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From bridges to cycles 
in spectroscopic networks
P. Árendás 1*, T. Furtenbacher 2 & A. G. Császár 2,3*

Spectroscopic networks provide a particularly useful representation of observed rovibronic transitions 
of molecules, as well as of related quantum states, whereby the states form a set of vertices 
connected by the measured transitions forming a set of edges. Among their several uses, SNs offer a 
practical framework to assess data in line-by-line spectroscopic databases. They can be utilized to help 
detect flawed transition entries. Methods which achieve this validation work for transitions taking 
part in at least one cycle in a measured spectroscopic network but they do not work for bridges. The 
concept of two-edge-connectivity of graph theory, introduced here to high-resolution spectroscopy, 
offers an elegant approach that facilitates putting the maximum number of bridges, if not all, into at 
least one cycle. An algorithmic solution is shown how to augment an existing spectroscopic network 
with a minimum number of new spectroscopic measurements selected according to well-defined 
guidelines. In relation to this, two metrics are introduced, ranking measurements based on their utility 
toward achieving the goal of two-edge-connectivity. Utility of the new concepts are demonstrated on 
spectroscopic data of 14NH

3
.

Accurate line-by-line (LBL) spectroscopic data are utilized in a wide range of scientific and engineering disci-
plines with many important  applications1–16. Accordingly, high-resolution spectroscopic data measured for gas-
phase molecules are collected and maintained in large databases, such as the canonical HITRAN spectroscopic 
information  system16. Unfortunately, LBL databases may contain rovibronic transitions with flawed wavenum-
ber data or incompatible labels, both of which may lead to several practical issues. For example, the problems 
indicated may result in inaccurate or incompatible energy values for rovibronic quantum states the LBL data 
determine. Identification of flawed data entries is an important task during the maintenance and extension of 
LBL spectroscopic databases.

Spectroscopic networks (SN)17–21 offer a novel way to represent the structure of the rovibronic quantum states 
and the allowed transitions of a molecule. The concept of SNs can be utilized to compare a SN built from data 
of a LBL database to another one built, for example, from first-principles data available for the same molecule. 
This comparison offers a powerful approach to gauge the completeness and validity of the data in the database 
and a framework for using elements of network theory for improving the LBL dataset, in particular to detect 
its flawed entries.

Let us clarify what is meant here by flawed wavenumber data. Each measured transition in a spectroscopic 
database has a wavenumber w, and a related, preferably two-sigma, uncertainty u. (Sometimes, uncertainties 
are given as uncertainty boundaries, see for example the wavenumber error code labels in HITRAN.) If set 
properly, together they mean that the “real” wavenumber value should lie, with a probability of 95%, within the 
(w − u,w + u) interval. Due to human or numerical errors during the buildup of the database, the real wave-
number may lie outside of this interval. While acknowledging that this event has a probability of 5%, we still 
label this wavenumber datum as flawed and suggest that further investigation is needed to verify its correctness.

In a recent paper Tóbiás et al.21 have shown how spectroscopic networks can be used to detect flawed wave-
number data in a spectroscopic database. This method, referred to as Cycle Testing in the present paper, works 
only for transitions which participate in at least one cycle of the SN. Correctness of wavenumber data for transi-
tions outside of cycles cannot be checked this way. The remedy should come in the form of an approach which 
would put the maximum number of transitions, if not all, into at least one cycle, by adding carefully selected new 
transitions to the database. At the same time, minimizing the required number of new transitions is extremely 
important, as this would minimize the associated cost of measuring these transitions. To extend the utility of 
Cycle Testing, this paper introduces the concept of two-edge-connectivity of graph theory to high-resolution 
spectroscopy. Two-edge-connectivity offers an elegant approach to improve the basis of Cycle Testing. Since 
this paper uses various methods and considerations of graph (network) theory, a field which may be somewhat 
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unfamiliar to some of the readers, the authors would like to recommend two outstanding textbooks that establish 
the required mathematical  background22,23.

The rest of this paper is organized as follows. “Spectroscopic networks” describes the concept of spectroscopic 
networks and the notations used, and briefly explains Cycle Testing. It also contains an analysis, from the view-
point of this paper, of the LBL data of the 14NH3 molecule listed in the HITRAN 2016 information  system16. 
“Two-edge-connectivity” explains the concept of two-edge-connectivity and its relevance to spectroscopic net-
works. “Augmenting measured spectroscopic network” formulates the mathematical problem of augmenting 
the measured spectroscopic network so that it would contain the maximum number of its edges in cycles while 
adding the minimum number of new transitions to the database. An algorithmic solution of the problem is 
shown, using a reduction to the (weighted) Tree Augmentation Problem of graph  theory24–29, in the “Augment-
ing measured spectroscopic network” section. “Local and global optimality metrics” introduces two metrics to 
measure the usefulness of the set of new transitions in solving the problem formulated in “Augmenting measured 
spectroscopic network” section. “Utilization of the concept of two-edge-connectivity” illustrates the utility of 
the concept of two-edge-connectivity on two examples, both involving 14NH3 . The conclusions reached during 
this study are summarized in “Conclusions”.

Spectroscopic networks
Definitions. The spectroscopic network of a molecule is a large graph, whose vertices correspond to rovi-
bronic quantum states and each edge corresponds to a transition between two quantum states allowed by certain 
so-called selection  rules17. The energy of the quantum states and the wavenumber and intensity values of the 
transitions can be taken as weight functions on the vertices and edges, respectively. A distinctive feature of SNs 
is that wavenumbers on the edges form a potential difference function, using the energy of the vertices as the 
potential.

The vertex-edge structure of spectroscopic networks is determined by appropriate selection rules, which may 
be different for different experimental techniques. As to the energies and the weights of the transitions, they are 
known only approximately. There are two principal ways to obtain wavenumber (and intensity) data: a theoretical 
(preferably first-principles30) and an experimental (preferably ultra-high  precision31) one. Both approaches have 
their own advantages and disadvantages. The first-principles approach solves the nuclear Schrödinger equation 
of quantum chemistry  numerically30 and computes approximate wavenumbers (and intensities) for perhaps all 
feasible transitions, though with relatively sizeable error margins, often several orders of magnitude larger than 
the uncertainties of modern  experiments31. In the experimental method accurate wavenumber (and intensity) 
data are obtained from measured spectra, but only about a (small) subset of all transitions. Experimental data 
about a molecule are usually collected in (large) spectroscopic databases.

A spectroscopic network that is built from first-principles data is called a theoretical spectroscopic network. If 
the transitions forming the SN come from experiment, it is called a measured spectroscopic network. Modern LBL 
databases may also contain transitions that do not come from experiment but have theoretical/computational 
origin. For example, the HITRAN database contains data from effective Hamiltonian fits. This issue is rectified 
by relaxing the definition of the measured spectroscopic network as follows. As the goal of spectroscopic data-
bases, like HITRAN, is to provide data sets with accuracy that is comparable to genuine experimental data, the 
graphs built using them will still be considered measured. Thus, “measured SNs” may contain accurate transitions 
of theoretical origin, alongside the experimental data. Throughout this paper, the intensities of the rovibronic 
transitions of ammonia ( 14NH3 ), our test molecule, refer to room temperature (296 K).

Let us denote the theoretical spectroscopic network built from vertices V and edges E by SNt = (Vt ,Et) and 
the measured spectroscopic network by SNm = (Vm,Em) . There is no need to denote weight functions on the 
two graphs. Observe that Vm ⊆ Vt , and Em may contain parallel edges.

For practical reasons, graphs T  and M will be defined and used instead of SNt and SNm , respectively (see 
Fig. 1). Briefly, graph T  will only contain transitions above an intensity threshold dictated by feasible measure-
ments, while graph M will be a connected graph without any parallel edges.

Let us define the graph T = (VT ,ET ) as follows. The edge set ET  is the set of all transitions in Et that have 
at least an intensity value of κ . The κ parameter corresponds to the smallest intensity value by which the transi-
tion can be detected in the measured spectrum of the molecule. For example, κ = 10−30 cmmolecule−1 is a 
typical lower limit of cavity-ringdown spectroscopic measurements, some of the most sensitive techniques of 
modern-day high-resolution  spectroscopy32. The vertex set VT  is the subset of Vt to which at least one transition 
belongs from ET .

Let us define the graph M = (VM,EM) as follows. Let VM be the subset of vertices in Vm which are in the 
same connected component as the ground state in SNm . Then, for all u, v ∈ VM , there is a single (u, v) edge in 
EM if there is at least one (u, v) edge in Em . Observe that M is a subgraph of T  , or in other words, VM ⊆ VT  
and EM ⊆ ET .

Cycle testing. As shown by Tóbiás et al.21, the cycles of measured SNs can be utilized to detect flawed wave-
number data entries in experimental line-by-line spectroscopic databases. A cycle is a subset of the edges that 
form a path in the graph that starts and ends in the same vertex. Using Cycle Testing, one can detect flawed 
transitions in cycles in measured SNs. Let us call the edges that are not in at least one cycle in the graph bridges. 
Thus, Cycle Testing can be done for all edges that are not bridges. Figure 2 shows an example of a graph without 
any bridges, and three examples of graphs with various types of bridges. Cycle Testing is based on the fact that 
wavenumbers, as a weight function, form a potential difference function on the edges. Briefly, Cycle Testing 
checks this attribute for the cycles of a given measured SN as follows.
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Let us take a cycle from the measured SN that has no parallel edges. Direct the edges from the lower energy 
vertex to the upper energy vertex, perhaps based on the corresponding theoretical SN. The signed sum of wave-
numbers along a cycle means the sum of wavenumbers, with each edge that is traversed from its head to its tail 
counting as a negative number. If one can select one wavenumber for each edge from its wavenumber interval 
such that the signed sum along the cycle is zero, within the tolerance of the associated uncertainties, then the 
cycle is consistent. Else, the cycle is inconsistent, and it contains at least one edge with flawed wavenumber data. 
Testing additional cycles could help narrowing down the possible edge set with flawed data. Consistency and 
inconsistency can also be defined for the full SN.

Let us demonstrate how Cycle Testing works on the graph of Fig. 3. There are wavenumber intervals given 
on the edges of the graph, which correspond to the (w − u,w + u) intervals introduced in “ Introduction”. For 
example, the wavenumber interval (1, 3) corresponds to w = 2 and u = 1 . The small graph of Fig. 3 contains 
three cycles. According to the wavenumber intervals of the edges, there exists a zero-signed-sum wavenumber 
selection on the GCDH cycle, for example, 2+ 3− 1− 4 = 0 (for the sake of simplicity, uncertainties much larger 
than real-life ones are assumed). However, for the GFBC cycle no such wavenumber set exists; for example, the 
minimum wavenumber sum on the edges GF and FB is 4+ 4 = 8 , while the maximum wavenumber sum on the 
edges GC and CB is 4+ 2 = 6 . Therefore, the GCDH cycle is consistent, while the GFBC cycle is inconsistent.

In practice, a considerable drawback of Cycle Testing is the time complexity of cycle-finding algorithms. 
Finding all cycles of a graph, for example, is a NP-complete problem, meaning that no “quick” solution exists. 
Finding cycles of a fixed length of k is a different problem, but for k ≥ 6 the algorithms become rather slow, given 

Figure 1.  Illustration of the graphs introduced in “Spectroscopic networks” with graphs in the top and bottom 
rows corresponding to theoretical and measured spectroscopic networks (SN), respectively. Top left panel: 
graph SNt . Top right panel: graph T  . Bottom left panel: graph SNm . Bottom right panel: graph M . Vertex G 
represents the ground state. Dotted edges of SNt represent transitions with intensity values below a set κ value. 
These are removed in T  , as well as the vertices that can only be reached from the ground state through these 
edges. The parallel edges of SNm represent the data from multiple sources about the same transition within the 
experimental database. Observe that in M the parallel edges are replaced with a single edge, and M retains only 
the connected component of the ground state from SNm . It can also be seen that M is a subgraph of T .
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the large amount of vertices and edges in SNs. Thus, Cycle Testing is advocated to be used with cycles of length 
4, consideration of cycles of length 6 and 8 is only advocated for small subgraphs of SNs (note, in this respect, 
that all SNs are bipartite graphs).

Experimental data. Bridges have a direct impact on the overall consistency and utility of an experimental 
database. Let us investigate this impact employing data from the HITRAN 2016  dataset16 on the 14NH3 isotopo-
logue of ammonia. There are two principal components (PC)20 of this spectroscopic network, corresponding to 
two nuclear-spin isomers: one contains the transitions among the ortho-14NH3 states, while the other among the 

Figure 2.  A graph without bridges (no. 1) and three graphs that do contain bridges (no. 2–4). Graph no. 2 has 
one bridge, ending in a one-degree vertex (a vertex that has only one edge, a leaf). Graph no. 3 has 5 bridges 
together forming a branch, one of which ends in a 1 ◦ vertex. Graph no. 4 has one bridge, that connects two 
subgraphs without bridges. In all graphs blue vertices are reachable from vertex G, representing the ground state, 
through a path that does not contain bridges; yellow vertices can only be reached from vertex G through at least 
one bridge.

Figure 3.  Illustration of bridges and Cycle Testing on a small graph. Each edge, except edges AB and EF, is 
present in at least one cycle. Thus, edges AB and EF are the bridges of the graph. Edge labels: wavenumber 
intervals (black), a possible zero-signed-sum wavenumber selection for the GCDH cycle (green). The GCDH 
cycle is consistent, the GFBC cycle is inconsistent.

Table 1.  Selected spectroscopic data characterizing the 14NH3 molecule in the HITRAN 2016 information 
 system16.

ortho-14NH3 para-14NH3

No. of edges (unique transitions) 13105 28704

No. of bridges 619 (4.7%) 879 (3%)

No. of vertices (quantum states) 2189 3978

No. of vertices reachable from the ground state only through at least one bridge 619 (28%) 879 (22%)

No. of one-degree vertices 616 878
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para-14NH3 states. Let us consider the two graphs that are obtained from the experimental data following the 
graph construction of graph M described in “Definitions”. Only the transitions between quantum states with the 
complete label containing 13  descriptors33–36 were used during this construction. Table 1 displays the numerical 
data upon which the upcoming analysis is built.

First, let us observe that in our example the ratio of the number of bridges to the total number of edges is low: 
4.7% in the ortho and 3% in the para cases. Thus, the vast majority of transitions can be verified by Cycle Testing 
for both principal components of the measured SN.

Next, let us determine the number of vertices (quantum states) that can only be reached from the ground 
state on a path that contains at least one bridge. The computed energy of these quantum states depends on at 
least one wavenumber that is unverifiable by Cycle Testing. In the ortho case, this is 28% of all quantum states, 
while in the para case 22% of all quantum states belong to this category. In summary, the ratio of quantum states 
whose energy value cannot be verified by Cycle Testing is high, and this is caused by a relatively small subset of 
edges. Note that this observation can also be made on graph no. 4 of Fig. 2. This graph contains only one bridge, 
which is only about 11% of all edges in the graph. However, if vertex G represents the ground state, then 50% of 
the vertices can only be reached from the ground state using this bridge.

Note also that in our example the number of one-degree vertices is almost equal to the number of bridges 
for both ortho- and para-14NH3 . This means that almost all bridges have an endpoint with a degree of 1. Two 
bridges with this property can be seen in Fig. 2: one in graph no. 2 and the other in graph no. 3. If a bridge has 
an endpoint with a degree of 1 (a so-called leaf), then only this one-degree vertex can be reached through this 
bridge; thus, this bridge does not affect the consistency of the rest of the network. This distinction of bridges is 
important from the viewpoint that a bridge could easily affect the consistency of large subgraphs. For an example, 
see graph no. 4 of Fig. 2, where one bridge affects half of the vertices.

Now, adding new transitions to the database (via new spectroscopic measurements) could transform bridges 
into members of cycles. It can be easily determined about a new transition whether it puts at least one bridge into 
a cycle. However, in general this is not a trivial problem. Furthermore, some of the new transitions can be more 
useful than others. As obtaining new transitions often involves substantial cost, to select a set of new transitions 
to add to the database becomes an optimization problem. The best set of new transitions improves the consist-
ency of the database with a reasonable incurring cost. In the case of the analysis corresponding to Table 1, given 
the low ratio of bridges among edges, it is expected that the consistency of the SN can be improved by adding 
just a small number of new transitions to it.

Two-edge-connectivity
In graph theory there are multiple equivalent conditions to the property that each edge is in at least one cycle in a 
connected  graph22,37,38. The condition used in this paper is that graphs without bridges are two-edge-connected. 
This is the key graph property utilized and explored in this paper.

A graph is k-edge-connected if there are at least k edge-disjoint paths (i.e., paths without common edges) 
between each vertex pair in the graph. Thus, if there are at least two edge-disjoint paths between each vertex pair 
in the graph, then each edge of the graph participates in at least one cycle. Figure 2 shows a graph (graph no. 1) 
that is two-edge-connected, and three other graphs that are not two-edge-connected.

It is easy to see that if a graph is two-edge-connected, then for any edge eij , connecting vertices i and j, there 
are at least two edge-disjoint paths in the graph between i and j. One of these paths is the eij edge itself, and 
there is at least one additional path, Pij , that does not contain eij . Putting together eij and Pij we obtain a cycle 
that includes eij.

If the graph M is two-edge-connected, then it does not contain any bridges. Thus, the energy of all quantum 
states in the component containing the ground state, whose energy can conveniently be set to zero, are verifi-
able by Cycle Testing. This is the ideal scenario. From now on, let us assume that M is not two-edge-connected.

While M itself is not a two-edge-connected graph, it can have one or more two-edge-connected subgraphs. 
For example, the graph shown in Fig. 3 is not two-edge-connected, but it has a two-edge-connected subgraph, 
which is the subgraph formed by the vertex set {B,C,D, F,G,H} and the edges that span between these vertices. 
A similar property can be observed on graph no. 4. of Fig. 2, where a bridge connects two two-edge-connected 
graphs.

Each edge in a two-edge-connected subgraph is already included in at least one cycle; in other words, none 
of the edges of two-edge-connected subgraphs are bridges. This also means that the energy of quantum states in 
the same two-edge-connected component as the ground state can be verified by Cycle Testing. If in the graph 
of Fig. 3 vertex G represents the ground state, then the energies of the quantum states {B,C,D, F,G,H} can be 
verified by Cycle Testing. However, the energy of quantum states A and E cannot be verified in this way: transi-
tions AB and EF may contain flawed wavenumber data.

Identification of the maximal two-edge-connected subgraphs can be done, for example, by using an efficient 
algorithm of  Tarjan39. In a connected graph one can also use Dinic’s  algorithm40 to count the number of edge-
disjoint paths from the ground state to all other quantum states.

Augmenting measured spectroscopic networks
There is a natural min-max problem related to the process of adding new edges to an existing SN: maximize the 
number of bridges converted into cycles while minimizing the number of required new transitions. Optimally, 
all the bridges of the original SN are converted into cycles. However, difficulties could arise, for example, if no 
new measurable transition could be found for a bridge that would convert it into a member of a cycle. The mini-
mization corresponds to the associated real-life cost of obtaining new transitions. Moreover, the minimization 
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requirement also represents that in real life there may be other goals to consider than forming cycles when sug-
gesting new transitions for measurement.

The following graph-construction example let us focus nicely on the bridges of graph M . The step-by-step 
graphical representation of the graph construction is shown in Fig. 4, whereby the graph corresponds to the 
8-vertices graph of Fig. 3, with three possible new transitions added, one between A and E, one between A and 
G, and one between B and H.

Let us denote the vertex sets of the maximal two-edge-connected subgraphs in M by C1, . . . ,Cm . Let us 
denote by M∗ = (V∗

M
,E∗

M
) the graph obtained from M after contracting the spanning subgraphs of vertex 

sets C1, . . . ,Cm to single vertices c1, . . . , cm . Clearly, M∗ is a tree.
Graph no. 1 of Fig. 4 without the blue edges has one maximal two-edge-connected subgraph, defined by the 

vertex set {B,C,D, F,G,H} and the edges that span between these vertices. Graph no. 2 of Fig. 4 shows what 
we obtain after we contract this maximal two-edge-connected subgraph to a single vertex X. Observe that the 
possible new edge between vertices B and H has vanished: it is inside a two-edge-connected component; thus, 
its addition would not put any bridge into a new cycle.

Let us define the edge set E = {(u, v) : u ∈ Ci , v ∈ Cj , i �= j, (u, v) ∈ ET \ EM} . This is the set representing 
all possible new transitions that could be added to the experimental database, which convert at least one bridge 
into a new cycle, and which span between two quantum states that are already in the experimental spectroscopic 
database.

In graph no. 2 of Fig. 4 it can be seen that E = {(A,E), (A,X)} , and between vertices A and X we have parallel 
edges: one because there is a transition in the experimental database between the two corresponding vertex sets, 
and the other because there is a feasible new experimental transition between the two corresponding vertex sets. 
In order not to have to deal with parallel edges, let us modify the edges of M∗ by splitting each of its edges where a 
parallel new edge from E exists by adding a midpoint vertex: if we had an edge betwen v1 and v2 , in the new graph 
we will have an edge between v1 and v′ , and one between v′ and v2 , where v′ is a new midpoint vertex inserted. 
Graph no. 3 of Fig. 4 displays the step of splitting the edge between vertices A and X by the new midpont vertex Y.

Now, if the addition of all edges in E to the graph M∗ (more precisely, forming the graph (V∗
M

,E∗
M

∪ E) ) 
results in a two-edge-connected graph, then M can be augmented with new edges to remove all of its bridges. 
However, if (V∗

M
,E∗

M
∪ E) is not two-edge-connected, then M cannot be augmented to a two-edge-con-

nected graph this way. To address this issue, one could first determine the two-edge-connected subgraphs of 
(V∗

M
,E∗

M
∪ E) and do the augmentation of the corresponding subgraphs separately. This way, although not all, 

but at least a subset of the bridges in M could be put into cycles. From this point on, (V∗
M

,E∗
M

∪ E) is assumed 
to be a two-edge-connected graph.

Adding E to EM would trivially make M a two-edge-connected graph. However, an important goal is to select 
a subgraph of E of minimum size, whose addition to the edge set EM would make M a two-edge-connected 
graph. The right-hand graph of the bottom row of Fig. 4 without the blue edges can be augmented to a two-edge-
connected graph by adding only the edge between vertices A and E, adding the other blue edge is not necessary. 
A feasible solution to this problem is obtained via a reduction to the Tree Augmentation Problem (TAP) of graph 
 theory24–29.

In TAP, the input consists of a tree T = (V , F) and an edge set E ⊆ V × V  , where E ∩ F = ∅ . The goal is to 
find a subset E′ ⊆ E with the minimum number of edges such that T ′ = (V , F ∪ E′) is two-edge-connected. For 

Figure 4.  Illustration of the construction steps of graph M∗ . Graph no. 1 without the blue lines is graph M . 
Blue lines represent the elements of the edge set E . Graphs no. 2 and no. 3 represent two important construction 
steps.
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the reduction, let us set T = M∗ and E = E . Solving this problem is equivalent to the problem of selecting a 
minimum number of new edges E ′ ⊆ E to put all bridges of the original graph into at least one cycle.

A variant of TAP is the Weighted Tree Augmentation Problem (WTAP), where there is a weight function on 
the edges in E. Here, the goal is to find a subset E′ ⊆ E with minimum total weight, such that T ′ = (V , F ∪ E′) is 
two-edge-connected. Should a weight function on the expanding edge set E be useful, the Weighted Tree Aug-
mentation Problem offers a convenient approach. For example, edge weights could express the preference that 
transitions with higher intensity values are generally easier to identify in spectroscopic measurements.

Both TAP and WTAP are known to be NP-hard, but there are various approximation algorithms available. 
An approximation algorithm in our case means that if T could be augmented to a two-edge-connected graph 
using m edges, then, by using an α-approximation algorithm, we would obtain at most αm edges that would 
augment T to a two-edge-connected graph.

During the selection of the algorithm to solve TAP (or WTAP), one should consider the properties of the 
graphs T = M∗ and E = E . For arbitrary graphs, TAP can be solved with an approximation ratio of 1.524, and 1.5 
is also a lower bound for the LP-relaxation of the  problem25. If T is to be augmented only by edges that connect 
leaves, better approximations are  possible26. For WTAP and arbitrary graphs, the best known approximation 
ratio is  227. Additionally, for WTAP there is a (1+ ln 2)-approximation algorithm for trees with constant  radius28, 
and a ∼1.964 17-approximation algorithm if the costs have an upper  bound29.

It should be noted that both the graph contraction steps and the approximation algorithms of TAP refer-
enced above can be done in polynomial time complexity. We advocate the use of a linear programming model 
in practice to find an approximate solution of TAP.

Local and global optimality metrics
A difficulty in the practical solution of making a measured network two-edge-connected arises from the techni-
cal constraints of spectroscopic measurements. Rather than measuring the whole spectrum, and thus obtaining 
information about all transitions of the molecule, spectroscopic measurements only capture data from parts of the 
spectrum. Resolution and detectability issues aside, a spectrum fragment contains all transitions that have a wave-
number value in a measurement-specific interval. For example, if a measurement captures the spectrum frag-
ment between wavenumbers w1 and w2 , a transition with a wavenumber value w is captured only if w ∈ [w1,w2] . 
The problem is that E ′ may contain edges that lie outside of the wavenumber interval of a given measurement.

Let us insert here a short remark concerning the wavenumber intervals of measurements. Previously it was 
discussed how ab initio data can be filtered using an intensity cut-off parameter. Similarly, a wavenumber cut-
off can also be employed in the ab initio data, resulting in computed transitions that are estimated to lie in the 
wavenumber interval of the measurement.

It should be added that even if a transition belongs to the wavenumber range of a feasible measurement, there 
are certain factors that could still prevent the identification of the transition in the spectrum fragment, and thus 
to obtain its wavenumber value. Most notably, transitions with low intensity values, especially if they overlap 
with much higher intensity lines, can not be detected in a reliable manner. The problem of low intensities of well 
separated lines is handled by the parameter κ during construction of graph T  (see  “Spectroscopic networks”), 
but other possible issues, like overlapping transitions, are out of the scope of this paper.

If various measurements with different wavenumber intervals could be made about the complete spectrum of 
a molecule, then the question which are the most useful measurements to augment M to a two-edge-connected 
graph becomes particularly important. An alternative question is whether the available measurements could be 
arranged into an ordered list of usefulness in making the measured SN two-edge-connected.

To address these issues, let us introduce two metrics to express the usefulness of a given measurement M. Let 
fg(M) denote the global optimality metric of measurement M, and let fℓ(M) denote the local optimality metric 
of measurement M. During comparison of two or more measurements based on one of the two metrics, higher 
values will indicate more useful measurements.

Let us denote the wavenumber interval of the measurement M by W(M) and the wavenumber value of the 
edge (u, v) by w(u, v). The metrics fg and fℓ are defined as follows. 

1. Global optimality metric: Let X = {(u, v) ∈ E ′,w(u, v) ∈ W(M)} . Then, let fg(M) = |X|.
2. Local optimality metric: Let E |M = {(u, v) : (u, v) ∈ E ,w(u, v) ∈ W(M)} . Let us assume that 

(V∗
M

,E∗
M

∪ E |M) is two-edge-connected. If it is not, determine its two-edge-connected subgraphs, then 
solve the problem for these subgraphs separately. Then, solve the Tree Augmentation Problem by setting 
T = M∗ and E = E |M , that results in E |′M . Let G = (VM,EM ∪ E |′M) . Let us denote the number of edges 
that are in at least one cycle in the graph G by c(G), and let us denote the number of edges in E |′M by e. Then, 
let fℓ(M) = c(G)− e − c(M).

Briefly, the global optimality metric fg counts the number of new edges provided by the measurement that 
belong to E (the minimum set of edges that make M a two-edge-connected graph). Meanwhile, the local optimal-
ity metric fℓ counts the number of edges not in cycles in M that could be put into at least one cycle by the new 
edges provided by the measurement. Figure 5 shows the fg and fℓ values of a measurement M on the example 
of a small graph.

Utilization of the concept of two-edge-connectivity
In this section we demonstrate the utility of the concept of two-edge-connectivity on high-resolution spectros-
copy via two examples. Both concern the 14NH3 molecule, but they differ in their goals.
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The first example demonstrates the general principles and considerations of our method. In order to do this, 
both a SN and a set of extra edges is created synthetically from the HITRAN data on 14NH3

16. The augmentation 
problem obtained this way illustrates nicely how the selection of new edges works.

The second example is a practical application of our method, which is used to suggest new edges to be added 
to the  MARVEL33 data of 14NH3 , to improve the calculated energy of a considerable number of quantum states.

A synthetic example. For our first example, let us construct a measured spectroscopic network M1 and 
a corresponding set of extra edges E1 , and let us see how the addition of edges from E1 to M1 places some of 
the bridges of M1 into cycles. The underlying data for both M1 and E1 come from the transition list of the 
14NH3 molecule in the HITRAN 2016 information  system16. This source was already mentioned and discussed 
in “Experimental data” and Table 1.

First, let us consider from Table 1 the SN component corresponding to ortho-14NH3 . Let us denote this graph 
by Mortho . The graph Mortho contains 13 105 edges. Next, let ES denote the subset of edges of the graph Mortho 
that span between either two quantum states with vibrational symmetry labels E′ (597 edges) or a quantum state 
with a vibrational symmetry label of E′ and another with a vibrational symmetry label of A′

1 (1743 edges). Let us 
denote the endpoints of the edges in ES by VS . Then, let us define the graph M1 = (VS,ES).

The graph M1 contains 821 vertices and 2340 edges, from which 300 edges are bridges. In fact, in M1 there 
is a central two-edge-connected component and 300 one-degree vertices. The high ratio of bridges to all edges 
is expected, as Mortho also contains a lot of bridges.

Let us define a set of extra edges that can place some of the bridges of M1 into cycles. For this, let E1 denote 
the subset of edges of the graph M

14NH3
ortho  that span between two quantum states with vibrational symmetry labels 

A′
1 (1374 edges).

It should be noted that there are edges in E1 that have their endpoints outside of M1 . This is because the 
graph M1 only contains the quantum states with vibrational symmetry label A′

1 that have direct connections to 
quantum states with vibrational symmetry label E′ ; however, there are A′

1–A
′
1 transitions between quantum states 

that are not directly connected to at least one E′ state. These edges of E1 cannot be used to put bridges of M1 into 
cycles without adding new vertices to M1 ; thus, they are discarded. After this, E1 contains 53 unique transitions.

Now, let us contract the central two-edge-connected component of M1 to a single vertex, as described in 
“Augmenting measured spectroscopic networks”, and let us denote the graph obtained this way by M∗

1 . The graph 
M∗

1 contains 301 edges, as expected, since the graph M1 contains 300 bridges. The shape of M∗
1 is a star, it has 

one central vertex and 300 one-degree vertices.
After this contraction, the 53 edges of E1 now correspond to edges between 14 vertex pairs of M∗

1 , spanning 
among eight vertices of M∗

1 . One of these eight vertices originates from the contracted subgraph; the other seven 
vertices are unique quantum states.

A visual representation of the graph construction is shown in Fig. 6. Both graphs of Fig. 6 show the central 
vertex of M∗

1 , labeled as vertex #0, and the other seven vertices of M∗
1 , which are together the endpoints of the 

edges of E1 . Vertices of M∗
1 which are not endpoints of the edges of E1 are not shown. The edges of the left graph 

(in black) show the edges of M∗
1 ; the edges of the right graph (in blue) show the edges of E1 after contraction. The 

spectroscopic designation of the quantum states corresponding to vertices #1–#7 are displayed in the top table.
Figure 6 displays the edges of E1 after contraction (note that each of these edges may correspond to multiple 

transitions). The bottom table of Fig. 6 shows the number of such A′
1–A

′
1 transitions that span between vertex 

w(A,F ) ∈ W (M) w(A,D) ∈ W (M) fg(M) f�(M)

Figure 5.  Calculation of the global and local optimality metrics fg and fℓ , respectively, of a small example 
graph, where E ′ = {(A, F)}.
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pairs of M∗
1 . According to this table, for example, the edge between vertices #0 and #1 corresponds to a set of 

eight unique transitions.
The positions of the edges of E1 after the contraction in Fig. 6 indicate that by adding all 53 edges of E1 to the 

graph M1 would put seven bridges of M1 into cycles, lowering the total number of bridges to 293. However, the 
number of the extra edges required to put these seven bridges into cycles can be lowered in two steps.

First, as the edges of E1 span between 14 vertex pairs of M∗
1 , adding one edge between each vertex pair (thus, 

14 edges in total) would also put the seven bridges of M1 into cycles. Second, observe in Fig. 6 that, for example, 
the addition of edges (0, 7), (1, 3), (2, 4), and (5, 6) to the graph M1 would also put all seven bridges into cycles. 
Thus, by adding only four new transitions (instead of 53), seven bridges of M1 can be put into cycles.

The three edges (1, 3), (2, 4), and (5, 6) correspond to three unique transitions. However, edge (0, 7) cor-
responds to 11 unique transitions. These 11 transitions are shown in Table 2: one endpoint of each transition is 
vertex #7 (with quantum numbers displayed in Fig. 6), the quantum numbers of the other endpoints are displayed 
in the rows of the table. Note that all quantum states shown in Table 2 correspond to vertex #0 in Fig. 6.

Under such circumstances, the transition(s) to add from the set of 11 unique transitions can be selected 
according to various criteria. One such criterion is selecting the transition with the highest intensity; according 

Figure 6.  Visual representation and data about the graph construction of “Utilization of the concept of two-
edge-connectivity”. Left graph (1.): a subgraph of M∗

1 . Right graph (2.): the position of the edges of E1 in the 
graph M∗

1 after contraction. See Ref.34 for the meaning of the quantum descriptors.



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19489  | https://doi.org/10.1038/s41598-020-75087-5

www.nature.com/scientificreports/

to this, the transition with the endpoint that is the last row of Table 2 (with a wavenumber of 1186.314 004 cm−1 
and an intensity magnitude of 10−24 cmmolecule−1 ) should be selected. Another possible option is to pick the 
transition with the smallest uncertainty. However, in this example all the 11 unique transitions have the same 
uncertainty.

Using the metrics introduced in “Local and global optimality metrics”, the local optimality metric fℓ of this 
augmentation is 7, as the new edges put seven bridges into cycles. The global optimality metric fg would depend 
on the theoretical spectroscopic network counterpart, which is omitted from this example for clarity.

In the example given, the min-max problem of finding the minimum number of edges to add to put the 
maximum number of bridges into cycles, which was found to be four, was doable by hand. In general, however, 
this is a difficult task for large graphs. This is where the model described in “Augmenting measured spectroscopic 
networks” shines. In our example, a 1.5-approximation algorithm of the Tree Augmentation Problem would 
highlight at most 4× 1.5 = 6 new edges to add to M1 to put the seven bridges into cycles.

A MARVEL-based application. The most recent MARVEL-based database of the 14NH3 molecule con-
tains 46 115 rovibrational transitions of experimental  origin33. After employing a room-temperature intensity 
cutoff of 10−26 cmmolecule−1 , in effect disregarding transitions that have an intensity lower than this value 
means that the remaining transitions are all of considerable importance for atmospheric modeling studies, the 
reduced dataset contains 22214 unique transitions. This set of unique transitions is built upon a total of 4491 
rovibrational energy levels.

The majority of the 4491 energy levels belong to two (ortho and para) maximal 2-edge-connected subgraphs; 
these ortho and para ‘main subgraphs’ contain 2494 and 1292 energy levels, respectively. Within this spectro-
scopic network we found an additional two relatively large 2-edge-connected subgraphs which connect to their 
respective main subgraph by bridges. The larger subgraph of the two, containing 29 rovibrational energy levels, 
connects to the ortho main subgraph, while another subgraph, which contains 26 levels, connects to the para 
main subgraph. The algorithm described in “Augmenting measured spectroscopic networks” straightforwardly 
provides a set of transitions which are not currently in MARVEL, but connect the appropriate subgraph pairs. 
In fact, using a first-principles transition  set41 the graph contraction algorithm selected 18 ortho and 10 para 
transitions, each having an intensity of at least 10−26 cmmolecule−1 (at room temperature), and each connect-
ing the two small subgraphs to their respective main subgraphs. In other words, these 18 and 10 transitions run 
parallel to the current bridges.

In Table 3, containing the two transition sets of size 18 and 10 suggested by our algorithm, we use the follow-
ing 11 descriptors to identify rovibrational  states33: [ v1 v2 v3 v4 L3 L4 J K inv Γtot Nblock ], where vi ( i = 1, 2, 3, 4 ) are 
the vibrational normal-mode quantum numbers, L3 and L4 are the absolute value of vibrational angular-momen-
tum quantum numbers associated with modes 3 and 4, respectively, J is the total angular-momentum quantum 
number, K = |k| is the projection of the total angular momentum on the molecule-fixed axis z, inv = a/s is the 
inversion symmetry (asymmetric/symmetric or odd/even) of the vibrational motion, and Γtot is the full sym-
metry of the eigenstate. Nblock is an index for the levels within the J − Γtot blocks of the  CoYuTe41 energy list. By 
adding just one transition from each set to the current MARVEL database, the corresponding bridge becomes 
part of a cycle, facilitating the precise determination of the energies in the two subgraphs, as well as the detection 
of incorrect measurements. Clearly, the algorithm of “Augmenting measured spectroscopic networks” suggests 
a number of transitions with considerable intensity and in different regions of the infrared spectrum, so con-
venient choices can be made based on the available instrumentation and fine details of the observed spectrum.

Table 2.  Quantum states belonging to vertex #0 of the graph M∗
1
 of Fig. 6, that are connected to the quantum 

state corresponding to vertex #7 of the graph M∗
1
. See Ref.33 for the meaning of the column headings.

v1 v2 v3 v4 l3 l4 l i Ŵv J K Ŵr Ŵt

0 0 0 0 0 0 0 s A
′
1

14 9 A
′′
2

A
′′
2

0 0 0 0 0 0 0 s A
′
1

13 3 A
′′
2

A
′′
2

0 0 0 0 0 0 0 s A
′
1

14 3 A
′′
2

A
′′
2

0 0 0 0 0 0 0 s A
′
1

12 3 A
′′
2

A
′′
2

0 0 0 0 0 0 0 s A
′
1

13 9 A
′′
2

A
′′
2

0 1 0 0 0 0 0 s A
′
1

12 9 A
′′
2

A
′′
2

0 0 0 0 0 0 0 s A
′
1

12 9 A
′′
2

A
′′
2

0 1 0 0 0 0 0 s A
′
1

13 9 A
′′
2

A
′′
2

0 1 0 0 0 0 0 s A
′
1

12 3 A
′′
2

A
′′
2

0 1 0 0 0 0 0 s A
′
1

13 3 A
′′
2

A
′′
2

0 1 0 0 0 0 0 s A
′
1

14 3 A
′′
2

A
′′
2
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Conclusions
Most line-by-line spectroscopic databases undergo regular maintenance, involving expansion of the coverage 
offered by the database using new measurement results and improving characteristics of the existing data. Dur-
ing this process it is common that issues with the old and new datasets are attempted to be identified. Detecting 
flawed entries in line-by-line spectroscopic databases is the problem that has been addressed during this study.

Treating the transitions and the energy levels of line-by-line spectroscopic datasets as large graphs, called 
spectroscopic networks, opens avenues to a range of applications. For example, spectroscopic networks offer a 
useful framework to compare incomplete but accurate data in line-by-line spectroscopic databases to a spec-
troscopic network built upon complete but inaccurate first-principles data. This way not only the completeness 
and the validity of the entries of the spectroscopic database can be determined, but it also becomes easier to 
use theory to improve the actual database by, for example, suggesting new transitions to add to the database.

One of the several advantages of spectroscopic networks, utilized in this study, is that it allows the straightfor-
ward detection of flawed wavenumber entries in databases. A  method21 that achieves this was described earlier 
and here it is referred to as Cycle Testing (the method was briefly recalled in “Cycle testing”). Cycle Testing is 
feasible only for transitions that are included in at least one cycle of the spectroscopic network. The concept of 
two-edge-connectivity, introduced for high-resolution spectroscopy and spectroscopic networks in this study, 
helps handling both the cycles and the edges that are not in cycles of the spectroscopic network. By finding the 
maximal two-edge-connected subgraphs of a spectroscopic network and contracting these subgraphs into single 
vertices, it becomes apparent which regions of the graph—which lines of the experimental database—can be 
covered by Cycle Testing. This graph construction also highlights if there are single transitions connecting large 
subgraphs. The accuracy of these transitions, called bridges, is critically important in determining accurate ener-
gies in these subgraphs, and their wavenumbers cannot be verified by Cycle Testing. This provides a motivation 

Table 3.  Transitions connecting the small ortho and para subgraphs with their corresponding main subgraphs 
and transforming bridges into cycles in the latest MARVEL database of 14NH3

33. w and I are the wavenumber 
and the absorption intensity of the selected transition, respectively, the latter taken at room temperature. For a 
detailed description of the labels, see the text.

w / cm−1 I / cmmolecule
−1 Label of the upper state Label of the lower state

751.2452 1.1× 10
−26 [0 0 0 1 0 1 17 16 a E′′ 21] [0 1 0 0 0 0 17 17 a E′ 10]

882.1105 1.4× 10
−26 [0 1 0 0 0 0 17 17 s E′′ 9] [0 0 0 0 0 0 16 14 s E′ 2]

937.4835 1.3× 10
−26 [0 1 0 0 0 0 17 17 a E′ 10] [0 0 0 0 0 0 16 14 a E′′ 2]

1343.0444 4.0× 10
−24 [0 0 0 1 0 1 17 16 s E′ 21] [0 0 0 0 0 0 18 17 s E′′ 1]

1343.6571 4.0× 10
−24 [0 0 0 1 0 1 17 16 a E′′ 21] [0 0 0 0 0 0 18 17 a E′ 1]

1355.4820 2.1× 10
−23 [0 0 0 1 0 1 16 16 s E′ 18] [0 0 0 0 0 0 17 17 s E′′ 1]

1355.6048 2.1× 10
−23 [0 0 0 1 0 1 16 16 a E′′ 17] [0 0 0 0 0 0 17 17 a E′ 1]

1515.9556 1.1× 10
−26 [0 2 0 0 0 0 17 17 s E′′ 17] [0 0 0 0 0 0 16 14 s E′ 2]

1542.1058 4.3× 10
−26 [0 0 0 1 0 1 18 15 s E′′ 29] [0 0 0 0 0 0 19 17 a E′ 2]

1551.5330 1.3× 10
−25 [0 0 0 1 0 1 17 15 a E′ 27] [0 0 0 0 0 0 18 17 s E′′ 1]

1565.7603 3.1× 10
−25 [0 0 0 1 0 1 16 15 a E′ 22] [0 0 0 0 0 0 17 17 s E′′ 1]

1569.2693 4.5× 10
−25 [0 0 0 1 0 1 16 15 s E′′ 22] [0 0 0 0 0 0 17 17 a E′ 1]

1573.3180 4.1× 10
−26 [0 2 0 0 0 0 17 14 s E′ 29] [0 0 0 0 0 0 18 17 s E′′ 1]

1584.0051 1.4× 10
−25 [0 2 0 0 0 0 16 14 s E′ 24] [0 0 0 0 0 0 17 17 s E′′ 1]

1697.7792 2.6× 10
−26 [0 0 0 1 0 1 17 16 s E′ 21] [0 0 0 0 0 0 17 17 s E′′ 1]

1906.2678 1.6× 10
−26 [0 0 0 1 0 1 17 15 a E′ 27] [0 0 0 0 0 0 17 17 s E′′ 1]

1910.1985 2.2× 10
−26 [0 0 0 1 0 1 17 15 s E′′ 26] [0 0 0 0 0 0 17 17 a E′ 1]

1913.9041 1.1× 10
−26 [0 0 0 1 0 1 18 15 s E′′ 29] [0 0 0 0 0 0 18 17 a E′ 1]

873.5876 1.1× 10
−26 [0 1 0 0 0 0 18 18 s A′

2
 5] [0 0 0 0 0 0 17 15 s A′′

2
 1]

932.0846 1.0× 10
−26 [0 1 0 0 0 0 18 18 a A′′

2
 5] [0 0 0 0 0 0 17 15 a A′

2
 1]

1327.8593 2.6× 10
−24 [0 0 0 1 0 1 18 17 a A′

2
 11] [0 0 0 0 0 0 19 18 a A′′

2
 1]

1339.2518 1.5× 10
−23 [0 0 0 1 0 1 17 17 s A′′

2
 8] [0 0 0 0 0 0 18 18 s A′

2
 1]

1339.3848 1.5× 10
−23 [0 0 0 1 0 1 17 17 a A′

2
 9] [0 0 0 0 0 0 18 18 a A′′

2
 1]

1553.3270 1.1× 10
−25 [0 0 0 1 0 1 18 16 s A′

2
 13] [0 0 0 0 0 0 19 18 a A′′

2
 1]

1562.7134 2.3× 10
−25 [0 0 0 1 0 1 17 16 a A′′

2
 10] [0 0 0 0 0 0 18 18 s A′

2
 1]

1571.0324 2.9× 10
−26 [0 2 0 0 0 0 18 15 s A′′

2
 15] [0 0 0 0 0 0 19 18 s A′

2
 1]

1581.4352 1.1× 10
−25 [0 2 0 0 0 0 17 15 s A′′

2
 11] [0 0 0 0 0 0 18 18 s A′

2
 1]

1927.1680 1.4× 10
−26 [0 0 0 1 0 1 18 16 s A′

2
 13] [0 0 0 0 0 0 18 18 a A′′

2
 1]
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to try including new transitions in the database that put these bridges into cycles, making them verifiable by 
Cycle Testing.

A method, based on the Tree Augmentation and the Weighted Tree Augmentation problems of graph 
 theory24–29, is described, which provides two-edge-connected graphs. This method allows the selection of a 
minimum number of new transitions to be added to an existing database, which would put the maximum number 
of edges, which were not in cycles before, into cycles.

To support the practical application of the results of this paper, a global and a local optimality metric are intro-
duced. To highlight the advantages of two-edge-connectivity to spectroscopy, a synthetic experimental database 
and a set of extra edges is constructed from the transition list of the 14NH3 molecule from the HITRAN 2016 
information  system16. First, it is shown how the contraction of the spectroscopic network works. Then, it is dis-
cussed how to select new transitions from the set of extra edges in order to put the maximum number of bridges 
of the spectroscopic network into cycles. Finally, an application based on the MARVEL database of 14NH3 is 
given, whereby we suggest new transitions to add to the current experimental dataset. This would improve the 
accuracy of the energies of a considerable number of quantum states.

Received: 9 July 2020; Accepted: 9 October 2020
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