ2 sin

φ

2
,− r2

2
cos θ2 − R

2

)
,

rBE
5 = (x, y, z) . (2)

Note that neither the GE nor the BE Cartesian position
vectors given above are defined with respect to the centre
of mass (COM) of the H+

5 molecular ion.
To move toward the desired reduced-dimensional mod-

els, we set x = y = z = 0 in Figure 1. This places the hydro-
gen numbered 5 in Figures 1 and 2 at the origin, which is
now the COM of H+

5 . We further freeze all of the vibrational
dofs except for φ, using the values of these coordinates that
correspond to the D2d structure, which is a first-order sad-
dle point on the PES of H+

5 [39]. As such, r1 = r2 = r,
R = R0, and θ1 = θ2 = π

2 . Note that some rotational ma-
trix elements of the four-dimensional (4D) torsion-rotation
G matrix were found to depend on the value of φ. In
case of these matrix elements, we have approximated the
φ-dependent expressions with their values at φ = π /2 (an
excellent approximation in the present case, see Ref. [18]
for a more detailed discussion). The resulting 4D G matrix,
corresponding to the torsional vibrational dof (first row and
column) plus three rotational dofs (the rest of the rows and
columns), can be derived using the position vectors in the
geometric embedding which is given by

GGE,4D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4

mHr2
0 0 − 2

mHr2

0
2

mH(r2 + 2R2
0)

0 0

0 0
2

mH(r2 + 2R2
0)

0

− 2

mHr2
0 0

2

mHr2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3)

and in the bisector embedding

GBE,4D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4

mHr2
0 0 0

0
2

mH(r2 + 2R2
0)

0 0

0 0
2

mH(r2 + 2R2
0)

0

0 0 0
1

mHr2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4)

In these expressions, mH is the mass of the H atom. To
obtain the numerical values of the matrix elements r =
1.4966 bohr, R0 = 4.0977 bohr, mH = 1.007825 u are used.

Comparing the two G4D matrices, Equations (3) and
(4), one can observe that the only off-diagonal elements are
the G14 = G41 terms in the GE case. These are the only
nonzero rovibrational coupling terms in either the GE or
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the BE Hamiltonian. These terms are not evident when the
bisector embedding is used, reflecting the more balanced
treatment of the H2 rotors in this case.

4. Model Hamiltonians

Although the derived G matrix elements are valid for the
molecular ion H+

5 , the reduced-dimensional model Hamil-
tonians to be derived are of relevance for a larger class of
molecules where a large-amplitude torsional motion and
consideration of rotations are important. First, a 1D vibra-
tional model will be investigated, followed by several 2D
extensions.

4.1. The 1D(φ) vibrational model

Taking only the torsional motion (φ) between the two H2

units of H+
5 into account (see Figure 1), a 1D vibrational

model Hamiltonian can be obtained

Ĥ 1D = −2bH2

∂2

∂φ2
+ V̂ (φ), (5)

where the second-derivative operator is multiplied by the
constant from the G4D matrix, − 1

2G11, and

bH2 = 1

mHr2
(6)

is the rotational constant of one of the H2 groups. Since the
G11 elements in the GE and BE embeddings are equal (see
Equations (3) and (4)), the energy levels corresponding to
Ĥ 1D are identical, as required. The potential in Equation
(5) can be taken as a 1D cut of the full-dimensional PES
[28] along the φ coordinate, which can be approximated by
the function

V (φ) = V0

2
[cos(2φ) + 1] + Vmin, (7)

where V0 = 80.0894 cm−1 and Vmin = 197.798 cm−1.
As a first task, we solve the eigenvalue problem without

the potential energy operator (V0 = Vmin = 0) analytically
by recognising that functions of the form exp (ikφ) (k is
an integer) are eigenfunctions of the kinetic energy opera-
tor. This results in nondegenerate (for k = 0) and doubly
degenerate (for k �= 0) energy levels (see the V = 0 col-
umn of Table 1 for the numerical results, corresponding
to bH2 = 53.34 cm−1). This observation can easily be ex-
plained as follows. The eigenvalues are

E1D
k = 2bH2k

2, (8)

where k is any integer (negative, positive, or 0). Clearly, the
torsional states diverge rapidly due to the k2 dependence.
Consequently, and unusually for those trained on slightly

Table 1. Energies, in cm−1, corresponding to the
1D vibrational model of Equation (5) and employ-
ing 21 exponential discrete variable representation
(DVR) basis functions for the torsional coordinate
(k is defined in Equation (8)).

|k| V = 0 V �= 0

0 0.00 (235.97)a

1 106.67 88.06
106.67 128.09

2 426.70 428.25
426.70 430.13

3 960.06 962.16
960.06 962.18

4 1706.78 1708.78
1706.78 1708.78

5 2666.84 2668.79
2666.84 2668.79

6 3840.26 3842.18
3840.26 3842.18

aThis is the zero-point vibrational energy of the model,
it was subtracted from the V �= 0 eigenvalues to arrive
at the |k| �= 0 energy values reported, thus making them
comparable to the V = 0 results.

anharmonic (stretching) motions, H+
5 might exhibit, de-

pending on the potential, only a few torsional states up to
its first dissociation limit.

Adding the potential to the equation and using an expo-
nential discrete variable representation (DVR) basis, the ki-
netic energy matrix elements can be computed analytically,
while the potential energy matrix is diagonal in a DVR ba-
sis. As a result of adding the potential, the first doublet at
106.7 cm−1 splits by 40.0 cm−1, with a slightly increased
mean value of 108.1 cm−1. The rest of the eigenvalues
change only slightly and the splitting is diminishing as the
excitation increases (for |k| = 2, 3, and 4, the splittings are
1.88, 0.02, and 0.00 cm−1, respectively, see Table 1). This
is an important modelling result as it suggests that there are
indeed only a small number of torsional states (only up to
|k| = 4 or perhaps 5) below the first dissociation limit of
H+

5 , about 2500 cm−1. Interestingly, despite the introduc-
tion of an 80 cm−1 torsion barrier, only the |k| = 1 states
show significant deviations from the values obtained in the
barrierless (V = 0) model. The general question how the
torsional splittings depend, in the case of the 1D(φ) model,
on the height of the barrier has been addressed before, see,
for example, Refs. [24,40].

4.2. The 2D(φ1, φ2) model

A 2D extension of the 1D(φ) Hamiltonian of the previous
subsection is defined as

Ĥ 2D = −bH2

(
∂2

∂φ2
1

+ ∂2

∂φ2
2

)
+ V̂ (φ2 − φ1), (9)
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where the two torsional coordinates are φ1 ∈ [0, 2π ]
and φ2 ∈ [0, 2π ], and the V̂ potential energy operator,
coupling the φ1 and φ2 coordinates, depends on only the
difference between φ2 and φ1. Setting V̂ to zero leads to an
uncoupled Hamiltonian for which the eigenproblem can be
solved analytically, the energy levels E2D

k1,k2
and wavefunc-

tions �2D
k1,k2

(φ1, φ2) are

E2D
k1,k2

= bH2 (k2
1 + k2

2), (10)

and

�2D
k1,k2

(φ1, φ2) = 1

2π
exp(ik1φ1) exp(ik2φ2). (11)

Two important remarks are in order here: (1) the wavefunc-
tions are periodic with a period of 2π in both φ1 and φ2;
(2) this periodicity implies that k1 and k2 must take integer
values. Note that the �2D

k1,k2
(φ1, φ2) uncoupled eigenstates

can be employed for the expansion of the eigenstates of
Ĥ 2D (corresponding to a Fourier-series expansion).

As V̂ depends only on φ2 − φ1, Ĥ 2D is invariant un-
der an arbitrary rotation of H+

5 about the z axis. Thus, the
projection of the overall angular momentum on z (the cor-
responding operator is denoted by L̂) is conserved and the
eigenstates of Ĥ 2D are also eigenstates of L̂, and can be la-
belled by the angular momentum quantum number L ∈ Z:

L̂�2D
i,L(φ1, φ2) = L�2D

i,L(φ1, φ2), (12)

where i labels different eigenstates having the same value of
|L| in order of increasing energy. Variational results corre-
sponding to the 2D(φ1, φ2) model are presented in Table 2
for the V = 0 and V �= 0 cases. Even though L is a good
quantum number, in the case of the 2D(φ1, φ2) model the
�2D

i,L(φ1, φ2) eigenstates with different values of the L quan-
tum number are not automatically separated. The computed
eigenenergies show clear one, two, and fourfold and occa-
sionally nearly eightfold degeneracies in the V �= 0 case
(Table 2). These near degeneracies are fully explained by
the V = 0 results as without the hindering torsional potential
the eigenvalues have perfect four and eightfold degenera-
cies, as expected from Equation (10).

In the subsequent subsections, we present two possible
coordinate embedding choices while defining one rotational
and one vibrational dof. As a result, the Hamiltonian matrix
blocks corresponding to different L values are separated
and eigenstates with different L values can be obtained
independently.

4.3. The 2D(φ, αGE) GE rovibrational model

The first coordinate transformation is defined by the
following equations:

φ = φ2 − φ1,

αGE = φ1, (13)

Table 2. Energies, up to 2600 cm−1, corresponding to the
2D(φ1,φ2) model employing 21 exponential DVR basis func-
tions for both torsional coordinates. The eigenenergies of the
2D(φ, αGE) and 2D(φ, αBE) models are identical with those re-
ported herein. The energies are given in cm−1, V(φ) is given in
Equation (7), and �E = E(V �= 0) − E(V = 0). The energy val-
ues are labelled by |L|, an angular momentum quantum number,
i, counting the different eigenstates corresponding to the same
|L|, and |KGE| and |KBE|, the torsional quantum numbers in the
2D(φ, αGE) and 2D(φ, αBE) models, respectively. The degener-
acy factor d corresponds to the V �= 0 case; thus, the true V = 0
degeneracies can be higher than the V �= 0 ones reported.

|L| i |KGE|a |KBE| d E(V = 0) E(V �= 0) �E

0 1 0 0 1 0.00 235.97

1 1 (0,1) 1/2 4 53.34 52.72 −0.61

0 2 1 1 1 106.67 88.06 −18.61
2 1 1 0 2 106.67 106.67 0.00
0 3 1 1 1 106.67 128.09 21.42

2 2 (0–2) 1 2 213.35 194.74 −18.61
2 3 (0–2) 1 2 213.35 234.76 21.42

3 1 (1,2) 1/2 4 266.68 266.07 −0.61
1 2 (1,2) 3/2 4 266.68 270.04 3.36

4 1 2 0 2 426.70 426.70 0.00
0 4 2 2 1 426.70 428.25 1.55
0 5 2 2 1 426.70 430.13 3.43

3 2 (0,3) 3/2 4 480.03 483.39 3.36

4 2 (1–3) 1 2 533.37 514.76 −18.61
2 4 (1–3) 2 2 533.37 534.93 1.56
2 5 (1–3) 2 2 533.37 536.80 3.43
4 3 (1–3) 1 2 533.37 554.78 21.42

5 1 (2,3) 1/2 4 693.38 692.77 −0.61
1 3 (2,3) 5/2 4 693.38 695.61 2.23

4 4 (0–4) 2 2 853.39 854.95 1.56
4 5 (0–4) 2 2 853.39 856.82 3.43

3 3 (1,4) 5/2 4 906.73 908.96 2.23
5 2 (1,4) 3/2 4 906.73 910.08 3.36

6 1 3 0 2 960.06 960.06 0.00
0 6 3 3 1 960.06 962.16 2.10
0 7 3 3 1 960.06 962.18 2.12

6 2 (2–4) 1 2 1066.74 1048.13 −18.61
2 6 (2–4) 3 2 1066.74 1068.83 2.10
2 7 (2–4) 3 2 1066.74 1068.86 2.12
6 3 (2–4) 1 2 1066.74 1088.15 21.42

7 1 (3,4) 1/2 4 1333.42 1332.81 −0.61
1 4 (3,4) 7/2 4 1333.42 1335.46 2.04
5 3 (0,5) 5/2 4 1333.42 1335.65 2.23

6 4 (1–5) 2 2 1386.76 1388.32 1.56
4 6 (1–5) 3 2 1386.76 1388.86 2.10
4 7 (1–5) 3 2 1386.76 1388.88 2.12
6 5 (1–5) 2 2 1386.76 1390.19 3.43

3 4 (2,5) 7/2 4 1546.77 1548.81 2.04
7 2 (2,5) 3/2 4 1546.77 1550.12 3.36

8 1 4 0 2 1706.78 1706.78 0.00
0 8 4 4 1 1706.78 1708.78 2.00
0 9 4 4 1 1706.78 1708.78 2.00

8 2 (3–5) 1 2 1813.45 1794.85 −18.61
2 8 (3–5) 4 2 1813.45 1815.45 2.00

(continued).
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Table 2. (Continued)

|L| i |KGE|a |KBE| d E(V = 0) E(V �= 0) �E

2 9 (3–5) 4 2 1813.45 1815.45 2.00
8 3 (3–5) 1 2 1813.45 1834.87 21.42

6 6 (0–6) 3 2 1920.13 1922.22 2.10
6 7 (0–6) 3 2 1920.13 1922.25 2.12

5 4 (1,6) 7/2 4 1973.47 1975.50 2.03
7 3 (1,6) 5/2 4 1973.47 1975.70 2.23

8 4 (2–6) 2 2 2133.48 2135.03 1.55
4 8 (2–6) 4 2 2133.48 2135.47 1.99
4 9 (2–6) 4 2 2133.48 2135.47 1.99
8 5 (2–6) 2 2 2133.48 2136.91 3.43

9 1 (4,5) 1/2 4 2186.81 2186.20 −0.61
1 5 (4,5) 9/2 4 2186.81 2188.78 1.97

3 5 (3,6) 9/2 4 2400.16 2402.13 1.97
9 2 (3,6) 3/2 4 2400.16 2403.51 3.35

a For odd |L|, two of the fourfold degenerate energy levels with the same
|L| can be labelled by one |KGE| quantum number (x) and two by another
one (y). Such cases are marked as (x,y). For even |L|, where |L| �= 0 and
i > 1, two, twofold degenerate energy levels with the same |L| and V =
0 energy but different x and y |KGE| quantum numbers are mixed in the
V �= 0 case. Such cases are marked as (x − y).

where φ and αGE describe the relative torsional motion of
the two diatoms and the overall rotation of the two diatoms
about the z axis, respectively. The transformed Hamiltonian
becomes

Ĥ 2D,GE = −bH2

(
2

∂2

∂φ2
+ ∂2

∂α2
GE

− 2
∂2

∂φ∂αGE

)
+ V̂ (φ)

= −bH2

(
2

∂2

∂φ2
− L̂2 − 2i

∂

∂φ
L̂

)
+ V̂ (φ), (14)

where the third term couples the vibrational and rotational
dofs and L̂ = −i ∂

∂αGE
. The form of Ĥ 2D,GE is also justified

by the matrix elements of GGE, 4D (see Equation (3)).
The next step is to represent the periodic V̂ (φ) potential

by a Fourier series:

V̂ (φ) =
∑

k

Vk exp(ikφ), (15)

and examine matrix elements of Ĥ 2D expressed in the or-
thonormal �2D

k1,k2
(φ1, φ2) uncoupled basis. These integrals

can be transformed from the (φ1, φ2) to the (φ, αGE) coor-
dinate system

H2D
k1,k2;k′

1,k
′
2
= 1

4π2

∫ 2π

0
dφ1

∫ 2π

0
dφ2 exp(−ik1φ1)

× exp(−ik2φ2)Ĥ 2D exp(ik′
1φ1) exp(ik′

2φ2)

= 1

4π2

∫ 2π

0
dαGE

∫ 2π−αGE

−αGE

dφ exp(−i(k1 + k2)αGE)

× exp(−ik2φ)Ĥ 2D,GE exp(i(k′
1 + k′

2)αGE) exp(ik′
2φ)

= δLL′
[
bH2 (2K2

GE + L2 − 2KGEL)δKGEK ′
GE

+ VKGE−K ′
GE

]
= H2D,GE

KGE,L;K ′
GE,L′ , (16)

where the new quantum numbers KGE = k2 and L = k1 + k2

have been introduced and the transformed basis functions
are

f GE
KGE,L(φ, αGE) = 1

2π
exp(iKGEφ) exp(iLαGE), (17)

with integer KGE and L values, the latter corresponding to
the angular momentum quantum number. In this particu-
lar case, matrix elements of the potential energy operator
defined by Equation (7) take the following form:

VKGE,L;K ′
GE,L′ = δLL′VKGE−K ′

GE

= δLL′

[ (
V0

2
+ Vmin

)
δKGE,K ′

GE
+ V0

4
δ2,KGE−K ′

GE

+ V0

4
δ2,K ′

GE−KGE

]
. (18)

It is worth pointing out the following: (1) the H2D, GE blocks
with different L values are not coupled; and (2) the αGE-
dependent lower and upper integration limits of φ can be
modified to 0 and 2π for arbitrary φ-dependent periodic
basis functions with a period of 2π as the value of the
integral does not depend on αGE. The latter statement for
matrix elements of an arbitrary 2π periodic operator Â(φ)
can be proven by Fourier expansion of Â(φ) and the periodic
φ-dependent basis functions [gi(φ) = gi(φ + k2π ), k ∈ Z]

∫ 2π−αGE

−αGE

dφg∗
i (φ)Â(φ)gj (φ)

=
∑
klm

g∗
ikAlgjm

∫ 2π−αGE

−αGE

dφ exp[i(l + m − k)φ]

= 2π
∑
lm

g∗
i,l+mAlgjm. (19)

Thus, periodic exponential DVR basis functions can be em-
ployed to provide an alternative representation of Ĥ 2D,GE:

H2D,GE
k,L;k′,L′ = 1

2π

∫ 2π

0
dαGE

∫ 2π

0
dφ exp(−iLαGE)f ∗

k (φ)

× Ĥ 2D,GE exp(iL′αGE)fk′(φ)

= δLL′

[
− bH2

(
2
∫ 2π

0
dφf ∗

k (φ)

(
∂2

∂φ2
− iL

∂

∂φ

)

× fk′(φ) − L2δkk′

)
+ V̂ (φk)δkk′

]
, (20)

where fk(φ) stands for the kth exponential DVR basis func-
tion and φk is the grid point associated with fk(φ). This
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vibrational basis was employed in a previous study [18]
published on H+

5 by three of the authors of this paper.
The numerical variational results obtained with the

Ĥ 2D,GE Hamiltonian are exactly the same as those obtained
with the 2D(φ1, φ2) model given in Table 2. Note that the
basis functions defined by Equation (17) are eigenfunctions
of the uncoupled system, thus they provide an efficient basis
set for the expansion of the energy eigenstates of the weakly
coupled system, considerably facilitating the determination
of the KGE labels provided in the third column of Table 2
for the 2D(φ, αGE) model.

4.4. The 2D(φ, αBE) BE rovibrational model

The second coordinate transformation employed within this
section is specified as follows:

φ = φ2 − φ1,

αBE = φ1 + φ2

2
, (21)

with φ and αBE describing vibrational and rotational dofs,
respectively. The transformed Hamiltonian is

Ĥ 2D,BE = −bH2

(
2

∂2

∂φ2
+ 1

2

∂2

∂α2
BE

)
+ V̂ (φ)

= −bH2

(
2

∂2

∂φ2
− 1

2
L̂2

)
+ V̂ (φ), (22)

where L̂ = −i ∂
∂αBE

. The form of Ĥ 2D,BE is in line with the

matrix elements of GBE, 4D (see Equation (4)) and suggests
that φ and αBE are not coupled in this model. However, the
coordinate transformation of the integrals giving Hamilto-
nian matrix elements shows that the integration limits of φ
indeed depend on the actual value of αBE:

H2D
k1,k2;k′

1,k′
2

= 1

4π 2

∫ 2π

0
dφ1

∫ 2π

0
dφ2 exp(−ik1φ1) exp(−ik2φ2)

× Ĥ 2D exp(ik′
1φ1) exp(ik′

2φ2)

= 1

4π 2

[ ∫ π

0
dαBE

∫ 2αBE

−2αBE

dφ

× exp(−i(k1 + k2)αBE) exp

(
− i

k2 − k1

2
φ

)

× Ĥ 2D,BE exp(i(k′
1 + k′

2)αBE) exp

(
i
k′

2 − k′
1

2
φ

)

+
∫ 2π

π

dαBE

∫ 4π−2αBE

2αBE−4π

dφ exp(−i(k1 + k2)αBE)

× exp

(
− i

k2 − k1

2
φ

)

× Ĥ 2D,BE exp(i(k′
1 + k′

2)αBE) exp

(
i
k′

2 − k′
1

2
φ

)]

= δLL′

[
bH2

(
2K2

BE + 1

2
L2

)
δKBE,K ′

BE
+ VKBE−K ′

BE

]

= H2D,BE
KBE,L;K ′

BE,L′ , (23)

where KBE = (k2 − k1)/2 = KGE − L/2, and the Hamiltonian,
the basis functions, the integral volume element, and the
integration limits have been transformed according to the
coordinate transformation defined by Equation (21). The
new basis functions can be expressed as

f BE
KBE,L(φ, αBE) = 1

2π
exp(iKBEφ) exp(iLαBE), (24)

with integer L, and integer (for even L) or half-integer (for
odd L) KBE values. Thus, the period of f BE

KBE,L(φ, αBE) with
respect to αBE is always 2π , but the period for φ, depending
on the parity of L, is either 2π (for even L) or 4π (for odd
L). Note that it is possible and reasonable to have the range
of φ be 0–4π for all values of L. In this case, the normalisa-
tion factor in Equation (24) has to be changed from (2π )−1

to (2
√

2π )−1. By employing the matrix elements provided
by Equation (23), it is straightforward to obtain the energy
levels corresponding to the 2D(φ, αBE) BE rovibrational
model. Alternatively, by performing similar manipulations
to those carried out at the end of the previous subsection,
one can show that φ-dependent periodic DVR basis func-
tions can also be used. Energy levels obtained from the
BE model agree with their 2D(φ, αGE) GE and 2D(φ1, φ2)
counterparts.

5. The Eckart and Sayvetz embeddings for H+
5

In a recent study [18], some of us computed the rovibra-
tional energy levels of H+

5 variationally using the internal
coordinates of Figure 1 and employing the geometric em-
bedding. To supplement the unusual results obtained, vide
infra, the Eckart embedding [41] was also applied in the
hope that it reduced the coupling between the vibrational
and rotational dofs.

In Ref. [18], the Eckart embedding resulted in energy
levels which differed from the results obtained with geomet-
ric embedding and followed the rigid-rotor model. This led
some of us [18] to question the applicability of the Eckart
embedding in this particular case. Furthermore, a flexible
Eckart embedding [42] (hereafter called Sayvetz embed-
ding) was also introduced in Ref. [18], where the reference
structure follows the torsional motion. The Sayvetz em-
bedding resulted in energy levels which were in agreement
with the ones computed using the geometric embedding.
Here, we are clarifying a statement made about the Eckart
embedding in Ref. [18].

The translational Eckart condition,
∑N

α=1 mαrα = 0, is
satisfied automatically for H+

5 with the current set of coor-
dinates in any embedding if only torsional motions of the
H2 units are considered. This is due to the fact that with
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x = y = z = 0, the COM of the molecule always lies at the
origin of the body-fixed coordinate system (see Figure 1).

The case of the rotational Eckart condition,∑N
α=1 mα(rα × aα) = 0, where aα denote the reference po-

sitions, is almost as straightforward. Using the nuclear po-
sition vectors of the bisector embedding (Equation (2))
and the D2d structure of H+

5 as the reference structure,
the rotational Eckart conditions are satisfied. This leads
to the conclusion that the bisector embedding is equivalent
to the Eckart embedding for the models investigated. This
also implies that using the Eckart embedding also requires
the use of the manipulations explained for the 2D(φ, αBE)
BE rovibrational model (see the text below Equation (24)).
However, in the geometric embedding, using the nuclear
position vectors of Equation (3) and the same D2d refer-
ence structure, the rotational Eckart condition is not sat-
isfied. Nevertheless, it can be shown that with a reference
structure which follows the torsional motion, the rotational
Eckart condition is also satisfied. This indicates that the ge-
ometric embedding is equivalent to the Sayvetz embedding.

These findings suggest that a previous statement made
by some of us [18] about the inadequateness of the Eckart
embedding when used for H+

5 was incorrect. As expected
and shown here, an appropriate use of the Eckart embed-
ding in the case of H+

5 also results in correct rotational-
vibrational energy levels.

6. On the rovibrational energy level structure of H+
5

and its models

In a recent publication [18], some of us noted that the rovi-
brational energy levels of H+

5 display several highly pe-
culiar characteristics. Some of these unusual features are
displayed by the E(V �= 0) results of Table 2. The 2D(φ,
αGE) and 2D(φ, αBE) rovibrational models of H+

5 can be in-
terpreted such that the B and C rotational constants are zero
and the A = bH2/2 rotational constant is about 26 cm−1.
Several important conclusions can be drawn from the com-
puted results presented in Table 2.

First, consider the V = 0 states. All these states can be
described by a single |KGE| value. Labelling of the four and
eightfold degenerate states requires two |KGE| values char-
acterising an equal number of eigenstates, the only excep-
tions being the |KGE| = |k2| = |k1| cases where a single |KGE|
is sufficient. The 12-fold degenerate states require three or
four |KGE| values for their labelling, depending on whether
the k2

1 + k2
2 = 2(k

′
1)2 or the k2

1 + k2
2 = (k

′
1)2 + (k

′
2)2 rela-

tion holds. For example, the 12 eigenstates at 1333.42 cm−1

correspond to the 32 + 42 = 02 + 52 relation, while the
12-fold degenerate 2666.84 and 3466.90 cm−1 eigenstates
(not shown in Table 2) correspond to 12 + 72 = 52 + 52

and 42 + 72 = 12 + 82, respectively.
Second, let us turn on the potential. This will affect

the energy levels and the wavefunctions, and thus their la-
belling, in a number of ways. (1) For V �= 0, |KGE| is no

longer a good quantum number for the eigenstates corre-
sponding to a given |L|. On the other hand, |KBE| appears
to provide a unique set of labels for the energy levels cor-
responding to a given |L|, increasing |KBE| corresponds to
increasing energy order. (2) The L = 0 energy values, which
one could call vibrational band origins (VBOs), always
change when the potential is turned on. The L = 0 en-
ergy values of Table 2 are in fact the same as the energies
presented in Table 1 for the 1D(φ) model. (3) When consid-
ering even values of |L| > 0, the following can be observed:
(a) The energy of the first level (i = 1 and |KBE| = 0) appears
to be independent of the height of the barrier in the poten-
tial, although the corresponding wave functions change as
the PES changes. (b) While the energies do change in the
previously (V = 0) four and eightfold degenerate |KGE| =
|k2| = |k1| cases, one |KGE| is still sufficient to label the
eigenstate. In all other cases, there is a 50–50 mixing of x
and y basis states, which is indicated in the corresponding
column of Table 2 employing the (x − y) notation. (c) All
the ‘rovibrational’ energy levels can be simply calculated
via the equation E(|Leven| �= 0) = E(L = 0) + bH2L

2, i.e.,
by knowing the ‘vibrational’ energies and the value of |L|,
as suggested by the BE model (a similar statement holds
for the wavefunctions, as well). For example, a constant
splitting of 40.02 cm−1 is first observed for the first two
purely torsional VBOs (L = 0, i = 2 and 3), and the
same splitting is also found between the pairs of states with
i = 2 and 3, |KBE| = 1 and even |L| values. (4) For odd val-
ues of |L| similar but somewhat different statements hold:
(a) In the previously (V = 0) fourfold degenerate cases,
the fourfold degeneracy remains and the same |KGE| values
can be used to label the eigenstates. (b) In the previously
(V = 0) eightfold degenerate cases, there is a splitting into
two fourfold clusters, where one |KGE| labels two eigen-
states and another one the remaining two. Such cases are
indicated in the corresponding column of Table 2 by em-
ploying the (x, y) notation. (c) For the previously (V = 0)
12-fold degenerate states, the two subcases discussed above
for even and odd |L| values will both be present. (d) All
the ‘rovibrational’ energy levels can still be simply calcu-
lated based on the |L| = 1 energies and the value of |L| via
the equation E(|Lodd| �= 0) = E(L = 1) + bH2 (L2 − 1), as
also suggested by the BE model.

Third, an unanticipated but seemingly general aspect of
the rovibrational energy level structure of H+

5 comes in the
fact that energy states that are labelled as |L| = 1, |KGE| = 1
(and which have energies of 52.72 cm−1) are lower in en-
ergy than the L = 0, |KGE| = 1 level (which is found at
88.06 cm−1). This apparently odd energy ordering, where
the |L| = 1 level is lower in energy than the corresponding
L = 0 state, is related to the difference in the integration
limits for φ when L is even or odd, as described above.
When the range of φ is made to be [0,4π ] in all cases,
one finds that the nodal structure for the states with L = 0
and |KGE| = 1 have two quanta in the torsion rather than
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Figure 3. Plot of five wave functions obtained by solving the Ĥ 2D,BE model Hamiltonian with the potential defined in Equation (7); (a)
provides the ground state (L = KBE = 0 and consequently k1 = k2 = 0), (b) and (c) correspond to linear combinations of states with L = 0
and |KBE| = 1 (k1 + k2 = 0 and |k1 − k2| = 2), while (d) and (e) show two linear combinations of states with |L| = 1 and |KBE| = 1/2 (|k1

+ k2| = |k1 − k2| = 1).

one, while the states with |L| = 1, |KGE| = 1 have only one
quantum in the torsion. If we focus on the L and |KBE| quan-
tum numbers, the energy progressions appear to be more
consistent with expectations (see Table 2). This change in
the quantum number descriptions can also be seen in the
wave functions for |L| = 0 and 1 with |KBE| ≤ 1, using the
potential defined in Equation (7), plotted in Figure 3. As
clearly seen, for the ground state (Figure 3(a)), the value
of the wave function is essentially constant and the wave
function is independent of αBE. When L = 0 and |KBE| = 1
(|k1| = |k2| = 1 and k1 + k2 = 0), the nodal pattern in φ is
consistent with two quanta in the torsion, rather than one.
In contrast, when |k1| and |k2| equal 1 and 0, there are half as
many nodes in φ, and now there is a node in αBE consistent
with the assignment of this state to |L| = 1 and |KBE| = 1/2.
While this choice of coordinates and quantum numbers re-
sults in a more straightforward energy progression, it still
leads to atypical behaviour as the requirement that both k1

and k2 take on integer values means that |KBE| can be either
integer or half integer. The E(V = 0) states provide a perfect
physical explanation for this unusual characteristics of the
energy level set.

Fourth, it is of general interest to ask how the com-
puted rovibrational energies change as the torsional bar-
rier changes. The results of this analysis are provided
in Figure 4, where the energies and the value of V0 in
Equation (7) are provided in reduced units, i.e., scaled by
the rotor constant for H2, bH2 . In this plot, the energies

0 10 20 30 40 50

L ; (d)

4; (4)

2;  (4)

0;  (2)
1;  (4)

3; (4)

 ( k
1

k
2
); (d)
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(1,1); (4)

(2,2); (4)

(0,0); (1)

(3,0); (4)

(3,1); (8)

(1,0); (4) 1

3

5

7

9

Figure 4. A plot showing the correlation between the energy
levels for the Ĥ 2D,BE model of H+

5 and the size of V0 in Equation
(7), via reduced energies and the reduced υ0 = V0/bH2 quantity. In
the limit of small υ0, the eigenvalues are labelled by the absolute
values of the quantum numbers for the uncoupled basis, (|k1|, |k2|),
while in the large barrier limit, the energies are labelled by |L|.
In addition, the degeneracy of the states are provided by (d). The
vertical red and dashed blue lines represent the values of υ0 for
H+

5 and methanol, respectively.
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Figure 5. Plot of the projection of the diffusion Monte Carlo
ground-state probability amplitude for H+

5 [35] obtained using the
potential of Aguado et al. [28].

ε2D = E2D/bH2 are reported relative to the zero-point en-
ergy and as a function of υ0 = V0/bH2 , where V0 represents
the height of the barrier in the torsion potential. The plotted
eigenvalues are described in terms of the quantum num-
bers for the uncoupled basis, |k1| and |k2| (left) or their sum
|L| = |k1 + k2| (right), and correspond to the two limiting
cases, i.e., the zero and the very large barrier cases, respec-
tively. The degeneracy (d) of each level is also provided.
As seen, in the limit of large υ0, the tunneling structure
expected for semirigid molecules is recovered, where the
degeneracy reflects the double-well nature of the potential
as well as the fact that the energy depends on |L| and not
its sign. In this plot, the value of υ0 that is appropriate for
H+

5 is 1.5, and this is indicated with a red vertical line in
the figure. As anticipated by the discussion above, this cor-
responds to an energy level progression that is very close
to the barrierless (υ0 = 0) limit. The value of υ0 that cor-
responds to the barrier in methanol is approximately 44
[43,44] and is shown with a blue dashed line in Figure 4.
This value is reflected in the fact that the rovibrational en-
ergy level pattern in methanol is much closer to the high
barrier limit than to the barrierless limit. Other molecules
of note are dimethyl acetylene, which has a small value of
υ0 = 1.12 [45], corresponding to a case very similar to H+

5 ,
and ethane, characterised by a very large value of υ0 =
188 [46,47]. In fact, as noted by Bunker and Jensen [48],
‘except in ultrahigh resolution spectroscopic studies ethane
can be considered to be a rigid molecule and the possibility
of torsional tunneling can be neglected’. It is also of interest
to note that for tolane (diphenyl-acetylene) υ0 = 533 [49].

Before concluding this section, it is of interest to con-
sider how well these models are expected to describe

the full-dimensional system in which all nine vibrational
degrees of freedom are considered. As some of us re-
ported in Ref. [18], the energy pattern obtained in the full-
dimensional calculations reflects the results of the model
systems described here. This is also consistent with the
projections of the ground-state probability amplitude, eval-
uated using the potential surface of Aguado et al. [28,35],
plotted in Figure 5. While the projected probability am-
plitude shows structure, the amplitude of the oscillation is
much smaller than the average amplitude. This indicates
that even when zero-point energy is included in all of the
vibrational degrees of freedom, the internal rotor in H+

5
remains nearly isotropic. Preliminary DMC results of rota-
tion/torsion excited states of H+

5 show energy level patterns
similar to those described above.

7. Conclusions

The different 1D and 2D Hamiltonians, based on the φ

torsional and α rotational coordinates, which can be con-
sidered as reduced-dimensional models describing internal
motions of the H+

5 molecular ion, derived as part of this
work and employed in energy-level computations, yield the
following important conclusions: (a) the same 1D(φ) vi-
brational model emerges from both the 2D(φ, αGE) GE and
2D(φ, αBE) BE models, where GE and BE refer to the geo-
metric and bisector embeddings, respectively (see Figure 2);
(b) equivalent 2D rovibrational models corresponding to
different coordinates and embeddings provide the same
energy levels, as required; (c) in case of the 2D(φ1, φ2)
model of two torsional motions uncoupled in the kinetic
energy operator, separation of the rovibrational levels ac-
cording to the L angular momentum quantum number is
not straightforward; (d) both the 2D(φ, αGE) GE and 2D(φ,
αBE) BE models allow the separate computation of rovi-
brational levels with different L values; and (e) the 2D(φ,
αGE) GE and 2D(φ, αBE) BE models provide correct en-
ergy levels and wavefunctions with either periodic complex
exponential or exponential DVR basis functions. Further-
more, these modelling efforts provide a clear and simple
physical interpretation of (a) some of the highly peculiar
characteristics of the energy level structure of H+

5 and (b)
the differences in the rovibrational energy level patterns and
the related degeneracies of H+

5 and dimethyl acetylene, two
molecules characteristic of the zero-barrier limit, as com-
pared to methanol and ethane, two molecules corresponding
to the large-barrier limit.
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