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ABSTRACT
The use of one- and two-mode reduced-density matrices (RDM), �1(qi ′, qi) and �2(qi ′, qj ′, qi , qj),
respectively, and in particular the use of their diagonal elements,�1(qi , qi) and�2(qi , qj , qi , qj), is sug-
gested for the assignment of normal-mode-like quantum numbers to variationally computed vibra-
tional wave functions of semirigid molecules when the computation is based on a nuclear-motion
Hamiltonian expressed in curvilinear internal coordinates qi . The use of RDMs for the semi-automatic
assignment of vibrational states is tested on the H2

16Omolecule, whereby about the first 250 states,
in the energy range of 0–25,000 cm−1, are assigned. The proposed semi-automatic assignment pro-
cedure takes advantage of the fact that (a) for semirigid molecules it is often possible to define
internal coordinates whichmimick normal coordinates defined by the harmonic counterparts of the
anharmonic vibrations, (b) overlaps between already assigned and yet unassigned RDMs provide
outstanding and often unambiguous suggestions for the quantum numbers, and (c) an energy-
decomposition scheme helps to decide among possible assignment possibilities suggested by the
computed density overlaps.
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1. Introduction

In the fourth age of quantum chemistry [1] the varia-
tional computation and subsequent characterisation of a
large number of rovibronic states of polyatomic molecu-
lar systems has become increasingly realistic. Symmetry,
in the form of irreducible representations, is an exact
information about the rovibrational states if the correct
group is employed during the nuclear-motion computa-
tion. The quantum number J, corresponding to overall
rotation, is an exact quantum number in a field-free case;
thus, J is available from all variational quantum-chemical
computations concerning nuclear dynamics to charac-
terise (label) the computed states. Parity, p, is another
piece of exact information about the computed rovibra-
tional states. Note that parity information can sometimes

CONTACT Attila G. Császár csaszarag@caesar.elte.hu MTA-ELTE Complex Chemical Systems Research Group and Laboratory of Molecular Structure
and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary

be connected to vibrational quantum numbers (vide
infra).

When the Eckart–Watson (EW) Hamiltonian [2–4],
a Hamiltonian based on the well-defined concepts
of a single reference structure and normal coordi-
nates, is employed for the variational computation of
(ro)vibrational states, it is often appropriate to use point-
group symmetry and the corresponding irreducible rep-
resentations to label the states. If, however, the rovibra-
tional Hamiltonian is based on the use of internal coordi-
nates, molecular symmetry (MS) groups and their (often
many-dimensional) irreducible representations should
be used to label the rovibrational states (correlation tables
can be employed to deduce the correct MS symmetry
labels if a group of lower symmetry was employed during

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/
4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in
any way.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2018.1562124&domain=pdf&date_stamp=2019-05-13
mailto:csaszarag@caesar.elte.hu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


MOLECULAR PHYSICS 1683

the computation). Some of the nuclear-motion codes
are able to provide symmetry labels [5–8] characteris-
ing the computed states. Nevertheless, a lot of practical
applications and the detailed spectroscopic character-
isation of the internal motions of a molecule require
the assignment of the computed vibrational states with
quantum numbers associated with the 3N−6 vibrational
degrees of freedom of an N-atomic nonlinear molecule
(see ref. [9] and references cited therein; rotations are
usually labelled with the [J Ka Kc] asymmetric-top quan-
tum number triplet [10]). There are no exact quantum
numbers describing the anharmonic vibrations ofmolec-
ular systems. The two most common choices of approx-
imate vibrational quantum numbers are based on the
concept of normal [11] and local [12,13] modes. In gen-
eral, for semirigid molecules it is more usual to apply
the 3N−6 normal-mode quantum numbers [9,14,15].
This is a successful and time-proven approach for lower-
energy states of semirigid molecules. When a code based
on the EW Hamiltonian [2–4] is employed for the vari-
ational computation of the vibrational states and the
one-dimensional basis functions are based on Hermite
polynomials, the computation provides a natural way
for the assignment of the vibrational states. This type of
basis set projection technique underpins, for example,
the normal-mode decomposition (NMD) technique [16].
Curvilinear coordinates are much more suitable to treat
vibrational motions than normal coordinates [17–19].
When the rovibrational Hamiltonian is based on curvi-
linear internal coordinates, assigning quantum numbers
to the computed vibrational states is not trivial and no
universal, black-box-type method is available. Labeling
of computed eigenstates is an important step toward
understanding nuclear dynamics, allowing its eventual
control. Let us recall the few techniques developed for
the assignment of variationally computed vibrational
states.

The simplest method, which can be called energy
decomposition, is based on the use of the energy depen-
dence of the computed vibrational eigenenergies (fun-
damentals, overtones, and combination bands) on the
normal-mode (harmonic oscillator) energies and their
‘exact’ quantum numbers. The applicability of this tech-
nique is mostly limited to low-energy states of semi-
rigid molecules. As an alternative, one can add artificial
corrections to the potential energy surface (PES) along
certain coordinates and see which eigenvalues change
and by how much and deduce information about the
vibrational character of the state this way. Obviously,
these two techniques do not require the availability of
wave functions to assign quantum numbers to the com-
puted states but their range of applicability is rather
limited.

As most of the codes developed for the solution of
the nuclear-motion Schrödinger equation are able to pro-
vide not only eigenvalues but eigenfunctions, as well [1],
the wave functions can be employed to obtain additional
important non-exact, qualitative information about the
computed (ro)vibrational eigenstates. The next three
techniques discussed require the availability of vibra-
tional wave functions. First, two-dimensional (2D) cuts
of vibrational wave functions, along all coordinate pairs,
and counting the nodes by visual inspection often give
valuable information about the excitations characteris-
ing the computed states. The 2D cuts are particularly
useful for states of more or less pure stretching or bend-
ing character. However, plots cannot be used to assign
quantum numbers to strongly mixed states without sig-
nificant manipulation. It is also hard to identify multiply
excited states by visual inspection even if such states were
fairly harmonic. Thus, while the node-counting method
appears to be useful for small systems and low excita-
tion energies, see, for example, Refs. [9], [20], and [21],
it quickly becomes impractical and prone to errors for
larger systems, when the number of vibrational degrees
of freedom and the number of possible mode combina-
tions increase [22]. Second, expectation values of certain
parameters may also provide useful information about
the excitation characteristics of certain vibrational states.
The applicability of the expectation values of, for exam-
ple, geometric parameters, are based on the anharmonic-
ity of the true PES. In the already mentioned technique,
the NMD [16] of variational vibrational wave functions,
the variationally computed, normalised vibrational wave
functions, ψi, are characterised by the square of their
overlaps with the normalised harmonic-oscillator basis
functions, φHO

v , expressed in terms of normal coordi-
nates corresponding to the actual PES. Finally, as alter-
natives to the full-dimensional wave-function projec-
tion technique, perturbative approaches may also enable
harmonic-oscillator-based assignments without the need
for explicitly computing the eigenvectors [23,24]. As
demonstrated by Yu et al. [24], with appropriate coor-
dinate definitions and a set of specific perturbation
operators, the perturbative approach can successfully
provide normal-mode quantum numbers for vibra-
tional states ofmolecules exhibiting even large-amplitude
motions.

The present work focuses on a novel assignment tech-
nique based on the use of one- and two-mode reduced-
density matrices (RDM). This approach was first used
in our study of the rovibrational states of the vinyl rad-
ical [25] but there no detailed account of the technique
was given. In Ref. [25] we plotted only the diagonal
elements of the RDM matrices (�D

1 and �D
2 ), repre-

senting the modal wave-function density, and visually



1684 J. ŠMYDKE AND A. G. CSÁSZÁR

assigned the states based on kinks in the density plots.
The method proved to be successful and straightforward
to use for many states, even though information about
the sign changes of the wave function at the nodes is not
directly available when the densities are plotted. What
we observed in Ref. [25] is that, compared to the simple
wave-function visualisation and node-counting method,
the visualisation of the densities does not require choos-
ing any reference coordinate configuration, it integrates
out many misleading structural details of the wave func-
tion, and it describes each state by only a small number
of compact density plots. Besides these convenient prop-
erties of this approach we also observed that the pattern
of the density of a particular excitation tends to be very
regular across all the vibrational states characterised by
this excitation. Therefore, a given excitation can be deter-
mined by its ‘density shape’. Actually, this is a key idea
behind the current study, as thismeans that one can com-
pare overlaps of the mode densities in a semi-automatic
way. Another improvement over Ref. [25] is the possi-
bility of directly observing the sign alterations at nodes
by plotting the full 2D picture of the one-mode RDM,
�1. Moreover, if a coordinate system is chosen such that
each normal mode is described by basically one internal
coordinate, the need for �D

2 is eliminated and one could
even develop an automatic assignment based on�D

1 plots,
without the need to probe each new �D

2 shape for the
coupled coordinate pair.

During this study we use water, in particular the
H2

16O isotopologue [15], as our test molecule to inves-
tigate the capabilities of RDMs for the assignment of
quantumnumbers to a large number of vibrational states.
We do this since detailed normal-mode labels have been
reported [20] for a large number of vibrational states of
H2

16O, up to about 25 000 cm−1. The following charac-
teristics of the vibrational states of H2

16O complicate the
assignment procedure: (a) the vibrations of water show
both local- andnormal-mode behaviour even at relatively
low energies, (b) above a certain energy water ceases to
remain a semirigid molecule, and (c) water is charac-
terised by a low barrier to linearity, around 11,000 cm−1

[26], and thus quantum monodromy [27] must be con-
sidered for this molecule.

2. Reduced-density matrices

To at least partially remedy problems associated with the
usual assignment procedures based on the visual inspec-
tion of wave functions and node counting, hereby we
explore the application of one- and two-mode reduced-
density matrices, �1 and �2, respectively, for assigning
computed vibrational states. The quantities �1 and �2

used in this study extensively are defined as follows:

�1(qi′, qi) =
∫

dq1 . . . dqi−1dqi+1 . . . dqN

×�∗(q1, . . . , qi−1, qi′, qi+1, . . . , qN)

×�(q1, . . . , qi−1, qi, qi+1, . . . , qN) (1)

and

�2(qi′, qj′, qi, qj)

=
∫

dq1 . . . dqi−1dqi+1 . . . dqj−1dqj+1 . . . dqN

×�∗(q1, . . . , qi−1, qi′, qi+1, . . . , qj−1, qj′, qj+1, . . . , qN)

×�(q1, . . . , qi−1, qi, qi+1, . . . , qj−1, qj, qj+1, . . . , qN),
(2)

while their diagonal elements are

�D
1 (qi) = �1(qi, qi)

=
∫

dq1 . . . dqi−1dqi+1 . . . dqN

×�∗(q1, . . . , qN)�(q1, . . . , qN) (3)

and

�D
2 (qi, qj) = �2(qi, qj, qi, qj)

=
∫

dq1 . . . dqi−1dqi+1 . . . dqj−1dqj+1 . . . dqN

×�∗(q1, . . . , qN)�(q1, . . . , qN). (4)

The �D
1 (qi) and �

D
2 (qi, qj) quantities actually represent

the wave-function density along a given coordinate or a
coordinate pair. These quantities do not show the change
of the sign of the wave function at the nodes. How-
ever, it turns out that the nodal structure is very nicely
matched by kinks in the density and for many vibrational
states the density information is completely sufficient for
a successful assignment.

The nodal structure is revealed by the full �1(qi′, qi)
matrix, whereby the change of the sign of the wave func-
tion induces a sign change in the density matrix when
moving along a coordinate through a wave-function
node.

The structure of the density plots, formed by the men-
tioned ‘kinks’, depends only moderately on the com-
putational grid employed and a much smaller number
of density plots needs to be generated for an assign-
ment than the number of wave-function projections
needed during node counting. Density plots tend to be
very regular even in multimodal excited states, help-
ing semi-automatic assignment procedures (vide infra).
Furthermore, a particular advantage of �D

1 and �D
2 is

that positive- and negative-parity vibrational states are
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characterised by extremely similar plots (even more so
than for the wave functions), helping considerably their
pairing. This proved to be useful in the case of the assign-
ment of the vibrational states of the vinyl radical, char-
acterised by a pronounced large-amplitude tunnelling
behaviour [25].

3. Computational details

The vibrational eigenstates of H2
16O were computed

in this study with the in-house nuclear-motion code
GENIUSH [17,18], where GENIUSH stands for a general
(GE), numerical (N) rovibrational programme employ-
ing curvilinear internal (I) coordinates and user-specified
(US) Hamiltonians (H). Within GENIUSH the wave
function is represented on a full or reduced-dimensional
grid by using the discrete variable representation (DVR)
technique [28,29] and the resulting large-scale eigenvalue
problem is solved iteratively by the Lanczos algorithm
[30]. The latest version of the GENIUSH code utilises the
molecular symmetry (MS) group in the vibration-only
mode of computation, yielding proper symmetry labels
for the vibrational eigenstates [6].

In this study the internal coordinates of the water
molecule were chosen as either the valence coordinates,
R1, R2, and ϑ , as shown in Figure 1, or their symmetrised
combination (R1 + R2), (R1 − R2), and ϑ . Details about
the DVR grid applied is given in Table 1.

ThePES employed in this study is taken fromRef. [31].
This choice facilitates the comparison of the computed

Figure 1. The simple valence internal coordinates of the water
molecule, R1, R2, and ϑ , used during this study.

states with those of Ref. [20] as well as to the so-called
IUPAC water data of Ref. [15].

4. A semi-automatic assignment procedure

While the semi-automatic assignment procedure devel-
oped during this study works the same way for all
molecules, the discussion given here concentrates on the
chosen test molecule, H2

16O. For H2
16O, the energy-

decomposition technique can be expressed as

E(v1, v2, v3) = v1ν1 + v2ν2 + v3ν3, (5)

where v1, v2, and v3 (often given as (v1 v2 v3)) and ν1,
ν2, and ν3 are the vibrational quantum numbers and the
vibrational fundamentals corresponding to the so-called
symmetric stretch, bend, and antisymmetric stretch nor-
mal modes of H2

16O, respectively.
For H2

16O, the method of energy decomposition
works extremely well for eigenenergies up to about
12,000 cm−1 and no additional information is required
to label these vibrational states. We note that at
12,000 cm−1 the stretching motions of water are already
much more accurately described by a local-mode rather
than a normal-mode picture [32]. Above this energy, the
density of states increases and there are often several
candidate states for a given set of vibrational quantum
numbers. Additional information about the vibrational
state is therefore needed. Note that for the vibrational
states of H2

16O the parity of the state is given by (−1)v3 .
In general, such relations may not exist and even when
normal-mode labels can be allocated based on energy
decomposition (or any other scheme), their physical rel-
evance can often be questioned.

Since the results of the present assignment procedure
are to be compared to the labels provided in Ref. [20],
it is worth recalling some of the relevant results of
Ref. [20]. Assignment of vibrational quantum numbers
to levels with large v2 values proved to be particu-
larly difficult. In Ref. [20] all VBOs up to 26,500 cm−1

could be labelled; however, above this energy the pro-
portion of labelled VBOs drops steadily with increasing

Table 1. Details of the computational grid used in this study for both the valence and the symmetrised valence internal coordinate
systems.

R1 R2 ϑ (R1 + R2) (R1 − R2) ϑ

DVR type Hermite Hermite Legendre* Hermite Hermite Legendre
Range 0.51–2.15 0.51–2.15 10.0–179.7 1.25–3.00 −1.06–+1.06 10–179.7
No. of elementary DVR points 200 200 200 300 300 300
No. of PO-DVR points 40 40 55 90 90 120
Ref. conf. 0.95782 0.957 82 104.5 1.915 64 0.0 104.5

Notes: See Figure 1 for the definition of the valence coordinates. PO-DVR means potentially-optimised DVR using the given reference configuration. The ranges
for the internuclear distances (Ri) and the angle (ϑ ) are in Å and degrees, respectively. ∗The DVR coordinate is not ϑ , but cos(ϑ).
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energy. It is certainly feasible to provide labels to vibra-
tional states above 26,500 cm−1 but this was not tried
in a systematic way. Despite the drop in the number
of assigned VBOs with energy, in Ref. [20] labels were
provided for states with low values of v2 all the way to
dissociation.

In the present study we employed two basically sim-
ilar assignment schemes, one using the simple valence
internal coordinates R1, R2, and ϑ (see Figure 1),
while the other uses the symmetrised coordinates (R1 +
R2), (R1 − R2), and ϑ . For the former, ‘local-mode-
like’ scheme we compare �D

2 (R1,R2) and �
D
1 (ϑ) matri-

ces between states, while in the latter, ‘normal-mode-
like’ case we compare the �1((R1 + R2)′, (R1 + R2)),
�1(ϑ

′,ϑ), and �1((R1 − R2)′, (R1 − R2)) matrices (in
principle, the diagonal elements �D

1 (R1 + R2), �D
1 (ϑ),

and �D
1 (R1 − R2)may suffice, but, as we show in the fol-

lowing section, in many cases to distinguish a node from
a simple density kink the full 1-mode RDM is required).

For proper comparison of the states we can take
advantage of the fact that densities sum up to one,∫

dq�D
1 (q) = 1; (6)

thus, we renormalise the densities so that∫
dq

(
�D
1 (q)

)∗
�D
1 (q) = 1 (7)

and analogously for the other relevant quantities,�D
2 (qi, qj)

and �1(q′, q). With quantities renormalised this way we
can compare them between states with the resulting over-
lap ranging from zero to one.

Let us show how the proposed semi-automatic assign-
ment procedure works via a couple of examples. To avoid
obvious misassignments, a trivial excitation aufbau prin-
ciple is followed in our semi-automatic assignment proce-
dure, whereby the density-overlap-based assignments are
taken from a pool of ‘allowed’ states. The set of allowed
states is updated at each step starting from assigning
(0 0 0) to the first (ground) state. Then, the second state
can only be one of the (1 0 0), (0 1 0), or (0 0 1) states,
i.e. one of the fundamentals. Assuming that the sec-
ond state has been assigned to (0 1 0), based on RDM
plots (which is actually the correct assignment), the set
of allowed states for the next vibrational state becomes
(1 0 0), (0 2 0), and (0 0 1). The states (1 1 0) or (0 1 1)
should not be taken into account here since such states
can come only after the states (1 0 0) or (0 0 1) have
been found. The set of allowed states thus remains rela-
tively compact and helps substantially in the assignment
process, especially in difficult cases.

Once all the fundamental modes, in the case of
H2

16O (1 0 0), (0 1 0), and (0 0 1), have been assigned,

an approximate energy is computed for each of the
allowed states based on the single-mode energies and the
allowed states are sorted accordingly. The new order of
allowed states is not always fully relevant, particularly for
higher combination states, but definitely helps in the case
of problematic assignments. This energy-decomposition
scheme basically follows the accounting of vibrational
states based on the polyad number of H2

16O [15].
An important criterion for the assignment within our

procedure remains the visual inspection of density plots.
Nevertheless, in this study of the vibrational states of
the water molecule, when simple valence coordinates
are used, the visual inspection was basically unnecessary
during the analysis of the vast majority of the states, as
the assignments suggested by the density overlaps and the
energy-decomposition scheme were mostly unambigu-
ous and correct. The proper assessment of the density
plots become, however, inevitable for some of the states,
where the automatic energy decomposition scheme is not
sufficient in itself.

We also would like to stress that reduced-density-
matrix plots have a limited applicability since the
density structures are often too complicated to dis-
tinguish nodes, especially in the �D

2 (R1,R2) plots in
the case of H2

16O (clear-cut cases are shown in
Figure 3). For suchnon-trivial density shapes the overlap-
based comparisons should definitely supplement visual
inspection.

The actual script written to provide a semi-automatic
procedure for the assignment of the vibrational states of
water using densities expressed in valence internal coor-
dinates can be summarised as follows. Let us introduce
the canonical order of the vibrations, (v1 v2 v3), for water.
We start by assigning state #1 with (0 0 0) and store the
corresponding mode densities �D

2 (R1,R2) and �D
1 (ϑ)

with their corresponding quantum numbers (0 0) and 0,
respectively. Then, a new set of allowed states is gener-
ated. For state #2 the �D

2 (R1,R2) density has almost unit
overlap with that of state #1, while the �D

1 (ϑ) density
exhibits a new structure. This immediately suggests that
the correct assignment of state #2 is (0 1 0). Since this
label is among the allowed labels, state #2 receives this
assignment and the new density�D

1 (ϑ) is stored together
with a quantum number v2 = 1. The procedure contin-
ues in an analogousway until the desired number of states
received an assignment. The assignment procedure for
the systemwith the symmetrised valence coordinates dif-
fers only in the type and the number of densities that
are being compared and stored. In the present case of
H2

16O, we found advantageous to set the threshold for
density similarities at 0.9, though the vast majority of
successfully assigned states had density overlaps as high
as 0.99.
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Figure 2. Plots corresponding to �D
1 (ϑ) (left column) and

�D
2 (R1, R2) (right column) diagonal reduced-density-matrix ele-

ments of selected vibrational states of H216O [between state #7
(1 1 0) and #14 (0 0 2)], computed using the simple valence coor-
dinates R1, R2, andϑ (Figure 1). The radial coordinates are in bohr,
the angular one is in degrees.

5. Results and discussion

When comparing the applicability of the RDM method
in the two selected coordinate systems, it is best to plot
the same selected vibrational states. Figures 2 and 3 show
the diagonal densities �D

1 (ϑ) and �
D
2 (R1,R2) in simple

Figure 3. Plots corresponding to �D
1 (ϑ) (left column) and

�D
2 (R1, R2) (right column) diagonal reduced-density-matrix ele-

ments of selected vibrational states of H216O [between states #28
(3 0 0) and #159 (5 1 1)], computed using the simple valence coor-
dinates R1, R2, andϑ (Figure 1). The radial coordinates are in bohr,
the angular one is in degrees.

valence internal coordinates, while Figures 4–7 depict
the same states in both the diagonal �D

1 and the full
�1 density matrices using symmetrised valence inter-
nal coordinates. The most visible advantage of using the
symmetrised coordinate systemduring the RDManalysis
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is that the nodal structure of the individual modes is
directly observable from the sign changes in the �1
matrices. Nevertheless, in complicated mode combina-
tions discussed below, the �1 plots can become rather
fuzzy and the corresponding �D

2 plot in simple valence
coordinates seems to make more sense. The method
which compares densities based on simple valence coor-
dinates, �D

2 (R1,R2) and �D
1 (ϑ), worked very well for

Figure 4. Reduced-density-matrix plots of selected vibrational states of H216O, computed using symmetrised valence coordinates. Plots
corresponding to the diagonal �D

1 (first row for each state) as well as the full �1 (second row for each state) reduced-density-matrix
elements are shown. The radial coordinates are in bohr, the angular coordinate is in degrees. The �1 density scales from negative (blue)
to positive (red) values through zero (yellow) (colours only available online).

the water molecule and the semi-automatic assignment
procedure, described in Section 4, provided labels with
relative ease for the first 244 states, i.e. up to an energy
over 24,900 cm−1. Within the first cca. 200 states only
very few states needed particular decision-making inter-
vention. Nevertheless, these problematic states were still
relatively easy to resolve by using combinations of the
tools of theRDMassignment procedure, including the set
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of allowed assignment candidates, visual assessment, and
the ordering of the candidates based on their approximate
energy estimate. Above about state #210, several difficult
cases emerged that needed special care or even repeated
assignment trials.

Almost all of the state assignments our semi-automatic
scheme providedmatch nicely the assignments suggested
in Ref. [20]. In cases of disagreement, the discrepancy is

Figure 5. RDM plots of selected vibrational states of H216O, computed using symmetrised valence coordinates. Plots corresponding to
the diagonal �D

1 (first row for each state) as well as the full �1 (second row for each state) density matrix elements are shown. The radial
coordinates are in bohr, the angular coordinate is in degrees. The �1 density scales from negative (blue) to positive (red) values through
zero (yellow) (colours only available online).

mostly a swap of neighbouring states, which may even
be caused by using different potentials in the two stud-
ies. Successful assignment of higher vibrational states
seems still possible, but it may require further improve-
ment of the method or a careful visual inspection of the
RDM plots. It is, however, not very clear until a fur-
ther large number of studies is executed how far one can
go with this approach based on modal density-structure



1690 J. ŠMYDKE AND A. G. CSÁSZÁR

Figure 6. RDM plots of selected vibrational states of H216O, computed using symmetrised valence coordinates. Plots corresponding to
the diagonal �D

1 (first row of each state) as well as the full �1 (second row of each state) density matrix elements are shown. The radial
coordinates are in bohr, the angular one is in degrees. The �1 density scales from negative (blue) to positive (red) values through zero
(yellow) (colours only available online).

similarities and the assumption of weakly interacting
vibrational modes.

In Figures 2 and 3 we show plots of the diagonal densi-
ties for a few eigenstates. In states #7 (1 1 0) and #8 (0 1 1),
respectively, one can see how the symmetric (a1) and the
antisymmetric (b2) stretching-mode densities appear by
means of the simple valence coordinatesR1 andR2. States

#12 (2 0 0), #13 (1 0 1), and #14 (0 0 2) (Figure 2) repre-
sent the simplest stretching combinations, these states are
remarkably easy to assign just by inspecting their density
shapes. However, the more involved the stretching-mode
combinations, the more complicated the density struc-
ture and the less obvious the visual assignment become,
as noticable in Figure 3, especially for states #30 (1 0 2),
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#99 (1 0 4), and #142 (2 2 3). Fortunately, when such
structures first appear, their assignment tends to be very
logical and their further occurrence is mostly undoubt-
fully recognised by the overlap computations.

Figures 4 and 5 provide beautiful examples of well-
resolved nodal structures by the �1 matrices in the
symmetrised valence coordinates for some of the low-
lying states.However, the use of symmetrised coordinates
during the semi-automatic assignment process proved
to be significantly less successful than the use of sim-
ple internal coordinates. Even though the lowest 125
states could be straightforwardly assigned, almost auto-
matically, after that the assignment became challenging
with many ambiguous and unclear density structures. As
examples of such difficult cases, in Figure 6 one can see
that states #28 (3 0 0) and #30 (1 0 2) exhibit almost indis-
tinguishable diagonal densities and just from their shapes
it is hard to guess the correct assignment (this situation is
in contrast to the clear�D

2 (R1,R2) plots of Figure 3 based
on simple valence coordinates). Only the full �1 density
plots are a bit more helpful by better pronouncing the
nodal structure in the (R1 + R2) and (R1 − R2) coordi-
nates. Therefore, we decided to compare the �1 matrices
rather than only their diagonals for the states described
by the symmetrised valence coordinates. Assignment of
the higher combination states in Figure 7 was substan-
tiallymore difficult in the symmetrised than in the simple
valence coordinates and in some cases intuition had to be
used as the decision-making factor. All in all wemanaged
to assign only about 180 states for reduced-density plots
based on symmetrised valence coordinates. These prob-
lemsmay at least partly be due to the switch fromnormal-
to a local-mode behaviour as the excitation increases.

6. Conclusions

In a previous study [25] we suggested using the diago-
nal elements of the one- and two-mode reduced-density
matrices (RDM), corresponding to variationally com-
puted wave functions, for the assignment of vibrational
states. The main advantage of using RDMs over plotting
wave functions is the compact representation of the infor-
mation content and the higher number of assigned states
that can be obtained, preferentially, semi-automatically.
When densities are used, the nodal structure is repre-
sented by kinks in the density, with no direct observation
of the sign changes characterising wave functions. This
is, however, not a significant hindrance, the visual-only
RDM-based assignment employing density kinks proved
to be successful for the vinyl radical, whose vibrational
energy-level structure is determined by a large-amplitude
tunnellingmotion [25]. During the present work the con-
cept of using RDMs for the assignment of vibrational

Figure 7. �D
1 (first row of each state) and full �1 (second row of

each state) reduced-density-matrix plots of selected vibrational
states of H162 O, computedusing symmetrised valence coordinates.
The radial coordinates are in bohr, the angular one is in degrees.
The�1 density scales from negative (blue) to positive (red) values
through zero (yellow) (colours only available online).

states was further investigated for the H2
16O test system,

a semi-automatic assignment procedure was developed,
and the possibility of directly observing the sign changes
characterising wave-function nodes was explored.

The key idea behind the utility of RDMs is that the
density of a mode excited by a given number of quanta
tends to be very regular formost vibrational states. Hence
the assignment procedure is tremendously helped by
comparing density shapes via overlap computations.

The semi-automatic assignment procedure developed
is based on �D

1 and �D
2 densities, overlap computations,

a trivial excitation aufbau principle mechanism (pre-
venting obvious misassignments), and a simple energy
estimator. Together with the visual assessment of the
densities in some cases, the proposed semi-automatic
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method allowed the successful assignment of 244 vibra-
tional states of H2

16O (reaching over 24,900 cm−1). In
the case ofH2

16O, it is advantageous to use simple valence
coordinates for the computation of the densities.

By plotting a complete �1 matrix (not only the diag-
onal elements), one can observe the sign alternations
characterising wave-function nodes; therefore, the visual
node counting can be confirmed in cases when it is not
clear whether a kink emerges due to a node or it is just a
‘density irregularity’.

For the RDM-based assignment we suggest to use an
internal coordinate system whereby each coordinate rep-
resents well a single vibrationalmode. This way the use of
the �D

2 matrices could be almost completely eliminated
in favour of the �D

1 plots and the nodal structure could
be directly read from the �1 matrices. A semi-automatic
assignment procedure developed used this approach, as
well, whereby the full �1 matrices instead of the �D

1 ele-
ments were compared for better state resolution. This
way we were able to assign about 180 vibrational states
of water (over 0–22,000 cm−1) based on the use of sym-
metrised valence coordinates.

Naturally, lot more states could be assigned by the
proposed method(s) if it was acceptable to leave out cer-
tain states from the assignment procedure. Further stud-
ies are needed to establish how high in energy one can
go with the proposed approach based on modal den-
sity structure comparisons and the assumption of weakly
interacting vibrational modes.We suggest using an inter-
nal coordinate system for which the diagonal or full
�1 and the diagonal �D

2 matrices provide a sufficiently
simple vibrational mode representation. These quanti-
ties can easily be plotted for ‘on-the-fly’ visual assess-
ment and they require only negligible storage capacity.
For larger molecules, one might wonder about the use of
higher-rank RDM for visual inspection via appropriate
two-dimensional projections. Unfortunately, the compu-
tational and storage demands grow substantially as the
rank increases.
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