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112, Hungary

ABSTRACT: Quantum mechanics builds large-scale graphs (networks): the vertices are
the discrete energy levels the quantum system possesses, and the edges are the (quantum-
mechanically allowed) transitions. Parts of the complete quantum mechanical networks
can be probed experimentally via high-resolution, energy-resolved spectroscopic
techniques. The complete rovibronic line list information for a given molecule can only
be obtained through sophisticated quantum-chemical computations. Experiments as well as
computations yield what we call spectroscopic networks (SN). First-principles SNs of even
small, three to five atomic molecules can be huge, qualifying for the big data description.
Besides helping to interpret high-resolution spectra, the network-theoretical view offers
several ideas for improving the accuracy and robustness of the increasingly important
information systems containing line-by-line spectroscopic data. For example, the smallest
number of measurements necessary to perform to obtain the complete list of energy levels
is given by the minimum-weight spanning tree of the SN and network clustering studies
may call attention to “weakest links” of a spectroscopic database. A present-day application
of spectroscopic networks is within the MARVEL (Measured Active Rotational−Vibrational Energy Levels) approach, whereby
the transitions information on a measured SN is turned into experimental energy levels via a weighted linear least-squares
refinement. MARVEL has been used successfully for 15 molecules and allowed to validate most of the transitions measured and
come up with energy levels with well-defined and realistic uncertainties. Accurate knowledge of the energy levels with computed
transition intensities allows the realistic prediction of spectra under many different circumstances, e.g., for widely different
temperatures. Detailed knowledge of the energy level structure of a molecule coming from a MARVEL analysis is important for a
considerable number of modeling efforts in chemistry, physics, and engineering.

1. INTRODUCTION

Both graph theory, whose more or less definitive start date is
1735, when Euler found an ingenious solution to the
Königsberg bridges’ problem,1 and (high-resolution) molecular
spectroscopy, whose less well-defined origin can be found in
works of Fraunhofer, Kirchhoff (incidentally, a native of
Königsberg), Brewster, and Bunsen in the first half of the
1800s,2 have a rather long history.3 Around the year 2000 both
fields witnessed major shifts in their subjects. Graph theory was
extended from the study of small to that of truly large-scale,
complex systems.4−6 These complex networks contain millions
and easily billions of nodes and links,7−13 their analysis often
requires algorithms developed for big data. At about the same
time, high-resolution molecular spectroscopy witnessed the
emergence of more and more complete line lists of
molecules,14−32 containing not thousands but millions and
eventually billions of entries, preferably including various
spectral line parameters. Atomic spectroscopic databases33 are
just as important for certain modeling studies and they can be
quite large, as well.
Complex networks appear ubiquitously in nature, society,

communication, and elsewhere.7 Traditionally, small(er) net-
works have been examined and interpreted via random graph

theory, a mainstay of discrete mathematics developed and
popularized by Erdős and Reńyi around 1960.34−36 Distribution
of the number of edges, emanating from a vertex, of the Erdős−
Reńyi random graphs have a well-defined, characteristic mean
value, often referred to as a scale. However, about two decades
later it became widely recognized that most networks of
practical interest do not follow the laws characterizing the
Erdős−Reńyi random graphs.7,34,37,38 The first-neighbor degree
distributions of most complex natural networks appear to be
free of a scale, as emphasized for physicists by Barabaśi and
Albert.4 Since that pioneering study, a plethora of papers
appeared developing the “mathematics” and “physics” of
complex networks, both natural and model ones, and finding
new occurrences of networks following a degree distribution
which can be characterized as scale free.5 Following studies by
Barabaśi and co-workers,4,5,8−11,13 it became clear that for a
faithful representation of complex systems the random network
theory of Erdős and Reńyi34 has to be superseded by that of
scaling, including scale-free (SF), random networks.7
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Complete characterization of high-resolution rotation−
vibration−electronic (rovibronic) spectra of a considerable
number of molecules, the only quantum systems considered
here, starting from the microwave and extending to the
ultraviolet, is a prerequisite for modeling and understanding of

many processes and phenomena relevant in physics, chemistry,
and engineering. Modellers of the atmospheres of planets and
cool stars as well as those investigating combustion in rocket
exhausts and turbine engines need detailed and accurate
temperature-dependent line-by-line information, which not

Figure 1. Decade-by-decade temporal development of the experimental spectroscopic network (SN) of H2
16O. The shape of SNs can be drawn

arbitrarily; the representation selected here emphasizes the most important characteristics of the experimental SN of H2
16O. The visual information

is augmented in the middle of the figure with the decade-by-decade expansion of the number of measured transitions and energy levels. The
transitions measured in the different time intervals are indicated in the panels with different colors, the later measurements are drawn on top of the
earlier ones. The separate ortho- and para-H2

16O components, ortho being the larger one due to the effect of nuclear spin statistics on the measured
intensities, are clearly visible. Note, in particular, the more-or-less quadratic increase in the number of measured and assigned transitions
accompanied by only a more-or-less linear increase in the number of experimentally known energy levels.
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even the most elaborate spectroscopic measurements can
provide (for example, at elevated temperatures). In statistical
theories of chemical reaction rates, a central role is assumed by
the density of (ro)vibrational states.39 The experimental
determination of the density of states and its integral, the
total number of accessible states, is a formidable challenge at
high(er) energies for all but the smallest molecules. Recent
advances in high-resolution molecular spectroscopy led to a
considerable increase in the extent of related experimental
spectroscopic information. Some of the data have been
deposited, sometimes in a critically evaluated and annotated
form, in databases.17−32,40−43

As an example, Figure 1 shows the temporal development of
our experimental understanding of the rovibrational energy
level (and transition) structure of the lowest electronic state of
the H2

16O molecule, based on data collected in ref 42. As usual
for graphs, the positioning of the vertices and edges of Figure 1
is completely arbitrary. The overlap of the color-coded
rovibrational transitions of Figure 1 show how the number of
experimental transitions that have been measured and analyzed
grew decade by decade until it reached our present under-
standing, with about 20000 experimental energy levels deduced
from about 200000 experimental transitions.42 Treatment of
the rapidly increasing information and the desire to turn
information into knowledge requires sophisticated procedures
in the generation, accumulation, validation, handling, visual-
ization, and distribution of spectroscopic data.
The result of a spectroscopic measurement is almost always a

set of experimental transition wavenumbers and transition
intensities for a given wavenumber range, covering selected
parts of the energy eigenstates. It is feasible to publish such an
experimental list and compare the results with those of previous
reports through effective spectroscopic constants describing
these transitions with experimental accuracy. The assignment
procedure is sped up, and the results are more clearly
embedded in the set of existing data if one can access a
database with the complete set of existing transition wave-
numbers and energy levels and use the combination differences
procedure. However, this has rarely been done in the past. This
is a significant problem in high-resolution spectroscopy as there
is an unusually large number of inherent interdependencies
among the energy levels and the transitions, most of which are
ignored in the traditional approach. There are several further
notable disadvantages related to the traditional way spectro-
scopists have been assigning their measured high-resolution
spectra. These disadvantages often transform into significant
problems when the data are deposited in spectroscopic
databases. It is worth reviewing here some of these hindrances
of the traditional approach.
There are only a few good quantum numbers44 character-

izing the energy levels involved in the measured transitions.
Most of the quantum numbers used to describe the states are
approximate44 ones. Creation of a database where the energy
levels are labeled with approximate quantum numbers,
independently of how meaningful the quantum numbers are,
assures that a unique and complete set of experimental energy
levels can be built.45−47 Nevertheless, the approximate nature of
the quantum numbers may become a significant problem when
a large number of scientists contribute to the understanding of
the experimental rovibronic states of a molecule, this being the
usual case, as they tend to use different, often conflicting
approximate quantum numbers (e.g., local vs normal mode
labels for the vibrations and the different labeling possibilities

for symmetric and spherical tops, especially when contortional
motions44 are allowed). The problem is exacerbated at higher
excitations when it usually becomes completely unfeasible to
provide physically meaningful labels.
If there are only a few rovibrational transitions measured for

a given vibrational parent, construction of a reliable effective
Hamiltonian is significantly hindered. This may be the case, for
example, when the measurement is based on the use of a single
narrow laser source. There may certainly be a difference
between the accuracy and the precision of the energies when
only a small portion of a spectrum is analyzed. Determining the
accuracy of measurements processed via the traditional
approach may be misleading. Lacking the details provided by
a global analysis of all measurements may allow the declaration
of much too small uncertainties, the incompatibility of the
uncertainties attached to the transitions and the underlying
energy levels may become unrealistic.
Finally, in an ideal world with zero uncertainties in the

measurement results, knowledge of N connected nonzero
rovibronic energy levels would require N measurements (it is
natural to take the lowest energy level as zero). However, as the
entries of Table 1 exemplify, the usual spectroscopic practice is

very far away from this situation: it happens that 10 times as
many transitions are measured than energy levels determined.
Thus, how to best utilize all the measurement results and how
to minimize unnecessary and costly experimental efforts seems
to be an overly important task in high-resolution spectroscopy.
These problems are realized immediately when spectroscopic

databases are upgraded with the latest information, which
happens on a regular basis with, for example, the canonical
HITRAN database.24 Each time a large set of corrections is
introduced, they improve the overall quality of the database but
it often remains unclear to the user which data are responsible
for the previous problems and the corrections. The rapid
growth of measured transitions and the much less rapid
evolution of our knowledge about the energy level set can also
be traced back to shortcomings of the traditional, serial
approach to high-resolution spectra and spectroscopy.

Table 1. Selected Data, Including the Number of
Experimentally Identified and Subsequently Validated
Transitions and the Resulting MARVEL Energy Levels,
about Experimental Spectroscopic Networks of Small
Molecules

measured transitions

species ref identified validated energy levels no. of sources
12C2 59 23343 22949 5699 39

H3
+ 56 1610 1410 652 26

H2D
+ 57 195 185 109 13

D2H
+ 57 154 136 104 9

H2
16O 42 184667 182156 18486 93

H2
18O 40 32325 31705 5131 48

H2
17O 40 9169 9028 2723 33

HD16O 41 54740 53291 8818 74
HD18O 41 8729 8634 1864 18
HD17O 41 485 478 162 3
D2

16O 43 63050 62372 12301 74
D2

18O 43 12163 12018 3351 18
D2

17O 43 600 583 338 3
14NH3 58 29450 28530 4961 56

H2
12C12C16O 55 3982 3194 1722 12

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.6b02293
J. Phys. Chem. A 2016, 120, 8949−8969

8951

http://dx.doi.org/10.1021/acs.jpca.6b02293


Considering all the interdependencies of all the measure-
ments all at the same time seems to be the answer to almost all
of the problems mentioned. This provides a way to an
improved error and uncertainty analysis, a much improved
facility to determine the overall accuracy of the complete set of
measurements, a clear recipe to provide accurate uncertainties,
covariances, and provenances, while allowing us to utilize all the
measurements that have dependable uncertainties independent
of whether they are small or large.
It is the belief of the authors that in search of useful novel

tools for validating and improving energy levels and transitions
within spectroscopic line lists, as well as improving the
understanding of the underlying experiments, network theory
and its sophisticated polynomial algorithms offer interesting
and highly useful possibilities, some of which are described and
explored below.
This belief is based on the fact that for individual molecules

quantum mechanics (QM) offers a simple, natural, and elegant
way to build large-scale networks. The QM networks are made
up of energy levels, forming nodes (vertices), while the allowed
transitions between the levels form links (edges).48−54 It is
feasible to characterize QM networks experimentally via high-
resolution techniques of molecular spectroscopy.40−43,55−60

Thus, the term spectroscopic network (SN) was introduced48 for
practical realizations of QM networks. The robust organizing
principle of SNs is provided by QM selection rules; different
transitions and transition intensities characterize different
spectroscopic techniques. Even for the experimentally most
thoroughly studied molecules the observable transitions form
just a tiny part of all the allowed transitions.42,58,60 The
complete list of allowed transitions can only be determined via
sophisticated fourth-age quantum chemical computations.61−64

Different intensity cutoffs for the transitions can be used to
build first-principles SNs of different size.52 Figure 2 shows the

visual representation of four such first-principles SNs of H2
16O,

corresponding to 298 K one-photon absorption spectra with
transition intensity cutoffs of 10−20, 10−22, 10−24, and 10−26

cm molecule−1. The data employed to generate Figure 2 are
available in ref 42. The components corresponding to ortho-
and para-H2

16O are clearly visible in Figure 2, as well as the
buildup of vertices with a large number of edges, called hubs
(section 2).
Viewing high-resolution molecular spectra as networks

(Figure 3, vide inf ra) helps to answer a number of important
as well as intriguing questions, some of which address
shortcomings of the traditional, serial spectroscopic approach
mentioned, including the following:

(1) What would be the most economical way, i.e., the one
based on the smallest number of feasible measurements,
to determine the complete set of rovibronic states of a
molecule?

(2) What is the best way to validate existing spectroscopic
measurements and to guide the design of future ones if
efficiency is of prime concern?

(3) Could one order the energy levels of a molecule based on
their “importance”, and could we determine those
transitions whose accurate knowledge is most important
for improving the true accuracy of experimental line lists
and related information systems?

(4) How could experimental and theoretical high-resolution
spectral data be unified and how could first-principles
data be used to simplify the assignment of measured
spectra?

The steps leading to answers to these questions require the
understanding of the structure of SNs. For example, we need to
know how many components would an experimental and a
first-principles spectroscopic network possess. Then, we must

Figure 2. Visual representation of first-principles one-photon absorption spectroscopic networks of H2
16O obtained with transition intensity cutoffs,

from left to right, of 10−20, 10−22, 10−24, and 10−26 cm molecule−1. The two principal components and the bipartite character of the network are
clearly visible, as well as the development of hubs (energy levels with an unusually large number of transitions) within the network.
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understand whether the structure of an experimental SN is such
that it supports only small components or it is characterized by
a giant component or perhaps a few of them. We also need to
know if any of these components, small or large, have any
special structure; in other words, would the various selection
rules of molecular spectroscopy dictate any special structure for
the experimental and/or first-principles SNs? Furthermore,
what kind of degree distribution would the links in the
components of an experimental SN follow and would this be
different from the distributions observable in the corresponding
(truncated) first-principles SNs? How about not only first but
also second and higher degree distributions?
It is certainly clear that interpretation and validation of the

results of high-resolution spectroscopic experiments via net-
work theory help to improve the accuracy, completeness, and
robustness of line lists and guide related experiments. It is
noted in this respect that having complete and accurate line lists

for molecules of, for example, atmospheric and astrophysical
interest at arbitrary temperatures is one of the “holy grails” of
modern applied high-resolution spectroscopy. It is also
important to emphasize the complementary nature of first-
principles and measured line lists: although the relative
accuracy of even the best first-principles energy levels is some
10−10000 times worse than that of typical experimental high-
resolution transition data, most of the computed transition
intensities have accuracies similar to those of experimental data.
Thus, for the foreseeable future one needs to consider the
combination of experimental and ab initio information to satisfy
the needs of modellers.
The rest of the paper is organized as follows. Section 2

provides the graph-theoretical foundation necessary for the
discussions in the subsequent sections of the article. Section 2
can be skipped by those familiar with at least the elementary
ideas of modern network theory. Section 3 provides a detailed

Figure 3. Connection between the pure absorption rotational spectrum of H2
16O corresponding to the ground vibrational state (upper panel) and

the two components of the spectroscopic network (lower left and right panels, corresponding to para- and ortho-H2
16O, respectively) these

observable transitions determine. The standard rotational J Ka Kc quantum number assignment is indicated both in the spectrum and in the ovals,
representing the energy levels. The two-component bipartite nature of the spectrum is emphasized by the applied coloring (see the text for further
details). The arrows point toward the upper state involved in a given transition.
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account of the structure of SNs and how network theory can be
used to better understand high-resolution spectroscopic results.
Section 4 summarizes details about the presently most
important application of SNs, the MARVEL (Measured Active
Rotational−Vibrational Energy Levels) procedure,48−50 used to
determine experimental-quality energy levels from all the
available experimentally measured transitions. Section 5
summarizes and concludes our presentation.

2. GRAPH-THEORETICAL FUNDAMENTALS

Though some of the terms utilized are only defined later, we
start the discussion with Figure 3, showing the connection
between a measured high-resolution spectrum and its
spectroscopic network in a simple, pictorial way.
The simulated spectrum shown in Figure 3 is the pure

rotational absorption spectrum of H2
16O corresponding to its

ground vibrational state. Both the line positions and their
intensities are taken from a first-principles exact nuclear-motion
computation.15 Each line in the simulated spectrum is color-
coded as follows: lines corresponding to ortho-H2

16O are
indicated with black and blue, whereas those of para-H2

16O
with green and red. For all transitions, the color of the lower
half of the line corresponds to the lower state, whereas that of
the upper half to the upper state. For the more intense lines a
quantum-number assignment of the transition is also given, the
numbers provided correspond to the rotational quantum
number triad J Ka Kc (vide inf ra). The transitions are indicated
by arrows in the two graphs below the spectrum. There is a
one-to-one correspondence between the two graphs containing
(colored) energy levels and the spectrum containing (colored)
transitions. The transitions are represented in the graphs as
arrows, because in an absorption spectrum there is always a
lower and an upper state and the arrows point from the lower
to the upper state. Note that spectroscopic networks will be
treated later as undirected graphs. As it is very clear from the
two graphs, both for ortho- and para-H2

16O the transitions
always connect states where the Kc values have different parity
(odd vs even). This figure implies right away important facts
about the spectrum of H2

16O: the graph corresponding to the
spectrum contains two components (ortho- and para-H2

16O)
and each component is a bipartite graph (this explains the use
of two colors for each component). It is also evident that the
graphs have only even-membered cycles, the smallest cycles
have four vertices. The spectrum, at about 205 cm−1, also shows
an accidental degeneracy of two transitions, explaining the
overlapping colors, one belonging to ortho- and one to para-
H2

16O. The 3 times larger absorption intensity of the ortho
transitions as compared to the corresponding para transitions,
due to nuclear spin statistics, is also clearly visible in the figure,
for example at about 150 cm−1.

For the purposes of the present discussion, networks,5,7 and
graphs37,65−67 are considered to be equivalent mathematical
constructs. In what follows, in section 2.1, we give selected
definitions of graph theory relevant for the study of
spectroscopic networks. Some of the elementary definitions
are shown graphically in Figure 4 to help those unfamiliar with
graph theory. Section 2.2 introduces the most important matrix
representations of networks. This is followed by important
concepts useful to understand certain characteristics of SNs,
including vertex ranking (section 2.3), and later we discuss
complexity measures (section 2.4) and clustering techniques
(section 2.5).
The most important terms useful to understand this paper

are printed in bold in this section. Therefore, it is hoped that
this section can serve as a glossary, where readers can turn to if
becoming uncertain about the meaning of a particular term in
the later parts of the paper.

2.1. Definitions. Intuitively, a graph is a representation of a
set of objects where certain pairs of the objects (vertices) are
connected by links (edges). Mathematically, a graph G is an
ordered pair, G = (V, E), where V is a set of vertices and E is a
set of edges, the edges being two-element subsets of V. If V′ is a
subset of V, denoted by V′ ⊆ V, and E′ ⊆ E, then the graph
G′ = (V′, E′) is a subgraph of G = (V, E). We will write for the
number of vertices |V| = n, and for the number of edges |E| = m.
Energy levels and transitions among the energy levels of a

given quantum system are represented with the vertices and
edges of the network G, respectively. An SN of a given
molecule “mol” can be denoted as Gmol. Further parameters
characterizing a spectroscopic network G, e.g., temperature,
measurement characteristics (for example, absorption or
emission), and a transition intensity cutoff value, can be listed
as subscripts to G. Note that the energy levels in an SN carry
labels, usually made up of “good” and “approximate” quantum
numbers.44 The labels have to be unique but occasionally it
may be advantageous if they not only contain independent but
also redundant information.56,58,59 A further peculiar character-
istics of SNs is that the vertices, the rovibronic energy levels,
could be ordered on the basis of their energy values (Figure 3).
SNs could also be ordered on the basis of quantum numbers;
perhaps the most useful quantum number is J, corresponding to
the overall rotation of a molecule. This ordering would help
placing states connected by strict selection rules close to each
other.
The number of transitions (edges) that connect to an energy

level (vertex) is called the degree of the energy level. Naturally,
the sum of the energy level degrees is twice the number of
transitions, m. Each edge e = {u, v} ∈ E connects two adjacent
vertices u, v ∈ V. If u = v, the edge is called a loop. SNs do not
contain loops. Experimental (measured) SNs are usually
multiedge graphs, containing multiple edges (between the

Figure 4. Elementary definitions of graph theory useful to understand characteristics of spectroscopic networks.
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same pair of vertices), corresponding to multiple measurements
of a certain transition. Graphs that contain neither loops nor
multiple edges are called simple graphs. First-principles SNs, in
other words levels and transitions of the computed line list of a
molecule corresponding to a chosen measurement technique,
are simple graphs. If the edges have no direction, the graph is
called undirected; otherwise, it is called directed (in a directed
network the edges have a direction, pointing from one vertex to
another). Spectroscopic networks are considered to be and are
handled here as undirected graphs though in the case of
absorption or emission spectra a direction, based on energy
values and leading to a directed graph (Figure 3), could be
added.
Sometimes it is useful to assign weights to the vertices or

edges of the graph. In SNs it is most advantageous to assign
non-negative transition intensities to edges as weights.
Naturally, other weight choices are also feasible. For example,
a positive weight on the vertices of a measured SN can be
deduced from the uncertainties of the energy levels, perhaps
coming from a MARVEL-type analysis (vide inf ra).
A path P of length k is a nonempty graph P = (VP, EP) of the

form VP = {x0, x1, ..., xk} and EP = {x0x1, x1x2, ..., xk−1xk}, where
the xi are all distinct. An undirected graph G is called
connected if there is a path between any pair of its vertices.
Otherwise, it is called disconnected. A component S of G is a
maximal connected subgraph of G, maximal in the sense that no
other vertex (and its edges connecting it to S) can be added to
S with preserving the connectedness of S. First-principles SNs
are undirected, simple graphs, usually containing more than one
component. A component of a graph can have a designated
vertex, called the root. SNs may contain two types of roots,
principal and other. Principal roots have a clear physical
meaning (note here that the nodes of an SN can be ordered on
the basis of their relative energies), as SNs often have two or
even three principal roots based on nuclear spin isomerism.44

The component of an SN containing a principal root is called a
principal component (PC). A component without a principal
root dictated by nuclear-spin isomerism is called a floating
component (FC). FCs can also have roots but for them this
concept does not appear to be useful. A straightforward and fast
method for determining the components of a network is the
Depth-First Search (DFS) algorithm.68 A giant component is a
component whose size is of the same order as n = |V|.
The distance of two vertices v1 and v2 in the same

component equals the length of the shortest path between v1
and v2, i.e., the path with the smallest number of vertices. The
diameter of a network is the maximum among the distances
between all vertex pairs.
A cycle in a graph is a “closed” path: its definition is similar

to the definition of the path but with x0 = xk. SNs contain a
large number of cycles of widely differing size. Connected
graphs without cycles are called trees. A spanning tree of a
connected graph G is a subgraph T, which is a tree, and
contains every vertex from G. A special type of a spanning tree
of an edge-weighted graph is the minimum-weight spanning
tree: a spanning tree where the sum of the weights on the
participating edges is minimal. Regarding SNs, we advocate
using the Kruskal algorithm69 to obtain minimum-weight
spanning trees, as SNs are sparse graphs and the Kruskal
algorithm handles sparse graphs very efficiently. The
implementation of this algorithm is particularly straightforward.
For the weight function, the negative logarithm value of the
transition intensities on the edges can be used,53 resulting in a

positive and symmetric weight matrix. This way one obtains an
edge-weighted network, GW = (V, E, W).
In a bipartite graph the vertex set V can be divided into two

disjoint subsets V1 and V2, with no edges between vertex pairs
from the same subset. In other words, for every edge in the
graph, one of the end points of the edge is in V1 and the other
is in V2. If the graph can be colored with two colors, where no
edge has the two same-colored end points, then it is bipartite; if
an edge violates this coloring, then it is a proof that the graph is
not bipartite. The coloring algorithm is best used with an
adjacency list data format.
For undirected simple graphs the edge density is defined as
=

−
D m

n n
2

( 1)
. Although in simple graphs the maximum number

of edges is n(n − 1)/2, in SNs this number is much smaller due
to the existence of quantum mechanical selection rules, limiting
the number of transitions tremendously.70

2.2. Matrix Representations of SNs. Matrices provide
useful representations for the characterization of SNs.54 Most
notable among these matrices are the adjacency matrix A, the
combinatorial Laplacian matrix LC (also called the Kirchhoff
matrix, as it was Kirchhoff who introduced it71), and the
normalized Laplacian matrix LN. All of these matrices are of
size n × n. If we index the vertices as V = {v1, ..., vi, ..., vn}, then
the ith row and column correspond to vi. Let di denote the
degree of vertex vi. Then, the elements of the matrices
mentioned are as follows:

=
⎪

⎪⎧⎨
⎩

A
v v1, if there is an edge between and

0, otherwise
ij

i j

(1)

=

=

−

⎧
⎨⎪⎪

⎩
⎪⎪

L

d i j

v v

, if

1, if there is an edge between and

0, otherwise

ij
C

i

i j

(2)

=

=

− −

⎧
⎨
⎪⎪

⎩
⎪⎪

L

i j

d d v v

1, if

( ) , if there is an edge between and

0, otherwise

ij
N

i j i j
1/2

(3)

Briefly, the adjacency matrix is used when the network study
is aimed at adjacency relations, paths, and cycles. If the SN is
undirected and it is without loops and multiedges, A is real and
symmetric, with real eigenvalues and orthogonal eigenvectors.
The symmetric combinatorial Laplacian matrix is a useful tool
for dealing with the incidence relations of the edges and
vertices and in the matrix tree theorem.72 Both Laplacian
matrices are popular for vertex clustering methods.73,74 See
section 3.9 for some of the uses of A, LC, and LN in the case of
SNs.
Finally, in ref 54 we introduced the Ritz-matrix of

spectroscopy, to honor the contributions of Walther Ritz to
the field. The Ritz-matrix X of a SN is of size n × m, and it is
similar to the incidence matrix of a graph in the directed sense:

=

+

−

⎧
⎨
⎪⎪

⎩
⎪⎪

X

e

e

1, if i is the upper energy level of transition

1, if i is the lower energy level of transition

0, otherwise

ij

j

j

(4)
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The Ritz-matrix plays a vital role in the X-matrix technique
introduced by Flaud et al.,75 forming the basis of the MARVEL
procedure,48−50 at present the principal application based on
the idea of SNs (section 4).
2.3. Vertex Ranking. The simplest approach to quantify

the importance, called “centrality” in some applications of
network theory,7 of vertices within a set V of an SN is to use
the degree distribution. In this case, the most important node
will be the energy level with the largest number of associated
transitions, the second with the second largest degree, and so
on. See sections 3.3 and 3.4 for the degree distributions of
experimental and first-principles SNs.
A complementary approach, employed successfully in search

optimization engines, is the use of the PageRank,76 a network-
based diffusion algorithm.77 A central feature of this algorithm
is that importance depends not only on the number of
incoming links but also on the “quality” of the links: a link
coming from an important node is much more valuable than a
link from an insignificant one. In SNs, this translates to the
requirement that regarding the relative importance of an energy
level a link to an important energy level, itself having a large
number of transitions, is much more important than a link to a
marginal one.54

The recursive form of the PageRank determination is as
follows:

∑α α= − +
∈

PR i
n

PR j
d

( )
1 ( )

j M i j( ) (5)

where PR(i) is the PageRank of the ith node, M(i) is the set of
neighbors of the ith node, and α ∈ (0, 1) is a dampening factor.
It is important to note that if we take an ordering of the vertices
based on their PageRank value, changing α does not alter the
order. Because we do not intend to use the numerical
PageRank values, our aim is simply to use them for the
ranking itself, we can take an arbitrary α, for example, α = 0.5.
See section 3.6 for related results for SNs.
2.4. Complexity Measures. There are several metrics

developed to describe the complexity of a network. The most
notable of them are the local clustering coefficient, C(G), the
structural metric (or s-metric) with the corresponding S(G)
value, and the Pearson correlation coefficient, r(G),78 which is a
graph assortativity measure.
The local clustering coefficient gives information on how

close the investigated graph is to the complete graph. More
specifically, it quantifies every vertex on a [0, 1] scale and shows
how close the vertex is to form a clique (a complete graph)
with its neighbors. Because SNs cannot have cliques and cannot
have odd-numbered cycles, this measure is not particularly
useful for the understanding of the structure of SNs.
The structural metric (s-metric) is defined as

∑=
∈

s d d
i j V

i j
, (6)

where di is the degree of node i. If we introduce smax as

∑=
=

s
d
2i

n
i

max
1

3

(7)

we can define the normalized structural metric, S(G), as

=S G
s

s
( )

max (8)

The Pearson correlation coefficient of the degrees at either
end of an edge is defined as

=
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where l is the number of edges in the graph. r(G) has been
introduced to analyze the assortativity of a network. Social
networks, for example, usually show assortativity mixing on
their degrees;7,78 that is, their high-degree vertices like to
connect to other high-degree vertices in the network. The
opposite of assortativity mixing is disassortativity mixing,
whereby high-degree vertices attach to low-degree ones. The
latter property is frequent in technological and biological
networks.7,78

2.5. Vertex Clustering. The principal aim of vertex
clustering is to distribute the vertices of a network into clusters
along predefined properties.73 The subsets the partitioning
yields must be pairwise disjoint, and their union should be the
original vertex set. If we distribute a partition into k subsets, we
call it a k-clustering.
Clustering algorithms can be divided into at least two classes:

partition and hierarchical clustering.79 Partition clustering
methods generate a starting partition first, then re-evaluate
the actual clustering in each step in an iterative loop until arrive
at the required clustering result. Hierarchical clustering
algorithms are using the iteration of either merging smaller
clusters to larger ones (in agglomerative clustering), or
dividing larger clusters into smaller ones (in divisive
clustering), based on a similarity measure. Both types of
clustering result in a hierarchy of clusters, called a dendogram.
Generally, partition clustering techniques are faster, but they
require more information beforehand (for example, the number
of clusters in the network). The Clauset−Newman−Moore
(CNM) algorithm80 is an efficient hierarchical agglomerative
algorithm that can be used for clustering of even large
networks, like SNs. It is useful for highlighting communities
within a network. One can use the Stanford Network Analysis
Platform (SNAP)81 for CNM clustering. Maintaining a balance
in the size of the subsets during the clustering is definitely a
preferred property. Normalization means that the clusters
obtained should have roughly the same size.
Spectral clustering algorithms73 are applicable for partition

clustering. To determine a partitioning of the energy levels of
one of the PCs of an experimental SN, the spectral clustering
technique utilizes the eigenvalue spectra of LC or LN.
One can calculate a k-clustering of a network using the

eigenspectra of the normalized Laplacian matrix, LN, of the
network. It is especially meaningful in spectroscopy to look for
a partitioning where the number of edges is minimal between
the different clusters. This way one forms “communities” within
the network: a community G′ is defined when the sum of all
degrees of vertices within G′ is (much) larger than the sum of
all degrees toward the rest of the network. To obtain a k-
clustering of this type, one should determine k eigenvectors
corresponding to the largest eigenvalues of LN, form a matrix of
size n × k where the eigenvectors are in the columns, normalize
the rows, and then apply a k-means clustering to the rows,
which are considered to be n k-dimensional points.
Another useful concept that can be employed in high-

resolution molecular spectroscopy is that of the bridge. A
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bridge is an edge of a network whose deletion increases the
number of connected components. Naturally, a bridge may not
be a member of any cycle. One of the simplest (and fastest)
bridge-finding techniques82 uses the DFS algorithm.68 Finding
bridges in SNs is useful because (a) exploring connectors of
larger subgraphs can help to explore the weakly connected
components of the SN (if an energy level is a member of a
weakly connected cluster, then its uncertainty highly depends
on the accuracy of the bridge) and (b) exploring branches
(Figure 9, vide inf ra) helps to detect those energy levels whose
values are the least reliable.

3. STRUCTURE OF SPECTROSCOPIC NETWORKS

Based on the network definitions and concepts presented in
section 2, the questions raised toward the end of the
Introduction can be answered and a number of useful
statements can be developed about different aspects of the
structure of SNs. These statements contribute to our improved
understanding of the results of high-resolution molecular
spectroscopic experiments as well as of data deposited in
spectroscopic information systems.
For some of the structural properties it is important to

distinguish between experimental and first-principles SNs of a
molecule. Construction of an experimental SN is obvious: one
needs to collect all assigned transitions from the literature (see
Table 1 for the number of sources identified during the building
of SNs for the molecules studied thus far). Construction of a
first-principles SN goes through the following steps: (a) take all
(available) computed energy levels as nodes; (b) use the
selection rules appropriate for the molecule and the experiment
to link the nodes; and (c) add the computed intensities, serving
as network weights, as well, to the links based on the type of
experiment and the chosen temperature. Transition intensity
cutoff values can be used to select a subset of the possible links,
as done in the panels of Figure 2. In this section we usually
concentrate on experimental SNs, whereas first-principles ones
receive somewhat less attention.
So far, the experimental SNs of 15 molecules have been

investigated. The list of molecules include nine isotopologues
of water,40−43 three isotopologues of H3

+,56,57 and 12C2,
59

14NH3,
58,83 and ketene, 12CH2

12C16O.55 Table 1 lists some of
the principal characteristics of the experimental SNs of these
molecules. Table 2 lists data relevant for spectroscopic
networks contained in the canonical line-by-line information
system HITRAN24,25 and investigated in this study. The
HITRAN database contains not only experimental data but also
accurate computed ones when available and needed. A note

about the HITRAN data used in this study: among the large
number of transitions present in HITRAN for a large number
of molecules, there are some that seemingly correspond to
forbidden transitions. For example, the HITRAN data for
H2

16O contain five transitions that violate the ortho−para
selection rule. The frequencies of these transitions are
11069.73629, 19430.03950, 19706.8374, 19870.5948, and
21295.3901 cm−1. These transitions were removed from the
present analysis. Another example is the H2O2 molecule, where
the HITRAN data lead to the presence of a three-membered
cycle. This odd-membered cycle violates the one-photon
selection rules and the bipartiteness of the corresponding SN
(subsection 3.2, vide inf ra); therefore, these transitions, at
18.975258, 1387.383507, and 1393.928115 cm−1, were also
removed before our analysis. Most of the discussion within this
section focuses on data in Tables 1 and 2.

3.1. Components of SNs. First-principles complete SNs of
molecules may have several principal components (PCs, not to
be confused with the unrelated principal components analysis),
as required by nuclear spin statistics.44 Each PC has a root,
which can conveniently be chosen as the lowest-energy level of
the PC. PCs are expected to be giant components of SNs.
Selection rules put constraints on the changes of the (“good”
and “approximate”) quantum numbers describing the energy
levels involved in the transitions within a SN. Under field-free
conditions, transitions are not allowed among the energy levels
belonging to different PCs.84 Therefore, it is challenging to
measure the energy difference between the roots of the PCs
(vide inf ra).
As an example, we note that symmetric isotopologues of

water (e.g., H2
16O, H2

17O, H2
18O, or the similar three

isotopologues of D2O) have two principal components,
traditionally44 called ortho and para [depending on whether
the spins of the protons are parallel (ortho, total nuclear spin I =
1) or antiparallel (para, I = 0)]. On the contrary, the SN of the
HD16O isotopologue of water, with all of its nuclei different, has
only a single PC; i.e., all of the energy levels of HD16O form
part of the same first-principles SN.
Figure 5 shows the lowest-energy part of the complete purely

rotational one-photon absorption SN of the HD16O molecule,
up to J = 3, where J is the rotational quantum number and Ka
and Kc are the usual asymmetric-top quantum numbers.44,85

The selection rules behind the connectivity of the energy levels
state that if ΔJ = 0(±1) then p = ±1(0), where p is the parity
describing the energy level. These rules dictate that if the
rotational parity, defined as (−1)Kc, is even or odd, then the
maximum number of pure rotational transitions from a given
rovibrational energy level with asymmetric-top label85 JKaKc

is 3J
+ 2 or 3J + 1, respectively, as shown in Figure 4. It is important
to observe that not all rotational transitions emanating from
even the lowest-J states have been measured, though the
HD16O molecule is thoroughly studied experimentally; see ref
41 and the data in Table 1. As J increases, the number of
transitions not measured increases rapidly (not shown in Figure
5). Note that although many of the transitions may not be
measured directly, their absence does not hinder obtaining the
complete tree structure of the SN. Furthermore, identification
of the missing transitions in experimental spectra becomes
straightforward if the “inverted” rovibrational energies are
available and the transition intensity, perhaps computed ab
initio, is sufficiently large.55 Note also the apparent lack of odd-
numbered cycles in Figure 5.

Table 2. Selected data about spectroscopic networks found
in the canonical spectroscopic database HITRAN.25

HITRAN
index name

no. of
nodes

no. of
unique
links

no. of
components bipartite

1 water 17045 134063 2 true
3 ozone 38816 260094 24 true
9 sulfur dioxide 18054 72460 1 true
10 nitrogen

dioxide
6931 26334 5 true

20 formaldehyde 9847 40670 14 true
25 hydrogen

peroxide
14975 126949 24 true

32 formic acid 11385 62684 1 true
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Experimental SNs form multiedge graphs. As measurements
done by different groups use different techniques and
spectrometers working in different regions of the electro-
magnetic spectrum, there is some randomness in how
transitions become measured. Thus, in principle spectroscopic
measurements could result in several components. We did not
find a case40−59 where the experimental SN of a molecule
contained a large number of FCs, in all cases the great majority
of the energy levels and transitions were part of the PCs of the
network.
The size of a first-principles SN, both in the number of nodes

and especially in the number of links, depends heavily on the
chosen transition intensity cutoff. We did not find a case where
first-principles SNs contained, at whatever intensity cutoff
value, floating components, the transitions selected this way
always belonged to the PCs. Thus, both the experimental and
the first-principles SNs seem to have giant components, an
observation that can be explained by the degree distribution of
SNs (see subsections 3.3 and 3.4).

Attempts to unite the components of an experimental SN are
important for several reasons, most importantly as they (a)
allow the attachment of proper, “absolute” energy values to the
vertices of the components disjoint from the PCs having the
energy zero; (b) help to improve the robustness of the SN; and
(c) may lead to the design of new experiments and/or suggest
to study certain spectral regions to improve the information
content of the SN.
As shown in ref 54, even for the smallest experimental SNs

studied there is an extremely large number of possible spanning
trees for each of the PCs, on the order of 1010−1050.
Nevertheless, because a unique weight can be assigned to
each link (a unique transition intensity in the cases studied),
there will be a unique minimum-weight spanning tree for each
component. Investigation and comparison of the structure of
the experimental and first-principles minimum-weight spanning
forests provides the simplest and most efficient way to connect
the possible FCs to PCs, the giant components of the SN.
Finally, there is another statement that the investigation of

the structure of first-principles SNs of different size yields:

Figure 5. Experimental purely rotational one-photon absorption spectroscopic network of HD16O in the ground vibrational state up to J = 3 (the
root of the graph is the JKaKc

= 000 state, the notation is changed in the figure to J_KaKc). The number in parentheses in each oval, representing an
energy level, provides the number of allowed rotational transitions starting or ending on the given energy level within the ground vibrational state.
The bipartite nature of the network is indicated with the two different background colors of the energy levels. The nodes (energy levels) are
connected if the transition has been measured experimentally.

Figure 6. Pictorial representations and degree distributions of random networks of Erdős−Reńyi (left panels) and of scale-free (right panels)
character, the so-called hubs (nodes with a large number of links) are shown in orange in the latter case.
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although the great majority of the transitions is extremely weak,
it is easy to find a few relatively strong transitions for almost all
vertices in the SN. This suggests that with relatively standard
spectroscopic measurements almost all of the energy levels can
be determined, which in turn could lead to an almost complete
knowledge of high-resolution experimental absorption (and
emission) spectra if transitions based on “measured” energy
levels were augmented with computed line intensity values.
3.2. Bipartiteness. There is a highly special and highly

restrictive property of SNs related to the quantum mechanical
selection rules: all the SNs investigated thus far (see the entries
of Tables 1 and 2 for the list of molecules) are bipartite
networks. This reflects an important property of rovibrational
states, namely their overall parity, which has to change during
experimentally measurable one-photon transitions. A corollary
of bipartiteness, important for all spectroscopists and users of
spectroscopic information, is the fact that, as long as the parity
selection rule of molecular rovibrational transitions is not
violated, there are no simple cycles of odd length in SNs, the
smallest cycle must involve four energy levels and there are only
even-numbered cycles in SNs.
As shown in Table 2, all the SNs selected from the canonical

spectroscopic database, HITRAN,25 are bipartite. This suggests
that the spectroscopic data in HITRAN are correct for these
molecules, at least in this sense.
3.3. Degree Distribution of SNs. In network theory a

network G with n vertices and m edges is said to be sparse if m
≪ n2 and dense if m = O(n2). Clearly, all experimental and first-
principles SNs are sparse networks.

Erdős−Reńyi random graphs34−36 are built by a process
whereby links are placed randomly between a fixed number of
vertices. Erdős−Reńyi random graphs with a fixed set of Vfix
vertices have a “characteristic” degree 2E/Vfix; i.e., the vertex
degrees have approximately a Poisson distribution with a mean
of 2E/Vfix (Figure 6). If a random graph is allowed to grow and
links are added on the basis of probabilities proportional to the
momentary degrees of the vertices, a scale-free (SF) random
graph results.7 The scale-free property of a network means that
the probability that a randomly selected node has exactly d links
is P(d) ∝ d−γ, where γ is called the scaling index.5 SF random
networks, as opposed to Erdős−Reńyi random networks, are
characterized by (a) a relatively few nodes with a large number
of links (these nodes are called hubs), and (b) a robust
connectivity structure hard to fragment by random removal of
nodes. The following dynamical features are the usually
assumed requirements of a SF random network:7 (a)
evolutionary growth with more or less random generation of
new nodes, (b) highly interactive self-organization, and (c)
preferential connectivity of new nodes to old ones. Hubs
shorten the paths between vertices of a network.
Features of SF networks mentioned occur naturally for SNs

on the basis of spectroscopic experiments. For complete first-
principles SNs this is not true; nevertheless, if the intensities of
the transitions, always spanning many orders of magnitude, are
taken into account, first-principles SNs also become scale free.
Naturally, the size of a first-principles SN, in the number of
both energy levels (nodes) and transitions (links), depends on
the chosen cutoff of the absorption intensities. The computed

Figure 7. Size−frequency [k−P(k)] plots for measured (panel A) and first-principles computed (panel B) transitions for HD16O, with an absorption
intensity cutoff of 10−22 cm molecule−1 in the latter case.

Table 3. Power-Law Distribution Fittings to the Principal Components (pc) of the Spectroscopic Networks of Selected
Molecules Present in the HITRAN Information Systema

HITRAN index name no. of nodes no. of links γ xmin xmax KS.p avg degree diam avg dist

1 water pc#1 7871 59560 2.01 150 805 0.39 15.1 27 5.8
1 water pc#2 9174 74503 2.05 180 879 0.27 16.2 28 6.0
3 ozone 38719 260006 2.26 667 5666 0.95 13.4 88 20.0
9 sulfur dioxide 18054 72460 1.99 54 5919 0.87 8.0 101 25.8
10 nitrogen dioxide 6778 26086 1.76 31 1870 0.99 7.7 103 22.4
20 formaldehyde pc#1 5007 21656 2.18 200 795 0.41 8.7 65 13.7
20 formaldehyde pc#2 4610 18796 2.84 300 856 0.33 8.2 62 13.7
25 hydrogen peroxide pc#1 7604 69160 2.23 51 469 0.87 18.2 50 14.2
25 hydrogen peroxide pc#2 7213 57650 2.52 86 723 1.00 16.0 50 14.3
32 formic acid 11385 62684 2.15 200 1610 0.38 11.0 81 22.9

aPC = principal component, diameter = diameter, avg = average, dist = distance. See the text for further definitions employed in the table.

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.6b02293
J. Phys. Chem. A 2016, 120, 8949−8969

8959

http://dx.doi.org/10.1021/acs.jpca.6b02293


SN of HD16O contains16 altogether 163491 energy levels and
697444828 transitions. At 298 K, if the absorption intensity
cutoff is chosen to be 10−20 cm molecule−1, the SN contains
73590 nodes and 863575 links. With still realistic cutoffs of
10−24 and 10−28 cm molecule−1, the first-principles SN of
HD16O contains 128106 (4720711) and 153600 (15356682)
nodes (links), respectively. From the numbers presented it is
clear that the number of energy levels grows much more slowly
than the number of transitions, the great majority of the
transitions is extremely weak. All these SNs are characterized by
a SF distribution; see two representative examples in Figure 7.
The degree distributions of the molecules selected from the

HITRAN database, Table 3, also exhibit heavy tails. The γ
column of Table 3 contains scaling indices for 10 principal
components. The xmin values are the lower bounds for the
vertex degree frequencies considered during the fitting. KS.p is
the p-value of the Kolmogorov−Smirnov test with the
corresponding γ and xmin parameters. The xmax parameter
denotes the highest among the degree frequencies in the
component. It seems that for most molecular species, if not for
all, the degree distribution is scale-free. Some of the most
important consequences of this observation are discussed in
section 3.5. Furthermore, the scaling indices are all larger than
2.0; their average value is about 2.2.
3.4. First- and Second-Degree Distributions. There is

no established spectroscopic law requiring that the most
intense lines, those that can be most easily measured, should
form a connected component. Nevertheless, Figures 1 and 2
clearly show that there is only one large connected component
for either the ortho or the para principal components of the SN
of H2

16O, independently of the time of the measurements
collected or the line intensity cutoff value chosen. A network
component whose size grows in proportion to number of nodes
is called7 a giant component. Thus, our observations tell us that
SNs have giant components. It is worth investigating modeling
efforts that could rationalize this observation.
The nth moment of P(d) is defined as

∑⟨ ⟩ =d d P d( )n n
(10)

The first moment, ⟨d⟩, is called the mean vertex degree of G. The
mean vertex degree remains finite as long as γ > 2, which
appears to be true for the SNs studied. The second moment,
⟨d2⟩, is the mean number of second neighbors and measures, as
usual, the fluctuations of the connectivity distribution. Using
the first and second moments, the following condition can be
written for the existence of a giant component:86

⟨ ⟩ − ⟨ ⟩ >d d2 02
(11)

As the data in Table 4 clearly suggest for the three largest
experimental SNs,42,58,59 these SNs must have a giant
component.
There is another condition that can be used when the

existence of a giant component is investigated. The average
number of second neighbors is

= ⟨ ⟩ − ⟨ ⟩c d d2
2

so a giant component exists if

> ⟨ ⟩c d2

Furthermore, knowing the average number of the first and
second neighbors, an interesting relation can be given for the
mean number of neighbors at any distance d,

=
−⎛
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2
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1
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For comparative purposes, Table 4 contains the values of c3
obtained this way.
Modeling studies87 employing “pure” power-law degree

distributions provide interesting results about the size of the
largest components, associated for SNs with PCs. The most
relevant statements are as follows: (a) a network will have a
giant component if γ < 3.4788... but not if it is larger; (b) the
giant component corresponds to the entire network when γ ≤
2; and (c) in the region between γ = 2 and γ = 3.4788... there is
a giant component but it does not fill the whole network.
Because experimental SNs seem to have γ ≈ 2.2, Table 2, these
modeling studies nicely support the observation that
experimental SNs have giant components and occasionally
some small ones. Nevertheless, note that first-principles SNs
obtained with reasonable intensity cutoff criteria seem to have
only giant components.
The degree distribution completely determines the statistical

properties of uncorrelated networks. As the related inves-
tigations show,7 a large number of real networks are correlated,
meaning that the probability that a node of degree k connects
to a node of degree k′ depends on k.

3.5. Hubs and Edge Densities. Scale-free networks
contain a small number of hubs. As expected, the hubs with
the largest number of degrees in a one-photon absorption SN
are on the ground vibrational state. For the measured SN41 of

GHD16O they are as follows: JKaKc
= 422, 423, and 313, with 605,

583, and 565 links, respectively. In the computed SN, with a
cutoff value of 10−30 cm molecule−1, the nodes with the largest
number of connections are 634(4042), 735(3970), and
624(3897), where the number of links is given in parentheses.
The scale-free property of SNs means that despite the fact

that SNs can be extremely large (though always finite in
realistic cases), there are only relatively few energy levels whose
accuracy principally determines the overall accuracy of the
energy levels of an experimental SN. Experiments which
improve the accuracy of SNs by decreasing the uncertainties of
energy levels qualifying to be hubs are the most useful ones.
This leads to the important conclusion that all microwave
(MW), millimeter wave (MMW), and far-infrared (FIR)
measurements performed with this aim in mind would be
highly beneficial for improving the overall accuracy of
experimental SNs of small molecules of prime interest for
sophisticated modeling studies.
For undirected simple graphs, like the SNs, the edge density

is defined as D = 2|E|/[|V|(|V| − 1)]. Although in simple graphs
the maximum number of edges is |V|(|V| − 1)/2, in SNs this is
much smaller due to the constraints provided by the quantum
mechanical selection rules. As shown in Table 1 of ref 52, the

Table 4. First and Second Moments, and the Mean Number
of the Second and Third Neighbors, in the Experimental
Spectroscopic Networks of Selected Small Molecules

molecule ref ⟨d⟩ ⟨d2⟩ c2 c3

o-H2
16O 42 11.89 839.26 827.37 57572.8

p-H2
16O 42 9.05 633.07 624.02 43027.7

o-NH3 58 11.50 683.71 672.21 39292.7
p-NH3 58 11.05 629.94 618.89 34662.7
12C2 59 6.16 69.87 63.71 659.1
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edge density D of the first-principles SNs of HD16O, with
intensity cutoff values ranging from 10−20 to 10−90

cm molecule−1, has a minimum at about 10−30 cm molecule−1.
This minimum is achieved at an intensity value that is about the
limit for present-day absorption measurements. Nevertheless, it
must not be forgotten that the investigated line list becomes
incomplete at about this intensity cutoff value.
As shown in ref 53, the behavior of hubs within the SN can

be described using graph metrics (section 2.4). For the first-
principles model of the H2

16O molecule with an intensity cutoff
10−20 cm molecule−1, we have an r(G) value that is close to
zero, with a relatively large S(G). This translates to the fact that
hubs like to connect to each other in the spectroscopic
network, although the hubs also have many low-degree
neighbors. Moreover, as we reduce the absorption intensity
cutoff parameter (to 10−22, 10−24, 10−26, and 10−28

cm molecule−1), it becomes obvious that the SN becomes
increasingly disassortative, as many new transitions appear with
low-degree nodes at one or both end points. This in turn
lowers the ratio of the edges which connect two high-degree
nodes in the SN.
3.6. PageRank. Determining a useful importance ordering

(“centrality measure”) for the set of energy levels of a SN is
important for orienting high-resolution spectroscopists and
spectroscopic information system developers, as well. Impor-
tance is an intuitive term here, but it refers to various enquiries,
including (1) which energy levels have the largest number of
transitions associated with them, (2) which energy levels are
present in the largest number of cycles in the SN, or (3) which
energy levels are affecting the uncertainties and their
propagation in the SN the most.
Question 1, for example, can be answered by setting up the A

matrix, as the degree di of vertex i of G, i.e., the number of its
connections, is simply di = Σj=1

n Aij. Note that the degree of an
energy level may not reflect properly the importance of even a
hub, as most connections may be made to low-degree energy
levels. Answering question 2 is a difficult and computationally
demanding task, especially because SNs have a very large
number of cycles of very different size (see Figure 3 for a simple
case). Nevertheless, answering the question whether the energy
level is part of even one cycle, which should significantly help
its accurate determination, is straightforward. The answer to
question 3 will be discussed in some more detail in the
subsection on network clustering.
The PageRank order of the hubs can be significantly different

from their degree order. PageRank ordering appears to be a
more useful measure to judge the relative importance of the
most important energy levels (hubs) as within the PageRank
ordering hubs are preferentially connected with hubs. For
H2

16O, for example, the most important hubs with the highest
degrees and the highest PageRanks are all on the vibrational
ground state and have J values around 5.
An example to demonstrate the usefulness of the PageRank

ordering was given in ref 54 during the investigation of the SN
of ortho-H3

+. We omit the explanation of the labels of the
energy levels investigated, we refer the interested reader to ref
56. The maximum vertex degree in the SN of o-H3

+ is 28;
therefore, the energy level (0 0 0 1 0 m) with a degree of 22
would be considered important based purely on the degree
ordering. However, 14 of the 22 transitions of this node are
connected to 1-degree nodes (leaves), which are not significant
in the SN. The maximum PageRank value belongs to the
energy level (0 1 1 4 3 u), with a vertex degree of only 9.

Nevertheless, every neighbor is present in at least one cycle,
and the vertex with the maximum degree in the SN is also
among the neighbors. Thus, we must consider the latter energy
level more important in this SN than the former one.
Furthermore, Figure 8 compares the structure of the 10 most

central energy levels in the SN of o-H3
+ with respect to degree

ordering (left panel) and PageRank ordering (right panel).
Notice that only four nodes, those colored green in the figure,
are present in both lists. Moreover, the subgraph defined by the
ten nodes having the highest degrees is disconnected, in other
words, these nodes do not form one connected component,
instead, they form six. When PageRank defines the centrality,
the subgraph is well connected with a lot of cycles, with an
eminent participation of hubs in these cycles. As cycles are
especially important in validating measurements, we must
consider the use of the PageRank ordering advantageous.

3.7. Diameter. There are additional signatures beyond the
power-law degree distribution that characterize SF networks.
An important one is the small-world property: scale-free
networks are characterized by a small diameter.
The diameter of a network is defined as the maximum

distance of a vertex pair; in other words, the longest path of the
shortest paths among all vertex pairs. The diameter of the SN
can be estimated by counting the different eigenvalues of A: if A
has r different eigenvalues, then the diameter of G is at most
r − 1.
The interconnectedness of a particular SN can be described

efficiently by the diameter. The diameter computed statistically
for the measured SN of HD16O is only about 7, though it is still
considerably larger than the corresponding log v value, about 3.
This value is slightly larger but similar to the diameter of the
first-principles SN. As the absorption intensity cutoff is
decreased, the diameter of the computed SN seems to stay
around this value though it becomes somewhat smaller. Thus,
SNs clearly have an intrinsic small-world property, similarly to
most other complex networks studied in nature, society,
communication, and elsewhere.7,11,88

3.8. Network Vulnerability. Selection rules allow only a
limited number of links between the nodes of the SN. As the
SN becomes larger, either via new measurements for an
experimental SN or by a decrease in the intensity cutoff for a
first-principles SN, the number of links increases substantially
but not the number of nodes. The number of (even-
membered) cycles within the network also increases dramat-

Figure 8. Top 10 most important nodes in the SN of ortho-H3
+ based

on vertex degree ordering (left panel) and PageRank ordering (right
panel). Green: nodes in both top 10 lists. Red: nodes only among the
top 10 degree values. Blue: nodes only among the top 10 PageRank
values.
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ically. This is in full accord with the degree distribution
observed for SNs. Thus, SNs appear to be robust.
Robustness of SNs can be ascertained by a numerical

experiment involving random removal of nodes.8,52 The results
for three selected SNs corresponding to HD16O, one being the
measured SN, the other a first-principles SN, and the third the
purely rotational first-principles SN, are shown in Figure 9.

After random removal of nodes, the relative size of the largest
remaining network compared to the full size of the network
remains very close to 1 even if up to 70% of the nodes are
removed. The network only fragments when about 85% of the
nodes are randomly removed. This extreme error tolerance is
another characteristic property of SNs.
In SF networks removal of nodes leads to an increase in the

diameter;8 of course, this has also been observed for SNs.53

3.9. Matrix Representations of SNs. As detailed in
section 2, there are several matrices that can be used to describe
different aspects of the structure of spectroscopic networks.
The spectra (here eigenspectra) of these matrices reveal several
properties of SNs without the need for an explicit analysis of
the exact SN structure.54

The bipartite character of a network can be detected using
the eigenvalues of the adjacency matrix A. If the eigenvalue
spectrum of A is symmetric about the origin, the network is
bipartite. If the network is connected, it is sufficient to check
that the smallest eigenvalue is the negative of the largest
eigenvalue, this ensures bipartiteness of the network.
Bipartiteness is also related to the powers of A. Let Ak be the
kth power of the adjacency matrix. The ijth element of Ak is
equal to the number of walks of length k, starting from vertex i
and ending on vertex j. The fact that there are no simple cycles
of odd length in a bipartite graph implies that for odd k powers
of A, Aii

k = 0 holds for the diagonal entries.
If the multiplicity of the zero eigenvalue of the combinatorial

Laplacian matrix LC is greater than 1, then the network is not
connected; i.e., it contains more than one component. In
general, the multiplicity of the zero eigenvalue is equal to the
number of connected components of the network. The second
smallest eigenvalue, λ2, can be used to give a lower bound to the

minimum cut in a network: for A, B ⊆ V(G), A ∪ B = V(G), A
∩ B = ⌀, and e(A,B) denoting the number of edges with one
end point in A, and the other end point in B, it holds that

λ ≤| | | |
| |

e A B( , )A B
V G2 ( )

.89

The Ritz-matrix X can also be called the design matrix, as this
is the matrix that can be used to obtain the unknown energy
levels from the known transitions via a (weighted) linear least-
squares analysis, as done within the MARVEL protocol.48−50

The relation XXT = D + A holds among the matrices useful for
investigating SNs, where D is the diagonal matrix with the
degrees in its diagonal.
The number of nonidentical spanning trees, τ(G), can be

calculated from LC using the following formula:

∏τ λ=
=

−

G
n

( )
1

i

n

i
1

1

(13)

As shown in ref 54, this formula gives extremely large values for
the number of spanning trees even for relatively small SNs.
Thus, weighting introduced to SNs serves a special purpose if
spanning trees are to be used for high-resolution spectroscopy.

3.10. Clustering. Connectors between relatively dense
subnetworks (clusters) of SNs can be identified and analyzed
via several variants of spectral clustering techniques73 based on
the combinatorial and normalized Laplacian matrices intro-
duced in section 2, LC and LN, respectively.
The partition and hierarchical clustering results appear to

have considerable value in identifying the “weakest links”, from
an information system point of view the most significant links
in the SN. Identification of these links is especially important as
they may limit the accuracy of the determination of a large
number of energy levels, separated from well-defined energy
levels by the small number of connectors, even if these energy
levels form part of several (local) cycles. The identification of
“weakest links” becomes especially important when one judges
the true accuracy of the experimental rovibrational energy levels
obtained through the MARVEL approach, which converts
information in measured transitions to information about the
energy levels of a molecule.
The number of bridges in the experimental SNs of H2

16O,
14NH3, and

12C2 of the present analysis is 3513, 730, and 1296,
respectively. Comparing these values with the total number of
links (98838, 15393, and 16481, respectively) suggests that, in a
relative sense, it is the database of 12C2 that contains the largest
number of bridges. This explains why the diameter of the
experimental SN of 12C2 is much larger than usual (see Table 2
of ref 54). The number of energy levels whose values depend
on bridge transitions are 4865, 965, and 1575 for H2

16O,
14NH3, and

12C2, respectively. The energy level values might be
incorrect because they heavily rely on the correctness and
accuracy of a single transitions.

3.11. Data Reduction via SNs. Because high-resolution
spectroscopic measurements yield an extreme amount of
information, the reduction of the observed data to manageable
size is a basic challenge for the theory of spectroscopy. The
standard solution is to use model Hamiltonians with a relatively
small number of parameters and least-squares optimize these
parameters to represent all the measured data.90 In a way this
means that spectroscopic transitions are converted to
parameters yielding energy levels (and transitions via the Ritz
principle). These parameters allow excellent interpolation but
they may fail when used to extrapolate beyond the measured

Figure 9. Fragmentation dynamics of spectroscopic networks
following random removal of nodes, where N/M means the number
of nodes within the largest remaining network (N) compared to the
maximum number of nodes (M) in the SN.
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range (especially if one considers the extremely high accuracy
of most of the measurements).
SNs offer another, somewhat less spectacular data reduction

facility via the inversion of transitions to energy levels. The best
way to reduce the information content of experimental
transitions is through the use of weighted spanning trees
corresponding to the experimental SN. This way one can
reduce the information contained in the huge number of
measured transitions of the network to a relatively small set of
energy levels and transitions (the saving is about an order of
magnitude, Table 1, but grows fast as the size of the
experimental SN grows). Nevertheless, to judge the true
accuracy of the energy levels, the information contained in a
tree (forest) is not sufficient as it is only through cycles that one
can determine the true accuracy of the measurements (section
4). The network-theoretical view allows us to appreciate how
(even-membered) cycles, containing a lot of extra information
compared to, for example, minimum-weight spanning trees,
within a component of an SN help to fix the energy levels and
could tighten their uncertainties even below those of the
original measurements.
3.12. Assigning Spectra. Assigning complicated high-

resolution spectra is a major challenge; consequently, high-
resolution spectroscopy is also a science (and art) of the
quantum number assignment of measured lines. The
techniques used evolved much over the years90−96 but the
end results is about the same: a high-resolution spectrum of a
polyatomic molecule is converted to a list of labeled energies
(Figure 3). When spectroscopists analyze high-resolution
experimental spectra, they traditionally associate the lines
with some good and mostly approximate quantum numbers
followed by a fitting of the levels via a small number of
spectroscopic parameters of a well-designed model Hamil-
tonian.90 This type of assignment procedure fails in the case of
highly excited rovibrational states and in general when the
rovibrational transitions belong to congested areas of the
observed spectrum and the subsequent analysis time exceeds an
acceptable limit.
In ref 53 we advocated a novel protocol for the assignment of

high-resolution one-photon absorption spectra based on the
concept of SNs: detect the lines in a measured high-resolution
spectrum leading to the largest number of new energy levels via
an investigation of a suitable first-principles SN and assign the
transitions with quantum numbers by mapping the ab initio line
list onto experimental spectra using graph theory. Taking the
negative logarithm of the intensity of the transitions as the
weight function for the transitions of the SN, the minimum-
weight spanning tree displays the transitions with the largest
intensities; thus, it readily identifies the most intense and thus
the practically most useful spectral features. Of course, this
protocol could be combined with the traditional one to obtain
the maximum amount of information from a spectrum with the
least amount of effort.

4. MARVEL
From a practical point of view, at present probably the most
important application of spectroscopic networks is their use
within the MARVEL protocol,49,50 where the acronym
MARVEL stands for Measured Active Rotational−Vibrational
Energy Levels.48 Experimental energy levels originating from
MARVEL investigations,41−43,55−59,97,98 and the underlying set
of assigned and measured transitions, can be accessed at the
webpage http://ReSpecTh.hu. Note that there certainly exist

approaches similar to MARVEL, including those developed by
Flaud et al.75 and Tashkun et al.32

The MARVEL approach is designed for a critical evaluation
and consequent validation of experimental transition wave-
numbers and uncertainties collected from the literature (Table
1), followed by the inversion of the wavenumber information to
obtain the best possible set of energy levels with attached
dependable uncertainties. Briefly, the MARVEL protocol
includes the following steps: (1) Collection, preliminary
validation, and compilation of all the available measured
transitions possessing unambiguous labels and uncertainties
into a database. (2) Determination of the distinct energy levels
of the SN, built from the measured data collected. (3) Setting
up a Nt-dimensional vector, Y, containing the experimentally
measured transitions, an (Nl − 1)-dimensional one, X,
containing the energy levels sought, and an extremely sparse
matrix, a, of dimension Nt × (Nl − 1), the Ritz-matrix,
describing the relation between the transitions and the energy
levels. (4) Least-squares solution of the system of linear
equations obtained, including iterative improvement99,100 of the
experimental uncertainties if needed. In all these steps highly
efficient algorithms are needed due to the large size of the SNs.
These algorithms have been found;50 thus, one iterative step in
the MARVEL process, involving the formal inversion of a
100000 × 100000 matrix, takes less than a second on a single
core.
The fundamental equations behind MARVEL are extremely

simple. First, MARVEL is built upon the Ritz principle, which
gives the connection between the measured transitions and the
rovibronic energy levels:

σ = −E Eij i j (14)

where σij is a measured wavenumber (ij = 1, ..., Nt), and Ej is a
lower and Ei is an upper rovibronic energy level (i, j ∈ 1, ..., Nl).
Let δij be the measurement uncertainty of the σij transition.
Thus, the principal input to MARVEL is a grand list of Nt
experimentally measured, assigned, and labeled transitions with
corresponding uncertainties, and the aim of MARVEL is to
determine the Nl energy levels with self-consistent uncertain-
ties. An overdetermined system of linear equations,

=aX Y (15)

characterizes all SNs. When weights wij = δij
−2 are introduced,

we can write

=AX B (16)

where A = aTwa and B = aTwY, and the dimension of the
extremely sparse A matrix is (Nl − 1) × (Nl − 1). Computation
of A and B can be considerably accelerated by the use of
analytic formulas.50 Compressed row (CRS) or compressed
column storage (CCS) formats79 can be used to store the
sparse A matrix very efficiently.
Solutions of an overdetermined system of linear equations

have no meaning in an absolute sense; therefore, at least one of
the energy levels needs to be fixed. SNs are rooted graphs;
therefore, it is an obvious choice to fix the value of the lowest
energy level, the root (or one of the roots of the PCs), and fix it
to zero. Due to the nature of the experimental SNs, they may
contain energy levels that have no path to the root; therefore,
these energy levels must be identified before setting up the
matrix equation. The fastest way to identify the components of
the SN and to select nodes belonging to the same component
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of the SN is the DFS algorithm,65,68 which significantly
outperforms the Dijkstra algorithm65 for this task.101

Both iterative and direct linear solver algorithms can be used
to determine the MARVEL energy levels, i.e., X. A considerable
advantage of the direct methods is that the elements of the
inverse matrix can be determined analytically. With A−1, the
uncertainties (one standard deviation) of the energy levels can

be computed as ε ≈ −Aj jj
1 . A considerable disadvantage of

the direct methods is that they are much slower than the
iterative algorithms. Because A is a symmetric positive definite
matrix, we can use a sparse-adaptive LDLT decomposition as a
special type of the Cholesky decomposition.102 The robust
reweighting algorithm99 is especially well suited for the iterative
adjustment of the uncertainties of the measured transitions. If
approximate uncertainties are sufficient, like during the
MARVEL iterations up to the final one to improve the
experimental uncertainties, it is possible to use the precondi-
tioned conjugate gradient method,103−105 one of the fastest
linear equation solvers. Features and performance of different
algorithms tested to arrive at a highly efficient MARVEL code
are summarized in Table 1 of ref 50.
4.1. Magic Numbers. As mentioned above, the absolute

values of the MARVEL energy levels can only be determined if
at least one energy level is fixed in the given SN. Most of the
SNs, as prescribed by quantum mechanical selection rules, have
more than one PC. One of these PCs contains the lowest
energy level as root, whose value is chosen to be zero, with zero
uncertainty. MARVEL cannot determine the absolute values of
the lowest energy level of the other PCs, so we must link the
PCs by so-called “magic numbers” to have absolute values for
all the energies.
The value of the magic number can be estimated on the basis

of empirical and/or theoretical considerations. The magic
number can usually be deduced from a highly accurate
empirical effective Hamiltonian. The experimental SN can
also be used for the determination of magic numbers. This
facility is provided by the observation that many molecules have
degenerate energy pairs where the members of the pairs belong
to different PCs (Figure 3). This may happen at only relatively
high excitations and energies, but many of these excited states
are usually amenable to experiments. These near degeneracies
can be ascertained from accurate variational nuclear motion
computations. Adding these artificial, zero-frequency “transi-
tions” to the experimental SN the PCs become artificially
connected and a refinement process can be initiated yielding
the magic number. According to our experience,42 the empirical
magic number satisfies the experimental accuracy what is
required during a MARVEL analysis.
4.2. Calibration. The databases that allow the execution of

a MARVEL analysis contain all the measured transitions of a
given molecule available from the literature, which means that
these transitions have been measured over several decades
under widely different experimental conditions, including
pressure and temperature differences, using different spec-
trometers and different calibration standards. When these data
are combined into a single database, systematic differences can
be identified if several groups reported precise values with
different accuracy and uncertainty estimates for the same
transitions, yielding a multiedge SN. Inconsistencies may occur
due to mistakes of different origin, but some of the
inconsistencies, especially in the case of Fourier transform

spectroscopy (FTS) measurements, are due to the use of
different calibration standards recommended at different times.
The incorrectly calibrated FTS transitions can easily be

corrected by applying a single multiplicative recalibration factor.
However, this factor needs to be determined. An example is
provided by the high-resolution spectroscopic data measured by
Guelachvili for H2

16O, and a couple of its isotopologues, and
reported in 1983 in the 1066−2296 cm−1 region.106 These data
were revised about a decade later,107 when Guelachvili et al.
introduced a calibration factor of 0.99999977, improving
substantially the accuracy of the measured lines. Although the
deviation of this factor from 1.0 appears to be small, many FTS
measurements have a relative accuracy considerably better than
10−7, under ideal conditions this can be 10−9−10−10.
The base of the MARVEL determination of this multi-

plicative calibration factor is the minimization of the root-mean-
square deviation between the FTS transitions scaled with a
given factor and the MARVEL predicted transitions. Using the
MARVEL calibration protocol we could determine basically the
same calibration factor for H2

16O as determined by Guelachvili
et al.42 A similar situation was observed during the MARVEL
studies of several other molecules.

4.3. Conflict of Highly Accurate Lines Measured for
H3

+. An interesting feasible application of network theory and
MARVEL concerns the “planning” of experiments, i.e.,
identification of unmeasured transition(s), which can result in
new energy levels or solve an existing conflict among different
measurements. A case in mind is when experimentalists claim
higher accuracy than apparently their measurement has (or the
accuracy is lowered substantially due to special circumstances,
like the presence of strongly overlapping lines).
The following example considers a conflict between two

sets108,109 of highly accurate measured transitions of the
molecular ion H3

+. In 2013, two different groups studied the
ν2 band of H3

+ and published highly accurate lines; however,
their measured frequencies did not agree within the published
uncertainties. Table 5 contains selected transitions from these

two sources that exemplify the problem. The notation applied
for the transitions of Table 5 is explained neither here nor in
the table, the original sources should be consulted for this
purpose. MARVEL and the SN approach in itself cannot solve
this apparent conflict of the two measurements, i.e., cannot
select the “more accurate” transitions, because the energy levels
involved in the conflict are not members of cycles. Never-
theless, the SN approach can predict, using the appropriate
selection rules, accurate transitions that could create cycles
among the energy levels involved in the problems. If it was
feasible to measure these predicted transitions with an accuracy
similar to those of the measurements of refs 108 and 109, then
the cycle(s) created by the new measurements could fix the
energy levels resolving the conflict. Figure 10 shows the

Table 5. Selected High-Quality Measured Transitions for
H3

+ from 13HoPeJeSi,108 13WuLiLiLi,109 and
16JuKoScAs,110 Showing Considerable Disagreement
between the Former Two Measurements

transition 13HoPeJeSi108 13WuLiLiLi109

diff/
10−5

cm−1 16JuKoScAs110

R(1,1)l 2691.44239(2) 2691.44305(33) 66 2691.442718(5)
R(1,1)u 2726.21965(1) 2726.22025(66) 60 2726.220011(7)
R(2,1)u 2826.11628(1) 2826.11683(33) 55
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problem and the solution schematically. The blue and the red
lines are the measured transitions (see also Table 5), and the
green lines show the predicted MARVEL lines that appear in
the region of feasible measurements and can create a cycle that
could prove the accuracy of either one or the other original
experimental study. During the revision of this paper a study
from Asvany et al.110 came to our attention, reporting
improved, highly accurate lines for H3

+. The results of ref
110 seem to indicate that McCall et al.108 significantly
overestimated the accuracy of their measurements, the results
of Shy et al.,109 reported with a higher uncertainty, agree within
their uncertainty estimates with the high-precision results of
Asvany et al.110 Although the third set of transitions certainly
help to point out problems with the earlier measurements, the
final resolution of the conflict awaits for the determination of
the transitions indicated in Figure 10.
4.4. Rovibronic States of 12C2.

12C2 is the only molecule
among those studied by the MARVEL technique up to now
where the transitions involve not rovibrational but mostly
rovibronic states. Most significantly, the experimental spectro-
scopic measurements of 12C2 involve three types of electronic
states: singlet, triplet, and quintet. Therefore, it is not surprising
that the experimental SN of 12C2 is somewhat different from
the experimental SNs of the other molecules studied by
MARVEL.
The experimental SN of 12C2 shown in Figure 11 has 16

Clauset−Newman−Moore (CNM)80 clusters. This figure
yields the following important information about the SN of
12C2, some of which can also be applied to other SNs: (1) the
CNM algorithm yields two principal clusters where the
conjunctive transitions can immediately be recognized; (2)
the two largest communities are formed principally by singlet
and triplet energy levels, though not exclusively (this
information is not shown in the figure); (3) most of the

communities with a small number of vertices are weakly
connected to the main part of the SN; and (4) the larger
communities contain a large number of cycles. The last
statement is significant from the point of view of high-
resolution spectroscopy, as it is tempting to believe that if a
given energy level is part of at least one cycle then its value is
well determined. This example shows that if the energy level is
a member of a weakly connected cluster, then its uncertainty
may depend strongly on the accuracy of transitions connecting
the cluster to the main part of the SN. Therefore, the CNM
method can be used to detect small communities, in which the
uncertainties of the energy levels may reflect this weakly
connected property. This figure also nicely shows the large
number of branches almost always characteristic of exper-
imental SNs.

5. SUMMARY AND CONCLUSIONS
Driven by the need of scientific and engineering applications,
information systems containing line-by-line high-resolution
spectroscopic data have become ubiquitous during the last 20
years or so. These information systems contain rovibronic
transitions for a considerable number of small molecules,
selected on the basis of the need of the applications, usually
containing two to six atoms. The largest of the computed line
lists have up to 1010 transitions,111,112 clearly calling for “big
data” techniques to generate, store, validate, distribute, and
utilize the information. It must be emphasized that although
quantum chemical computations are able to yield the complete
set of the required line-by-line information even for semirigid
pentatomic molecules, like 12CH4,

112 the accuracy of the line
positions is limited and thus should be replaced by much more
accurate experimental data whenever they are available. As
emphasized in this article, to make maximum use of the
experimental spectroscopic line list information, the grand list
of measured spectroscopic transitions of a molecule should be
viewed as a weighted, undirected, and rooted graph, a
spectroscopic network (SN). The vertices of the SN are the
energy levels (these are principally independent of the type of
measurement providing them), whereas the edges are the
spectroscopically allowed transitions and the weights are the
transition intensities (both depend on the type of measurement

Figure 10. Part of the measured spectroscopic network of H3
+

showing pictorially a conflict due to the accuracy of two sets of
measurements: the red transitions were measured by 13HoPeJeSi108

and the blue ones by 13WuLiLiLi.109 The green, unmeasured
transitions within the same measurable wavenumber range should
help to solve the conflict of the two sets of measurements once and for
all.

Figure 11. Clauset−Newman−Moore (CNM) clusters of the
experimental spectroscopic network of the 12C2 molecule.
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performed). Obviously, transition intensities have a crucial role
in determining the structure of SNs and different spectroscopic
techniques yield SNs with drastically different topologies.
Experiments yield relatively small multiedge random graphs:

the largest experimental SN studied, that of ortho- and para-
H2

16O,42 contains about 20000 energy levels and 200000
transitions, of which about 100000 are unique. A given first-
principles computation of rovibronic energy levels and spectra
results in a very large deterministic simple graph.
The network-theoretical view of the results of high-resolution

spectroscopy experiments yielding rovibronic transitions and
energy levels, after introducing the concept of spectroscopic
networks (SN) and once one understands the structure of the
SNs, offers several concepts and tools toward the complete
characterization of the related rovibronic energies and spectra,
some of which can be summarized as follows:

(1) SNs of simple molecules usually contain more than one
principal component (PC), as required by nuclear spin
statistics. PCs are giant components of the spectroscopic
networks. Experimental spectroscopic networks occa-
sionally contain floating components, whose energy
levels are not attached to any of the energy levels of
the PCs. Unification of the components of an
experimental SN is important to obtain “absolute”
energy values for the vertices of components disjoint
from the PCs.

(2) The degree distribution of all experimental SNs
investigated turns out to be free of a scale. The scale-
free property of the overall network degree distribution
of SNs thus established leads to the useful concept of
hubs, i.e., the emergence of a relatively few energy levels
with a relatively large number of transitions. Note that
this statement is independent of the assumed degree
distribution of SNs; it only relies on the heavy-tail
distribution observed in all cases. The established
existence of hubs provides design ideas for highly useful
spectroscopic measurements. For example, accurate
measurement of transitions involving the least well
characterized hubs of the experimental SN leads
straightforwardly to a more accurate list of levels and
lines.

(3) The fact that the PCs of experimental SNs are giant
components can be explained by the observation that all
experimental SNs studied exhibit heavy tails in their
degree distribution with the exponent of the assumed
fitted power-law distribution of about 2.2. This scaling
index means, according to modeling studies,7 that the
SNs are allowed to have giant components and small
ones occur only occasionally. This is a useful property of
spectroscopic networks as it ensures that most of the
rovibronic energy levels can be obtained from a diverse
set of experimental measurements.

(4) All the experimental spectroscopic networks investigated
turn out to be bipartite. This is another important
property of SNs. It reflects the fact that the parity of the
energy levels has to change during experimentally
measurable one-photon transitions. The bipartite nature
of SNs means that SNs contain only even-membered
cycles, the smallest possible cycle involves four energy
levels. Bipartiteness allows, for example, for a simple
partial check of the correctness of the labels of the lines
listed in spectroscopic databases.

(5) Detailed investigation of first-principles SNs show that,
although the great majority of the transitions is extremely
weak, it is possible to find a few relatively strong
transitions for almost all energy levels. This suggests that
with relatively standard spectroscopic techniques almost
all of the bound rovibronic energy levels can be
determined through measurement of transitions they
are involved in.

(6) Detailed comparison of measured and computed hubs
helps to determine the weakest links within an
experimental SN, i.e., those transitions that are least
well determined and whose accurate knowledge is most
important to ensure the overall accuracy of the lines and
levels involved in the SN.

(7) It seems that the PageRank order76 of the hubs can be
significantly different from their degree order. PageRank
provides the more useful measure as within the
PageRank ordering system hubs are preferentially
connected with hubs.

(8) The scale-free spectroscopic networks are robust against
random removal of nodes. The robust structure of the
experimental spectroscopic networks investigated means
that they have a small diameter, resulting in the
ultrasmall-world property of SNs.

(9) The matrix representations of SNs, involving the
adjacency, and the combinatorial and normalized Lap-
lacians, can be used to learn a number of details about
the structure of the experimental spectroscopic networks.
Most of the times the same information can be obtained
by other means, but for the clustering of SNs the
normalized Laplacian seems to offer the best oppor-
tunity. It is tempting to believe that a rovibronic energy
level is experimentally well determined if it is part of a
cycle. Clustering methods, some relying on matrix
representations of SNs, help to detect small communities
of rovibronic energy levels in which the uncertainties of
the energy levels should reflect this weakly connected
property.

(10) Besides model Hamiltonians with a relatively small
number of parameters, another opportunity to reduce
spectroscopic data to manageable size is the conversion
of rovibronic transitions into rovibronic energy levels.
Minimum-weight spanning trees, where the weights are
defined by transition intensities, comprise the minimum
amount of transition information needed to represent the
experimentally available energy levels.

(11) In a high-resolution study a spectrum of a polyatomic
molecule is converted into a list of labeled energy levels.
Among other techniques, this can be achieved very
efficiently via the use of the minimum-weight spanning
tree, as it identifies the most intense and thus practically
most useful spectral features.

Probably the most important application of the concept of
spectroscopic networks is their use within the MARVEL
(Measured Active Rotational−Vibrational Energy Levels)
procedure yielding rovibronic energy levels, referenced to a
selected zero level, from measured transitions involving them.
The MARVEL code is not only completely general and can be
applied to any molecule but also is very fast, allowing on-the-fly
analysis of arbitrary experimental SNs and experimental spectra.
MARVEL has been used to study the experimental energy level
structure of 15 molecules40−43,55−59 and yielded tens of
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thousands of highly accurate energy levels. In favorable cases
MARVEL allows the “experimental” determination of the
energy difference between the roots of the principal
components of experimental SNs, through degeneracies of
(highly excited) energy levels belonging to different principal
components. MARVEL also facilitates the calibration of
Fourier-transform spectroscopy studies, an important feature
when transitions from many different experimental sources
must be used together. As shown for example for H3

+, the
network-theoretical view of molecular spectra helps to
understand conflicts of existing experiments and to propose
new experiments to resolve the contradictions.
Spectroscopic networks, perhaps as part of active databases,

are expected to become an intrinsic part of the description of
high-resolution spectra of molecules. Nevertheless, investiga-
tion of large-scale SNs, containing hundreds of thousands of
nodes and hundreds of millions of links calls for further
improvements in the mathematical algorithms and tools of
network theory.
We have shown that quantum mechanics builds complex

networks highly similar to man-made ones. The popular
notions of interdisciplinary scientific, social, and communica-
tion network investigations, like the scale-free and “small
world” properties, hubs, network dynamics, self-organization,
robustness, and attack/error tolerance, are all relevant when
experimental (and to some extent first principles) spectroscopic
networks are characterized.
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(49) Furtenbacher, T.; Csaśzaŕ, A. G.; Tennyson, J. MARVEL:
measured active rotational-vibrational energy levels. J. Mol. Spectrosc.
2007, 245, 115−125.
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