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Rotational–vibrational resonance states

Attila G. Császár, *ab Irén Simkó, b Tamás Szidarovszky, *bc

Gerrit C. Groenenboom, d Tijs Karman e and Ad van der Avoird *d

Resonance states are characterized by an energy that is above the lowest dissociation threshold of the

potential energy hypersurface of the system and thus resonances have finite lifetimes. All molecules

possess a large number of long- and short-lived resonance (quasibound) states. A considerable number

of rotational–vibrational resonance states are accessible not only via quantum-chemical computations

but also by spectroscopic and scattering experiments. In a number of chemical applications, most

prominently in spectroscopy and reaction dynamics, consideration of rotational–vibrational resonance

states is becoming more and more common. There are different first-principles techniques to compute

and rationalize rotational–vibrational resonance states: one can perform scattering calculations or one

can arrive at rovibrational resonances using variational or variational-like techniques based on methods

developed for determining bound eigenstates. The latter approaches can be based either on the

Hermitian (L2, square integrable) or non-Hermitian (non-L2) formalisms of quantum mechanics. This

Perspective reviews the basic concepts related to and the relevance of shape and Feshbach-type

rotational–vibrational resonance states, discusses theoretical methods and computational tools allowing

their efficient determination, and shows numerical examples from the authors’ previous studies on the

identification and characterization of rotational–vibrational resonances of polyatomic molecular systems.

1 Introduction

The quantum phenomenon of resonances,1–6 i.e., the existence
of metastable (quasibound) states embedded in the continuum
spectra of Hamiltonians, plays an important, often crucial role
in a number of fields related to atomic and molecular physics
and chemistry. These include the process of a decay (where
resonance states were perhaps first considered in 1928),1

nuclear reactions,7,8 binary elementary reactions,4,5,9–11 high-
resolution molecular spectroscopy,12–14 transition-state
spectroscopy,15–17 unimolecular decomposition,18 (reactive)
scattering (the first scattering resonance in atoms was observed
in 196319),19–21 electronic,22 vibrational,23,24 and rotational25

predissociation, autoionization,26 photoionization,27 photo-
dissociation,28,29 photoassociation30 and magnetoassociation,31

controlled cold and ultracold chemistry,32–34 and the list could
be easily continued. In this Perspective we focus on the rota-
tional–vibrational resonances of polyatomic molecules, playing
a fundamental role in chemical reactions, as well as in mole-
cular scattering and spectroscopy. Although resonance states of
a system have higher energy than a corresponding dissociation
limit (most often the first one, but this may not always be the
case, vide infra), dissociation from these states does not happen
instantaneously.

Resonance states have well-defined finite lifetimes, which
can be very short or very long, to some extent independent of
the energy of the state. One must thus emphasize that despite
their somewhat unusual properties, resonance states are always
‘‘genuine’’, they arise from intrinsic properties characterizing most
quantum systems. Thus, rotational–vibrational (rovibrational) reso-
nance states should be considered neither exotic nor esoteric,35 as
both their experimental observation10,12,16,17,35–55 and first-principles
characterization13,14,47,56–68 is becoming increasingly feasible.
Rovibrational resonances are especially important for scattering
events and for spectroscopic observations at energies exceeding
that of the lowest dissociation limit.

In quantum mechanics (QM) the states, the associated
energies, and the time evolution of quantum systems are
defined by appropriately chosen Hamiltonians, Ĥ. In standard
QM69–71 it is usual to argue that the Hamiltonians describing
molecular systems are Hermitian operators. This choice is
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made in order to guarantee that the eigenspectrum of Ĥ is real
and the time evolution of the molecular system is unitary.
However, Hermiticity of an operator does not depend solely
on the form of the operator itself but also on the functions we
let it operate on. In standard, Hermitian QM (HQM), Ĥ acts
upon functions in the L2 Hilbert space71 and this is equivalent
to stating that the boundary conditions are such that the
functions must vanish at infinity. This boundary condition is
suitable to describe bound states, but not applicable for those
states which lie above the dissociation energy of the system,
i.e., resonance states and the scattering continuum, because
their wave functions can have nonzero values at infinity. In the
time-independent HQM approach to scattering the continuum
can be associated with bounded, Dirac-normalizable functions,
and this can be directly linked20 with the motion of square-
integrable wave packets in a time-dependent picture.

There is another branch of QM, non-Hermitian quantum
mechanics (NHQM),72,73 where the functions upon which Ĥ is
allowed to act have different boundary conditions.74 We are only
interested in those cases where these functions are suitable to
represent rovibrational resonance states. Note that a Hamiltonian
that acts on square-integrable functions but contains a complex
potential, appearing in some resonance-computing techniques, is
also non-Hermitian, leading to NHQM. NHQM as well as the
theory of resonances has a rather complex mathematical back-
ground. A rigorous mathematical theory of resonance states has
been formulated.75,76 Nevertheless, intuitive approaches aiming at
the understanding of the quantum phenomenon of resonances
are also available, leading to useful tools for a variety of practical
applications. We are going to follow the intuitive route in this
Perspective.

In the Schrödinger representation of NHQM, resonance
states can be associated69,77 with those eigenfunctions of the
Hamiltonian which have an outgoing boundary condition and
diverge exponentially at infinity, as detailed below. Due to the
non-L2 nature of these eigenstates, the Hermiticity of the
Hamiltonian is lost and the resonances are characterized by
complex eigenvalues. The complex resonance eigenvalues are
usually written, in atomic units (utilized from here on), as

Eres
n ¼ en �

i

2
Gn; (1)

where en = Re(Eres
n ) is the resonance position (with respect to the

(real) ground-state energy of the system), i is the imaginary unit,
and Gn p Im(Eres

n ) is the full width at half maximum (FWHM) of
the resonance state, related to the inverse lifetime by

Pn(q,t) p e�Gnt, (2)

where Pn(q,t) is the probability density of finding the quantum
system at a given point q in coordinate space at time t.

For most physicists resonances are understood as part of
scattering theory. Let us call this a top-down approach to
resonances as we approach the dissociation limit, and the
underlying bound states, from above. From the scattering,
top-down point of view, resonances occur when chemical
species collide with a certain energy and form a long-lived

collision complex before they fly apart. The colliding molecules
have more time to interact and if one monitors the outcome of
a scattering event—quantified by the scattering cross sections
as a function of the collision energy—one can observe that
these are very different at resonance energies than otherwise.
When studying resonances by scattering computations, the
resonant contributions to the cross sections must be separated
from the smooth background caused by the usual scattering
states. The most common top-down (scattering) technique is
the coupled-channels method,20 but the Kohn variational
method78–81 is also very useful to compute and characterize
resonances. An alternative approach to resonances is a bottom-up
one, in which resonance states are considered as a continuation of
bound states into the continuum. In the case of rovibrational
resonances the top-down (scattering) and the bottom-up (spectro-
scopic) approaches are complementary to each other. In both
the spectroscopic and scattering approaches one relies on the
total rotational quantum number J as a good quantum number,
but in scattering theory the observable quantities refer to the
asymptotically correct rotational quantum numbers j of the inter-
acting partners, and have to be calculated by inclusion of the
results obtained for all J values.

Because the wave functions of resonance states are not
square integrable, the techniques employed during the varia-
tional solution of the time-independent nuclear Schrödinger
equation (TInSE) of bound states, resulting in square-integrable
wave functions,82,83 need to be modified for the computation of
resonance states. The most common bottom-up approaches to
compute rovibrational resonance states are the stabilization
method (SM),84–87 the complex absorbing potential (CAP)
method,88,89 and the complex coordinate scaling (CCS) method
(also referred to as the method of dilatation analytic
continuation).90–98 Determination of rovibrational resonance
states using any of these techniques is not nearly as advanced as
that of bound states. Nevertheless, the field of first-principles
computation of rovibrational resonances matured considerably
during the last decade and it is now possible to compute a large
number of rovibrational resonances for real polyatomic systems
and compare them with their experimental counterparts. This
Perspective deals with the field of first-principles, bottom-up and
top-down computation of rotational–vibrational resonance
states, emphasising on how the authors see the field, without
attempting to provide a thorough review of all related develop-
ments and results from other laboratories.

The first-principles computation of rovibrational resonance
states may utilize several sophisticated Hermitian and non-
Hermitian techniques of molecular scattering and variational
nuclear-motion theories. Whatever is the choice of the
Hamiltonian, computation and characterization of rovibrational
resonance states offer several notable challenges. The potential
energy surfaces (PES) employed for rovibrational resonance com-
putations must have correct asymptotic behavior. Quantum-
chemical scattering computations repeatedly indicate48,99 that
the resonance characteristics strongly depend on the topology of
the PES. It is not straightforward to ensure the correct asymptotics
during the generation and the fitting of reactive PESs and most
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PESs in the literature in fact do not obey this criterion. Usually
large basis sets need to be employed, at one stage or another,
during variational (or variational-like) resonance-state compu-
tations to ensure convergence of the computed states. This
makes resonance-state computations relatively computer inten-
sive. Usually molecules possess a large number of bound states
below the resonance states and the explicit consideration of
bound states may increase substantially the cost of resonance-
state computations of larger polyatomic systems. Due to heavy
mixing of the states, it is rarely transparent how to characterize
the computed resonances and provide reasonable, physically-
motivated meaning for them. Since resonances have vastly
different lifetimes, it is not straightforward to ensure that all
resonances are computed within a particular setup of the
nuclear-motion or scattering computation correctly. In fact,
one of the biggest challenges in this field is the computation
of converged lifetimes of rovibrational resonances.

Among the several possible bottom-up variational
approaches77,100 for computing quasibound (ro)vibrational
states and understanding near-dissociation high-resolution
molecular spectra, some require the computation of all the
bound states of the molecule, as well. For polyatomic molecules
this task often requires a substantial amount of work both via
electronic-structure and nuclear-motion computations,83 and
the amount of effort needed strongly depends on the specific
system investigated. Especially within their ground electronic
state, most polyatomic molecular systems have a very large
number of bound rovibrational states. For example, the iso-
topomers of the triatomic water molecule possess rovibrational
states on the order of a million below the first dissociation
limit,101,102 about 40 000 cm�1.42 In the fourth age of quantum
chemistry83 sophisticated variational and variational-like tech-
niques have been developed82,83,103 for solving the TInSE,
which allows the characterization of all bound states of a
molecule.101,102 These advanced numerical computations
require a large amount of computer time. Nevertheless, once
the computations are set up properly, very little human inter-
vention is needed. These studies revealed extremely rich and
complex nuclear dynamics for the bound states of molecular
systems, especially close to the dissociation limit(s).104,105

Occasionally the complexity of the motions increases to the
extent that the rotational and vibrational motions cannot be
separated any more. This may happen even for the lowest-
energy states, leading to quasistructural molecular systems,106

like H5
+,107–109 CH5

+,110,111 and the CH4–H2O dimer.112,113 In
the case of weakly-bound complexes having a dissociation
energy smaller than typical stretch or bend fundamentals,
resonance states are formed straightforwardly by the excitation
of a vibrational mode in one of the monomers. Certain experi-
mental techniques, like predissociation spectroscopy,24,114,115

take full advantage of the existence of resonance states.
Numerical simulations have demonstrated that molecular

systems can exhibit a considerable number of rovibrational
resonance states with energies even well above their first
dissociation limit. For example, the Ar–NO+ cationic complex
was shown to have a large number of long-lived vibrational

resonances even at 8000 cm�1, nine times its dissociation
energy, D0 = 887 cm�1.64 Beyond theoretical investigations,
spectroscopic access to resonance states is often straightforward
due to their considerable lifetime. In the case of molecular
complexes, the long lifetimes are the consequence of the adiabatic
separation of the dissociative motion from the rest of the nuclear
motions (the separation is almost perfect for Ar–NO+, explaining
the long lifetimes computed up to 8000 cm�1).

A large amount of direct information about rotational–
vibrational resonances can be obtained from scattering experi-
ments, as well. State-to-state scattering cross sections, both
differential (DCS) and integral (ICS), are measured in consider-
able detail in crossed-molecular-beam experiments. Early
observations of resonances in such experiments on H–Hg are
described by Scoles et al.36,37 and on the H–Ar, H–Kr, H–Xe,
H2–Ar, H2–Kr, and H2–Xe systems by Toennies et al.38–40

Recently, new experiments with the possibility to scan the
collision energy with sufficiently high resolution to detect even
narrow resonances and access the low-energy region where
most resonances are expected, made it possible to study
resonances in more detail. Resonances in rate coefficients
determined by the ICSs for Penning ionization processes were
found by Narevicius et al.45,46,51 and by Osterwalder et al.52,53 in
a merged-beam approach, with collision temperatures down to
the millikelvin (mK) regime. Using cryogenically cooled beams
of CO and O2 crossed with beams of He or H2 at a variable
angle, resonances in the state-to-state ICSs for rotationally
inelastic collisions with energies down to 4 cm�1 were observed
by Costes et al.43,44,49 By controlling the velocity of the molecules
in one of the beams with a Stark decelerator, reducing the angle
between the beams to 51, and combining the crossed-beam setup
with velocity map imaging (VMI), Van de Meerakker et al.47,66,116

made it possible not only to observe resonance peaks in ICSs at
collision energies down to 0.2 cm�1 but also to measure the
corresponding DCSs with a resolution of about 11, such that even
the narrow diffraction oscillations are well resolved. Another
promising technique to observe resonances in collisions of
vibrationally and rotationally excited molecules is the use of
co-axial beams, as developed by Suits et al.54,55 The recent
experiments were accompanied by theoretical studies of reso-
nances in molecule–molecule scattering based on high-quality
ab initio intermolecular potential surfaces and the QM coupled-
channels or close-coupling (CC) approach.

Long-lived complexes formed during resonant collisions are
of special interest in the ultracold regime,32,34,117,118 defined
by translational temperatures, usually below 1 mK, where
consideration of a single partial wave is sufficient. As the
temperature drops below 1 mK, the collision energy essentially
vanishes; thus, resonances do not occur by matching the
collision energy to a resonance state but rather by tuning the
energy of a resonance state across the dissociation limit. Such
tuning of a resonance state relative to the lowest threshold can
be achieved, for example, by using an external magnetic field.
As a resonance state is tuned across threshold it becomes a
bound state. By performing this sweep adiabatically it is
possible to populate this bound state. This process is called
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magnetoassociation31 and enables the formation of weakly
bound molecules from ultracold atoms.119,120 Another application
of resonances in ultracold gases is to control interactions.117,118 As
one tunes a resonance state across threshold the scattering phase
shift jumps by p and the scattering length scans through all values
between �N and +N. This scattering length determines the
pseudo-potential that governs the interactions between ultracold
atoms or molecules, and its external field control using reso-
nances has opened up the field of quantum simulation,118,121–124

and enabled the study of novel quantum phases of matter.125–130

Quantum chemical studies of resonances in ultracold gases
are difficult, especially for heavier nuclei where the density of
resonances becomes very high.131 This is illustrated by recent
CC calculations132 on K2–Rb scattering; even with specially
developed methods they required enormous computational
effort. In ref. 132 the authors not only identified an extensive
set of resonances, but also showed that the positions and
widths of these resonances are in good agreement with the
Wigner–Dyson133,134 and Porter–Thomas135 distributions asso-
ciated with quantum chaos.

The remainder of this Perspective is structured as follows.
The theory of quasibound states is reviewed in Section 2,
including discussion of several elementary models. Then
potential energy hypersurfaces employed for rotational–vibra-
tional resonance computations are discussed in Section 3. In
later sections we review various theoretical and computational
methods which can be used to determine rovibrational reso-
nance states of molecules. Section 4 introduces the reader to
coupled-channels or close-coupling molecule–molecule scattering
computations. Section 5 discusses the stabilization method,
Section 6 reviews the complex absorbing potential techniques,
while Section 7 is devoted to the complex coordinate scaling
method. In all these sections we also briefly present examples
of applications of the various methods, taken from previous
studies of the authors. We summarize and conclude this
Perspective and provide some future outlook of the expected
development of the field in Section 8.

2 Elementary theory of resonance
states

We are aware of a number of reviews,77,96,97,100,136–139

proceedings,140–142 and books20,73,143–145 which deal with the
definition, understanding, and determination of quasibound
(resonance) states, as the topic of resonances has been popular
since the 1970s. However, rovibrational resonance states have
been discussed much less, especially visible is the lack of
studies for systems with more than three atoms. For many
larger systems reduced-dimensional treatments, offered by the use
of certain Hamiltonians and computational techniques,83,146,147 are
viable. Nevertheless, even reduced-dimensional resonance studies
of larger systems are rather scarce in the literature.

All numerical treatments of resonances agree that there are
two principal types of rovibrational resonances: shape and
Feshbach resonances. Note that shape resonances are also

sometimes called ‘‘orbiting resonances’’.32 Elementary models
and examples for both of these resonance types will be dis-
cussed in this section in order to help the reader appreciate the
formation and characterization of the rovibrational resonances
discussed in later sections.

2.1 Shape resonances

Shape resonances arise as a consequence of the unique shape
of potentials governing nuclear motion: in certain cases there
exists a barrier along the dissociation coordinate whose height
exceeds the dissociation energy. These barriers may arise either
due to rotational excitation or to the crossing of two potential
energy curves or surfaces. In what follows we mostly focus on
the first possibility, on rotational barriers (see Fig. 1). If a
quasibound state has an energy greater than the dissociation
energy but less than the height of the potential energy barrier,
the state is an example of a shape resonance; however, reso-
nances above the barrier might also be formed, though usually
with much shorter lifetimes. The states trapped behind the
barrier will eventually dissociate via quantum tunneling.
The lifetime of shape resonances depends on the height and
shape of the potential energy barrier. The existence of shape
resonances is a quantum phenomenon, because in the classical
limit tunneling is forbidden and such resonances become
bound states. Shape-type rovibrational resonances occur typi-
cally if the molecule is in a highly excited rotational state and a
significant centrifugal barrier is formed.

The concept of shape resonances can be elucidated on
a simple example, the case of a diatomic molecule. The
Hamiltonian in the usual notation is

Ĥ ¼ � 1

2mR
d2

dR2
Rþ VeffðRÞ; (3)

where

VeffðRÞ ¼
JðJ þ 1Þ
2mR2

þ VðRÞ; (4)

Fig. 1 Example for the formation of a centrifugal potential barrier in the
case of a diatomic molecule, where J is the rotational quantum number.
The effective potential, Veff(R), with parameters taken from ref. 148, is that
of the OH radical, where R is the OH distance, and the zero point
vibrational energy is denoted with a horizontal line.
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m is the reduced mass, and R is the internuclear distance. Fig. 1
shows the effective potential, Veff(R), of the OH radical, with a
centrifugal barrier on the J = 40 curve, where J is the rotational
quantum number, and V(R) is a Morse potential, with para-
meters taken from ref. 148. The dissociation threshold of the
OH radical is D0(OH�) = 39 285 cm�1, while the top of the J = 40
centrifugal barrier is at 41 558 cm�1. In this simple example
one can find three shape resonances corresponding to J = 40:
two of them, at 40 250 cm�1 and 41 083 cm�1 are long lived
(where the imaginary part of the energy is almost zero), while
the third one, at 41 586 cm�1, is a resonance above the barrier
with an exceedingly short lifetime and a width (G) of 62 cm�1.

2.2 Feshbach resonances

Feshbach-type rovibrational resonances occur when the mole-
cular system has at least one extra degree of freedom (dof)
besides the dissociation coordinate. This extra dof of the
system allows to ‘‘store’’ the excess energy above the dissocia-
tion limit temporarily in a non-dissociative mode.

There is an intuitive way to view Feshbach-type resonances.
This requires to start with a zeroth-order Hamiltonian in which
the dissociative and non-dissociative dofs are uncoupled. For
the uncoupled system, bound states (formed by excitations in
the non-dissociative mode) are embedded in the sea of
continuum-energy dissociative states formed along the disso-
ciative mode. In an extended Hamiltonian couplings occur
between the dissociative and non-dissociative degrees of free-
dom; thus, the eigenstates of the improved Hamiltonian are a
mixture of the bound states and the continuum states of
the zeroth-order Hamiltonian. The bound states are said to
‘‘dissolve’’ in the continuum. If the molecular system is in an
excited bound state of the zeroth-order Hamiltonian at the
beginning of the time evolution, it will not stay there forever,
because the couplings allow transition to the continuum states.
In the limit of infinite time evolution, the wave function of
the system has zero bound-state component, i.e., the system
decays in time.

The simplest model of Feshbach resonances considers the
coupling of one well-separated resonance state with a single
continuum. Consideration of two or more non-separated,
coupled resonances complicates the picture but does not result
in qualitative differences. The case of several continua, corres-
ponding to separate dissociation channels, coupled with a single
resonance was considered both by Feshbach6 and Fano.26

2.2.1 The Bixon–Jortner model. The Bixon–Jortner model149

provides a simple analytic treatment of a Feshbach-type
resonance. The ‘‘zeroth-order’’ Hamiltonian, Ĥ0, has a discrete
eigenstate, |fi, whose eigenenergy is Ef,

Ĥ0|fi = Ef|fi, (5)

and continuum eigenstates |ki (k A Z) with energies Ek = kd,

Ĥ0|ki = Ek|ki = kd|ki. (6)

The continuum eigenstates are discretized for the sake of this
derivation, d is the energy spacing between two neighboring
discretized continuum states.

Let a small perturbation, V̂, couple the discrete state to the
continuum,

hf|V̂|ki = v and hf|V̂|fi = hk|V̂|k0i = 0. (7)

Fermi’s golden rule150 can be used to provide the transition rate
wT from f to the continuum,

wT ¼ 2p hkjV̂ jfi
�� ��2PðEfÞ ¼ 2pv2

1

d
; (8)

where wT is the transition probability per unit time and P(Ef) is
the density of states at Ef. To allow for the desired d - 0 limit,
wT is kept constant within the Bixon–Jortner model; thus,

v2

d
¼ wT

2p
¼ constant: (9)

We have to solve the TInSE for the full system,

Ĥ|cmi = (Ĥ0 + V̂)|cmi = Em|cmi. (10)

The eigenstate, cm, is expanded on the basis of the eigenvectors
of the ‘‘zeroth-order’’ Hamiltonian,

jcmi ¼ hfjcmijfi þ
X1
l¼�1

hljcmijli: (11)

Substituting eqn (11) into (10), then multiplying with hk| or hf|
from the left and requiring that hcm|cmi = 1, we obtain the
following equations for the energy and the coefficients:

Em ¼ Ef þ
X1

k¼�1

v2

Em � dk
; (12)

hfjcmi ¼ 1þ
X1

k¼�1

v2

Em � dk
� �2

" #�1=2
; (13)

and

hkjcmi ¼
vhfjcmi
Em � dk

: (14)

Taking advantage of the identities
P1

k¼�1
1=ðz� kÞ ¼ p cotðpzÞ

and
P1

k¼�1
1=ðz� kÞ2 ¼ p2= sin2ðpzÞ, we can rewrite the

formulas as

2 Em � Ef
� �

wT
¼ cot

Emp
d

� �
(15)

and

hfjcmi ¼
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ wT=2ð Þ2þ Em � Ef
� �2q : (16)

Next, let us compare the eigenvalues Em to the eigenvalues of
Ĥ0. The continuum of Ĥ0 is mostly perturbed close to Ef. The
states far from Ef resemble the continuum states because
hf|cmi E 0, and thus Em E Ek and hk|cmi E 1. The transition
rate, wT, determines how many states are perturbed: if wT is
large, the perturbation will be significant in a wide
energy range.
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Now, let us calculate what is the probability of finding the
system in |fi if Em is in the (E, E + dE] energy range:

dNf ¼
X

EoEm�EþdE
jhfjcmij

2 � dE

d
v2

v2 þ wT=2ð Þ2þ E � Ef
� �2:

(17)

Then, by taking the d - 0 and v2 - 0 limits, such that v2/d is
constant (eqn (9)), we obtain

dNf

dE
¼ 1

p
wT=2

wT=2ð Þ2þ E � Ef
� �2; (18)

which is a Lorentzian distribution. Thus, the discrete state is
indeed ‘‘dissolved’’ in the continuum.

Let us now turn our attention to the time evolution of the
system, starting from the state |fi at t = 0. If

jCðt ¼ 0Þi ¼ jfi ¼
X
m

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ wT=2ð Þ2þ Em � Ef

� �2q jcmi; (19)

then

jCðtÞi ¼
X
m

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ wT=2ð Þ2þ Em � Ef

� �2q e�iEmtjcmi: (20)

The overlap of |C(t)i and |fi is

hfjCðtÞi ¼
X
m

v2

v2 þ wT=2ð Þ2þ Em � Ef
� �2 e�iEmt (21)

¼
X
m

wT

2p
1

v2 þ wT=2ð Þ2þ Em � Ef
� �2 de�iEmt: (22)

The sum can be approximated with an integral by taking the
d - 0 and v2 - 0 limits. Then,

hfjCðtÞi �
ð1
�1

wT

2p
e�iEt

wT=2ð Þ2þ E � Ef
� �2 dE

¼
e�iEft�wTt=2 if t � 0

e�iEft�wT jtj=2 if to 0:

( (23)

The probability of finding the system in state |fi decreases
exponentially:

|hf|C(t)i|2 = e�wTt; (24)

thus, the system decays exponentially.
2.2.2 The model of two coupled oscillators. Vibrational

Feshbach resonances occur if two bonds of a molecule have
very different strengths. Let us consider a linear A–A–B mole-
cule, with atomic masses mA and mB, where the A–A and A–B
distances are denoted by R1 and R2, respectively, and the A–B
bond is significantly weaker than the A–A bond. Neglecting the
bending dof, the vibrational Hamiltonian of the system,
employing reduced masses m (mij = mimj/(mi + mj)), becomes

Ĥ ¼ � 1

2mAA

@2

@R1
2
� 1

2mAB

@2

@R2
2
þ 1

mA

@2

@R1@R2
þ V R1;R2ð Þ;

(25)

where a contour plot of the potential V(R1,R2) can be seen
in Fig. 2. We define the operators ĤAA and ĤAB as

ĤAA ¼ � 1

2mAA

@2

@R1
2
þ VAA R1ð Þ (26)

and

ĤAB ¼ � 1

2mAB

@2

@R2
2
þ VAB R2ð Þ; (27)

where VAA(R1) and VAB(R2) are one-dimensional cuts of the
potential (see Fig. 3), while assuming that the other coordinate
takes its equilibrium value. The ‘‘zeroth-order’’ Hamiltonian of
the system is then

Ĥ0 = ĤAA + ĤAB. (28)

The perturbation term that couples the A–A and A–B
oscillators is

V̂ int ¼ Ĥ � Ĥ0 ¼
1

mA

@2

@R1@R2
þV R1;R2ð Þ �VAA R1ð Þ �VAB R2ð Þ;

(29)

which contains the mixed derivatives and the R1–R2 correlation
of the potential.

Let two bound eigenstates of ĤAA be |f0i and |f1i with
EAA

0 and EAA
1 eigenenergies, respectively, where EAA

0 is below the
dissociation threshold along R2 but EAA

1 is above that:

ĤAA|fn(R1)i = EAA
n |fn(R1)i, n = 0, 1. (30)

A bound eigenstate of ĤAB is |w0i, with EAB
0 energy, and there are

jwcont
EABi continuum eigenvectors:

Ĥ AB|w0(R2)i = EAB
0 |w0(R2)i (31)

Fig. 2 Contour plot of the V(R1,R2) potential of a A–A–B linear molecule,
chosen as an example of Feshbach resonances, see Section 2.2.2. R1 and
R2 are the A–A and A–B bond lengths, respectively, and the A–B bond
is significantly weaker than the A–A bond. The red lines denote the
equilibrium values of R1 and R2.
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and

ĤAB wcont
EAB R2ð Þ

�� �
¼ EAB wcont

EAB R2ð Þ
�� �

: (32)

The eigenvectors of Ĥ0 of eqn (28) are the direct product of the
AA and AB eigenvectors of eqn (30)–(32). We can construct a
discrete and a continuum state of Ĥ0 that have the same energy:

Ĥ0(|f1i# |w0i) = (EAA
1 + EAB

0 )(|f1i# |w0i) (33)

and assuming that EAA
1 � EAA

0 + EAB
0 is in the continuum

spectrum of ĤAB (see Fig. 3),

Ĥ0ð f0j i � jwcontEAA
1
�EAA

0
þEAB

0

iÞ

¼ EAA
1 þ EAB

0

� �
ð f0j i � jwcontEAA

1
�EAA

0
þEAB

0

iÞ:
(34)

The continuum and the discrete states are coupled by the
V̂int term,

hf1w0 V̂ int

�� ��f0w
cont
EAA
1
�EAA

0
þEAB

0

i

¼ f1h j � w0h jð ÞV̂ int jf0i � jwcontEAA
1
�EAA

0
þEAB

0

i
	 
 (35)

Based on the Bixon–Jortner model, if the system is initially in
the discrete state |C(t = 0)i = |f1i# |w0i, it is the coupling V̂int

which allows the transition to the continuum. This means that
the weaker A–B bond breaks up and the molecule dissociates.
The probability of finding the molecule in the discrete state
|C(t = 0)i decays exponentially,

|hC(t = 0)|C(t)i|2 = e�wTt, (36)

where

wT ¼ 2p
���f1w0 V̂ int

�� ��f0w
cont
EAA
1
�EAA

0
þEAB

0

���2P EAA
1 þ EAB

0

� �
; (37)

and P(EAA
1 + EAB

0 ) denotes the density of states for the con-
tinuum of Ĥ0 at energy EAA

1 + EAB
0 . Based on this simple example,

vibrational Feshbach resonances are formed if (a) one bond of
the molecule is significantly weaker than the others, so the
vibration along this bond is a dissociative dof, and (b) the
potential or the cross-derivative terms of the kinetic-energy
operator couple the dissociative dof and the vibrational modes
of the strong bonds. The resonance lifetime is thus determined
by the coupling term of the potential and the appropriate mixed
derivatives in the kinetic energy operator.

2.2.3 Weakly-bound dimers. Feshbach resonances occur
very commonly, and they have been measured spectroscopically
for a large number of weakly-bound dimers.23,151–154 Let us
consider a van der Waals (vdW) dimer formed by a strongly
bound diatomic molecule, AB, and an atom, X. The structure
and dynamics of the vdW dimer is described conveniently by
Jacobi coordinates, where r is the A–B distance, R is the
distance between atom X and the center of mass (COM) of
the AB unit, and y is the angle between the r and R vectors. If we
keep r fixed, the Hamiltonian is simply

Ĥ ¼ 1

2m
�1

R

@2

@R2
Rþ l̂2ðR̂Þ

R2

 !
þ Brot ĵ

2ðr̂Þ þ VðR; yÞ; (38)

where Brot is the rotational constant of the AB molecule, and
ĵ(r̂) and l̂(R̂) are the angular momentum operators for the
rotation of the AB molecule and the diatom formed by the
X atom and the COM of the AB unit, respectively. The
unit vectors R̂ and r̂ define the polar angles of the vectors
R and r, respectively. The ‘‘zeroth-order’’ Hamiltonian is
Ĥ0 = Ĥ AB–X + Ĥ AB, where

ĤAB�X ¼ 1

2m
�1

R

@2

@R2
Rþ l̂2ðR̂Þ

R2

 !
þ VAB�XðRÞ; (39)

and VAB–X(R) is a one-dimensional cut of the potential at
(usually) the equilibrium value of y, and

ĤAB = Brot ĵ2(r̂). (40)

The perturbation that couples the two subsystems is

V̂int = V(R,y) � VAB–X(R), (41)

which contains the y-dependent part of the potential. The
eigenstates of the rotating AB unit are the spherical harmonic
functions,

ĤAB|Y m
j i = EAB

j |Y m
j i = Brot j( j + 1)|Y m

j i. (42)

ĤAB–X has both bound and continuum eigenstates,

ĤAB–X|wn(R)i = EAB–X
n |wn(R)i (43)

Fig. 3 VAA(R1) (top panel) and VAB(R2) (bottom panel), one-dimensional
cuts of V(R1,R2) (see Fig. 2) at the equilibrium value of R2 and R1,
respectively. When the one-dimensional oscillators corresponding to
VAA(R1) and VAB(R2) are coupled, a resonance is formed with an energy
of EAA

1 + EAB
0 .
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and

ĤAB�X wcont
EAB�XðRÞ

�� �
¼ EAB�X wcont

EAB�XðRÞ
�� �

: (44)

If the AB–X interaction is weak, there can be low-lying rotationally
excited states of ĤAB that have an energy greater than the dissocia-
tion threshold of the dimer, D0. Let us assume that D0 oEAB�X

0 þ
EAB
j2
� EAB

j1
and EAB

j1
oD0 oEAB

j2
, where EAB–X

0 corresponds to the

ground state of ĤAB–X. We can then construct a discrete and a
continuum eigenstate of Ĥ0 = ĤAB + ĤAB–X, defined similar to

eqn (28), that have the equal energy, EAB
j2
þ EAB�X

0 :

Ĥ0

��Ym2
j2
i � w0j i

	 

¼ EAB

j2
þ EAB�X

0

	 
 ��Ym2
j2
i � w0j i

	 

(45)

and

Ĥ0ðjYm1
j1
i � jwcont

EAB�X
0

þEAB
j2
�EAB

j1

iÞ

¼ ðEAB
j2
þ EAB�X

0 ÞðjYm1
j1
i � jwcont

EAB�X
0

þEAB
j2
�EAB

j1

iÞ:
(46)

We can now derive the time evolution of the system starting

from the discrete state. If Cðt ¼ 0Þj i ¼
��Ym2

j2
i � w0j i, then

|hC(t = 0)|C(t)i|2 = e�wTt (47)

where

wT ¼ 2pjhYm2
j2

w0jV̂ intjYm1
j1

wcont
EAB�X
0

þEAB
j2
�EAB

j1

ij2PðEAB
j2
þ EAB�X

0 Þ:

(48)

This simple example can be extended straightforwardly to
explain the origin of Feshbach resonances in weakly-bound
dimers, if some rovibrational eigenenergies of one monomer
are greater than the dissociation energy of the dimer. The
lifetime of a resonance is determined by the coupling of
the monomer motions and the intermonomer stretching. We
present examples for vdW complexes supporting Feshbach
resonances in the Application subsections of several later
sections. Interested readers can find a vast amount of addi-
tional examples on the Feshbach resonances of vdW complexes
in the literature, for representative early works the related
chapter in ref. 142 might be consulted.

2.3 The non-Hermitian picture

As discussed in the previous subsections, in Hermitian QM
resonance states can be associated with wave packets involving
continuum states.73 Non-Hermitian QM offers a different per-
spective on quasibound states.

In the NHQM case, quasibound states are expressed as
stationary solutions of the time-dependent Schrödinger-equation,
i.e., the total wave function is written as the product of a
coordinate-dependent and a time-dependent part. That is, in
atomic units,

Cres
n (q,t) = Cres

n (q)exp(�iEres
n t) (49)

and

ĤCres
n (q) = Eres

n Cres
n (q) (50)

hold. The time dependence of resonance states is described by
assuming that the probability of finding the system at a certain
coordinate point q has an exponential decay in time, see
eqn (2). Eqn (2) and (49) are simultaneously satisfied if the
energy is complex, Eres

n ¼ en � iGn=2, implying that the wave
function diverges exponentially along the dissociation coordi-
nate (thus, it is not in the L2 space).

According to the uncertainty principle relating time and
energy, the finite lifetime of resonance states results in an
uncertainty in the resonance energy, and the density of states
near the resonance energy has a Lorentzian distribution,155,156

PresðEÞ ¼ 1

p
Gn=2

E � enð Þ2�Gn
2=4

: (51)

Note that the quantity wT of the previous subsections plays a
very similar role to Gn, which can be seen by comparing eqn (2)
to (24), as well as eqn (51) to (18).

2.4 Resonances in molecule–molecule scattering

Direct access to rotational–vibrational resonances is provided
in molecule–molecule (or molecule–atom) collisions. When the
colliding molecules approach each other and get to the region
where their interaction becomes attractive, the lowering of the
potential energy and the conservation of total energy imply
that their relative kinetic energy increases. Specific collision
energies facilitate the formation of quasi-bound states of the
collision complex, in which the excess kinetic energy is tem-
porarily stored in the end-over-end rotation of the complex
(a shape resonance) or in a higher rotational or vibrational state
of one or both of the colliding molecules (a Feshbach reso-
nance). Eventually the quasi-bound states dissociate and the
molecules fly apart, either in their original rovibrational state
but possibly with exchange of momentum (elastic collisions)
or in different rovibrational states (inelastic collisions). The
state-to-state integral scattering cross sections measure the
probability that the collision has led to one of these events.
The corresponding differential cross sections measure these
probabilities as a function of the scattering angle, i.e., the angle
between the trajectories of the molecules flying apart. When
a quasi-bound state or scattering resonance appears, the colli-
sion complex lives (much) longer than the normal collision
time and the probability that ‘‘something happens’’ during the
collision increases. Since this occurs only at specific collision
energies, this causes peaks in the ICSs as function of the
collision energy, which can be directly observed. The formation
of a long-lived collision complex will also strongly affect the
scattering angle, but it is not obvious how. Measuring and
computing DCSs at resonances provide interesting insight into
the collision process.

The various methods to analyze the resonances found
in coupled-channel computations are explained in detail in
Section 4. In anticipation, an illustrative discussion, based on
the theory developed in the 1930s by Breit and Wigner4 and
Siegert,5 is given next.

The calculated and observed ICSs and DCSs are assumed
to result from an interference between resonance and
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background contributions. These contributions can be disen-
tangled by applying a theoretical analysis similar to Feshbach–
Fano partitioning.157,158 The energy-dependent multichannel
S-matrix is written as20

S(E) = Sbg(E)Ures(E), (52)

where the background contribution Sbg(E) is a slowly varying
function of the collision energy E and the resonance contribu-
tion is given by the Breit–Wigner formula

UresðEÞ ¼ I� 2iA

E � Eres þ iG=2
; (53)

where Eres is the energy of the resonance, G is its width
(the inverse lifetime), and the complex-valued matrix elements
Aab = aaab* contain the partial widths aa obeying the relationP
a

aaj j2¼ G=2. The idea associated with the Breit–Wigner

formula is that in the complex energy plane, where the bound
states correspond to poles of the S-matrix on the negative real
energy axis, resonances are represented by poles below the
positive real axis at positions Eres � iG/2 (see eqn (1)).

By analyzing the energy dependence of the matrix elements
of S in the range of each resonance with an algorithm described
in the ESI of ref. 47, one can determine the parameters Eres, G,
and aa. Then, one can separate the resonance contributions to
the scattering matrix S(E) from the background and apply the
usual expressions159 to compute ICSs and DCSs from the
S-matrix, with or without resonance contributions. This is very
instructive, especially since it shows explicitly the effects of a
resonance on the DCS, which is not obvious intuitively.

3 On potentials supporting resonance
state computations

Both spectroscopic and quantum-scattering computations of
rotational–vibrational resonance states indicated repeatedly
that the energies, and even more so the lifetimes, are extremely
sensitive to fine details of the asymptotic parts of the PESs
utilized for these computations.51,66,160 There are not that many
potentials available for strongly-bound molecules which can be
used to compute rovibrational resonance states of polyatomic
molecular systems accurately. The basic problem here and in
scattering reactions is the proper description of the long-range
interaction part of the potential for chemically interesting
systems. These problems become especially pronounced for
cold and ultracold chemistry.

Molecule–molecule scattering resonances, especially just
above the dissociation threshold, are not only sensitive to the
shape of the vdW well in the interaction potential, but also to
its depth. This implies that the possibility of measuring mole-
cule–molecule scattering resonances for very low collision
energies and with high energy resolution is extremely useful
to critically check that the shape and well depth of anisotropic
intermolecular potentials are indeed accurate. This was
recently demonstrated especially vividly for NO–He and NO–H2

scattering.66 It was shown that potentials calculated with the

ab initio coupled-cluster method including single and double
excitations with a perturbative estimate of triples [CCSD(T)],161

which is considered to be the ‘‘gold standard’’ of electronic-
structure theory, were not sufficiently accurate to obtain
agreement between the observed resonances and those from
well-converged coupled-channels computations that used these
potentials. For resonances at even lower collision energy it was
explicitly confirmed116 that the intermolecular potential had to
be calculated at a higher level of electron correlation, with the
full inclusion of triple excitations and a perturbative estimate of
quadruples [CCSDT(Q)],162 to compute ICSs and DCSs that
reproduce the experimental data at these resonances.

Another example of low-energy scattering resonances being
extremely sensitive to the accuracy of the potential used in
coupled-channels computations was provided by merged-beam
experiments for collisions of H2 molecules with 3S1 excited He
atoms, leading to Penning ionization.51 An interesting observa-
tion was that for collisions with para-H2 ( j = 0) and ortho-H2

( j = 1) the same resonance was observed at 2.37 K, but another
resonance, at 270 mK, occurred only in collisions with ortho-H2.
Both resonances were also found in coupled-channels compu-
tations, but the one at 270 mK could only be reproduced when
using an ab initio potential surface for H2–He* with corrections
calculated at the full configuration-interaction (FCI) level and a
further scaling of the correlation energy by 0.4%, see Fig. 4.

4 Resonances in molecule–molecule
scattering

Let us begin by discussing the computation and characteriza-
tion of resonances with the top-down (scattering) approach; in
the subsequent Sections 5–7 of this Perspective we discuss the
several bottom-up (spectroscopic) approaches to the computa-
tion of resonance states. In the top-down approach the energy is
usually set to zero at the dissociation limit, while in bottom-up
computations the energy zero is conveniently chosen as the
energy of the ground vibrational state (deviating from the
bottom of the PES by the zero-point vibrational energy).

4.1 The coupled-channels (CC) method

The Hermitian Hamiltonian used in CC calculations, which is a
generalization of the atom–diatom Hamiltonian of Section 2.2.3,
is given both in space-fixed (SF) and body-fixed (BF) coordinates
in ref. 163 for two rigid arbitrary polyatomic molecules. Next, a
coupled channel basis j(J)

n,l(r), which depends on all coordinates
r of the system except the scattering coordinate R, needs to be
defined. The index n labels the products of the coupled rota-
tional states of the colliding molecules A and B, l is related
to the end-over-end angular momentum of the A–B complex,
and J is a quantum number corresponding to the total angular
momentum obtained by coupling l with the rotational angular
momenta of A and B. The j(J)

n,l(r) basis, expressed in SF coordi-
nates, is written for the general case of collisions between two
arbitrary polyatomic molecules in ref. 163, where the corres-
ponding basis in BF coordinates is also given. The matrix
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elements of the Hamiltonian over both the SF and the BF bases
are specified there, as well. The scattering wave function is
expanded in the channel basis as

cðJÞðR; rÞ ¼
X
n;l

fðJÞn;l ðRÞj
ðJÞ
n;l ðrÞ; (54)

the R-dependent ‘‘expansion coefficients’’ are the radial wave
functions of each channel. Substitution of this wave function
into the time-independent Schrödinger equation, multiplication

with the complex conjugate channel basis functions jðJÞ�
n0;l0 ðrÞ,

and integration over all coordinates r yields a set of coupled
second-order differential equations for the radial wave func-
tions, the CC equations,20,159 which are solved numerically.
The total angular momentum is a conserved quantity, so the
computations can be performed separately for each J.

The incoming wave in a certain direction is a plane wave
and the radial wave functions must obey so-called S-matrix
boundary conditions at large R. When the incoming plane wave

is expanded in spherical waves with angular momentum l, the
partial wave index, and the outgoing wave is written as a linear
combination of spherical waves with angular momenta l0, it
follows that the radial wave functions must have the following
asymptotic form,

� exp �i knR� lp=2ð Þ½ 	dn0;ndl0;l þ exp i kn0R� l0p=2ð Þ½ 	SðJÞ
n0;l0 ;n;l :

(55)

The first term of eqn (55) is an incoming spherical wave with

wave number kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E � enð Þ

p
, where E � en is the kinetic

energy in channel n, and m is the reduced mass. The second
term includes the corresponding outgoing waves with ampli-

tudes S
ðJÞ
n0;l0;n;l , which are the elements of the scattering matrix

S(J). The latter are obtained by matching the solutions of the CC
equations at large R with the expression in eqn (55).

The state-to-state cross sections, which quantify the prob-
abilities that the collision (de-)excites the molecules to specific
final states when they start in a given initial state, are obtained
from the elements of the transition matrix T = I � S, with I
being the unit matrix. The state-to-state ICSs are simply

sn!n0 ¼
p

kn2 2jA þ 1ð Þ 2jB þ 1ð Þ
X
J

ð2J þ 1Þ
X
l;l0

T
ðJÞ
n0 ;l0;n;l

��� ���2; (56)

where jA and jB are the angular momenta of molecules A and B
in their initial state n. Calculation of the DCSs is more
complicated;159 it involves a linear combination of scattering
amplitudes that contain the T-matrix elements multiplied by
spherical harmonics depending on the scattering angle, for all
values of l, l0, and J. The DCSs are proportional to the absolute
square of this linear combination, so they also contain inter-
ferences from different l, l0, and J values.

Computer codes available for CC scattering computations
include MOLSCAT,164 Hibridon,165 and TwoBC.166 They solve
the CC equations with a combination of the log-derivative
propagator167 at shorter distances and the Airy propagator168,169

for larger R. Another CC program package was developed in the
Nijmegen Theoretical Chemistry group, it uses the renormalized
Numerov propagator.170,171 It can also compute the bound
rovibrational states of complexes including two weakly inter-
acting molecules from the same Hamiltonian and the same
channel basis, extended with a set of basis functions in R.163

The Hamiltonian and the channel basis described above are
valid for rigid molecules. When vibrationally inelastic processes
are considered, the Hamiltonian of ref. 163 must be extended
with the monomer vibrational Hamiltonians containing the
appropriate kinetic energy operators and intramolecular
potential hypersurfaces, and the intermolecular potential sur-
face depending on the distance R and the orientations of the
monomers must be made dependent also on their internal
coordinates. Furthermore, the channel basis must be extended,
by including the vibrational wave functions of the colliding
molecules depending on their internal coordinates.

Fig. 4 Experimental and theoretical Penning ionization rate coefficients
of para- and ortho-H2 molecules in collisions with He*(23S1).

51 The
experimental rate coefficients are presented as black dots with error bars.
The upper and lower panels correspond to para-H2 ( j = 0) and ortho-H2

( j = 1), respectively. Two shape resonances are observed below 5 K for the
reaction with ortho-H2 at 2.37 
 0.09 K and at 270 
 20 mK, while the
reaction with para-H2 yields only the higher-energy resonance. The results
of state-of-the-art first-principles computations are depicted by the
green, blue, and red curves in both panels. The interaction potential
obtained with the current ‘‘gold standard’’ of electronic-structure meth-
ods, coupled cluster theory at the [CCSD(T)/aug-cc-pV6Z+mid-bond,
green] level, alone erroneously predicts a low-energy resonance for
para-H2 and two low-energy resonances for ortho-H2. Including a full
configuration interaction (FCI/aug-cc-pVQZ) correction (blue) improves
the agreement down to collision energies corresponding to a few hundred
milli-kelvin. Further improvement of the interaction potential is achieved
by uniformly scaling the correlation energy by 0.4% (red), resulting in
excellent agreement with the measured resonance positions and the
overall behavior of the rate coefficient down to the lowest collision
energies. The calculated rate coefficients are convoluted with the experi-
mental resolution (8 mK) for the lowest collision energies. This figure is
reproduced from ref. 51.
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4.2 Analysis and characterization of resonances

4.2.1 Disentangling resonant and background scattering.
As mentioned at the end of Section 2.4, the resonant contribu-
tion to ICSs and DCSs can be separated from the background by
analyzing the energy dependence of the S-matrix elements. This
is illustrated in ref. 47 for scattering resonances observed
and calculated for NO–He at collision energies between 13
and 20 cm�1. Section 5 of the ESI of ref. 47 explains in detail
how the elements of the S-matrix are analyzed and how the
resonant contribution is separated from the background.
As Fig. 5 illustrates, this is done for individual elements
of the S-matrix that correspond to specific initial and final
rotational states of NO. It is interesting to observe in Fig. 5
that the energy dependence of the real and imaginary part of
the S-matrix elements resembles the behavior of the complex
energy eigenvalues of Fig. 11, vide infra, obtained with complex
absorbing potentials. When the individual S-matrix elements
are thus disentangled, the effect of a resonance on the ICSs and
DCSs of all state-to-state inelastic processes can be calculated
explicitly. The upper panel of Fig. 6 shows that, indeed, the
resonant peaks in the ICS disappear when the resonance
contribution is removed, while the DCSs in the lower picture
show that the resonances cause additional strong backward
and near-forward scattering. Also the measured VMI images are
shown, next to simulated images obtained from the calculated
DCSs, with and without the resonant contributions. It is clear
that the agreement with the measurements is much less
satisfactory for the latter, which confirms that the experiment
indeed detects resonance effects.

4.2.2 Phase shifts and resonance lifetimes. In a single-channel
problem the S-matrix can simply be written as exp(2if), with the
angle f being the phase shift. In the multichannel case S is a
unitary matrix, its eigenvalues can be written as exp(2if(J)

n,l), and the
phase-shift sum F is the sum of f(J)

n,l over all open channels.
It follows from theory4,5 that when a resonance occurs the

phase shift (sum) rapidly increases by p as a function of the
collision energy E.172,173 This is illustrated in the top panel of
Fig. 7 for the example of NH3–He scattering.174 Similar results
were obtained for NH3–H2 scattering175 and OH–He scattering.63

The derivative of the phase shift with respect to the energy,
t = h�dF/dE, gives the lifetime of the collision complex.172,173

These lifetimes are shown in the lower panel of Fig. 7. This figure
illustrates that at the energies where resonances occur one gets a
long-lived collision complex. By comparing the peaks in this
figure with the corresponding resonance peaks in the ICS (not
shown for this example), one observes that the narrower the
resonance peak in the ICS, i.e., the smaller its width G, the longer
its lifetime. This clearly confirms the relation t = 1/G.

Fig. 5 Plots of some S-matrix elements in the complex plane and of the
corresponding values of rk = |Sk+1 � Sk| on the energy grid. Panels A, B, and
C show examples of the different behavior of the matrix elements for
various values of the total angular momentum J and parity P. The initial and
final j, e/f states of NO and the incoming and outgoing partial wave
quantum numbers l are shown at each panel. Panels D, E, and F show
the energy dependence of the rk corresponding to panels A, B, and C,
respectively, with the same colors of the dots. The curves labeled ‘‘bg’’ is
the background matrix Sbg. The red cross marks the resonance energy Eres,
the black dots indicate the region around the resonance where the second
derivative of rk is negative. The magenta/green colors indicate the regions
around the resonance where the slope of rk is positive/negative. This figure
is reproduced from the ESI of ref. 47.

Fig. 6 Effect of the resonances on the cross sections for inelastic (1/2f) -
(5/2f) NO–He scattering. The ICS is shown in the upper part, the DCSs
below. Solid lines represent the complete theoretical ICS and DCSs,
dashed lines the cross sections obtained when only the background
scattering matrix Sbg in eqn (52) is included for resonances. The lower
panels show the measured (Exp) and simulated images based on either the
complete DCSs (Sim) or the DCSs computed with the scattering matrix Sbg

only (Sim*) for the experimental collision energies of (A) 14.8 cm�1,
(B) 17.1 cm�1, and (C) 18.2 cm�1. This figure is reproduced from ref. 47.
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4.2.3 Adiabatic-bender model. The adiabatic-bender model,
proposed by Alexander et al.176,177 and based on the model of
Born–Oppenheimer angular-radial separation (BOARS),178 char-
acterizes scattering resonances by adiabatically separating the
radial motion from the other dofs. The Hamiltonian matrix
without the radial kinetic energy term is diagonalized for all
values of R, which yields a set of one-dimensional (1D) potentials
depending on R, the adiabatic-bender curves. These curves
asymptotically connect to the states of the separated monomers.
In the next step one obtains 1D scattering states by solving 1D
scattering equations with each of these adiabatic potentials. If
the adiabatic bender curves are sufficiently well separated and
do not change their character by avoided crossings, the full-
dimensional scattering states can be associated with the 1D
states on each of the adiabatic bender curves and their character
follows for the monomer states which the curves connect
asymptotically to. Thus, in the case of resonances, it can be
determined which monomer states participate in the resonance.

A recent example illustrating this method for OH–He and
OH–Ne rotationally inelastic collisions is described in ref. 63.
The OH monomer has a large rotational constant, its rotational
states are far apart, the adiabatic bender curves are well sepa-
rated, and the method works well. If one applies the method to
NO–He, NO–H2 or O2–O2, for example, the much smaller rota-
tional constants of NO and O2 cause the set of adiabatic bender
curves to become rather dense, several avoided crossings occur
between them, and the connection to the monomer states is lost.

4.2.4 Analysis of scattering wave functions. With the renorma-
lized Numerov propagator used in the Nijmegen scattering pro-
gram to solve the CC equations, it is straightforward to generate the
scattering wave functions, not only asymptotically but over the full

range of R. Thus, one can inspect the character of these wave
functions in terms of the participating monomer states and the
end-over-end angular momentum l, the partial wave index. If
resonance peaks are observed in the ICS, one can determine which
total angular momenta J contribute most to these peaks, plot the
wave functions for these values of J, and analyze their character.
This is illustrated in Fig. 8 for the example of NO–He scattering,
already discussed in Section 4.2.1, where several resonances were
calculated and observed experimentally47 for collision energies
between 13 and 20 cm�1. The wave functions in Fig. 8 contain
continuum states, but also have large amplitudes in the region of
the well of the NO–He potential, which confirms that they indeed
correspond to quasi-bound states. Both resonances shown corre-
spond to the NO state j = 5/2, f. Since this channel is open at both
resonance energies, they are shape resonances. The resonance at
14.85 cm�1 corresponds to l = 5, the resonance at 17.75 cm�1 to
l = 6. The excess collision energy is larger for the latter resonance
and its continuum contribution is more pronounced, see Fig. 8.

4.2.5 S-Matrix Kohn variational method. The S-matrix ver-
sion of the Kohn variational method78–81,179,180 can also be
applied to characterize scattering resonances, as well as to
investigate the sensitivity of the resonances to changes in the
PES. For a given J, one writes a trial wave function as

~cn;lðR; rÞ ¼ � fn;lðRÞjn;lðrÞ þ
X
n0;l0

fn0;l0
�ðRÞjn0;l0 ðrÞ ~Sn0;l0;n;l

þ
X
k

wkðR; rÞck:

(57)

Fig. 7 Phase-shift sums F (top panel) and corresponding lifetimes (lower
panel) as a function of the collision energy, calculated for NH3–He
scattering.174 The different curves correspond to different total angular
momenta J, with the two curves for each J corresponding to even and odd
overall parity. This figure is reproduced from ref. 174.

Fig. 8 Scattering wave functions of the NO–He system squared as a
function of the distance R. Panel a: At the resonance energy of 14.85 cm�1

for J = 7.5 and P = +1. Panel b: At the resonance energy of 17.75 cm�1 for
J = 6.5 and P = �1. The rotational and L-doublet state of the NO radical,
and the orbital angular momentum of the NO–He complex, are given for
each curve. The states that dominate the resonances are marked with a
red box. This figure is reproduced from the ESI of ref. 47.
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The function fn,l(R) is an incoming wave at energy E � en, the
kinetic energy in channel n, the functions fn0,l0*(R) are the
corresponding outgoing waves, and S̃n0,l0,n,l are the elements of
the trial S-matrix. The incoming waves, fn,l(R), can be chosen
freely as long as they satisfy the Schrödinger equation at long
range and are regularized at short range. The functions wk(R,r)
form a bound-state basis. They are eigenfunctions of the
Hamiltonian computed with the technique of discrete variable
representation (DVR)181,182 on a finite R-grid and they provide
flexibility in the trial wavefunction in the region where
fn,l(R)jn,l(r) does not already solve the Schrödinger equation.

The trial wave function of eqn (57) is optimized variationally
by considering first-order variations with respect to S̃ and {ck},

dh ~cn,l|Ĥ � E| ~cn,li = 2hd ~cn,l|Ĥ � E| ~cn,li + idS̃n,l,n,l. (58)

The bracket h f jgi ¼
Ð1
0 dR

Ð
drfg is defined here without

complex conjugation (see a similar trick in Section 6.3). An
advantage of this approach is that the variational wave function
is expressed as a linear combination of a scattering wave
function and a set of bound states at short range. Thus, one
can analyze which bound state gives rise to a scattering
resonance by inspecting the optimized coefficients {ck}.

This method was applied in a combined experimental/
theoretical study of NO–He rotationally inelastic scattering at
very low collision energies, where resonances are found.116 The
scattering cross sections calculated by the Kohn variational
method agree well with those from CC calculations and the
assignment of the resonances also agrees with the wave-
function analysis described in Section 4.2.4. After establishing
which quasi-bound states lead to particular resonances, one
can estimate the response of the resonance energies to varia-
tions in the PES from the Hellman–Feynman theorem.183,184 In
this way, it was explored how sensitive the resonance energies
are to overall scaling of the potential, to scaling of the correla-
tion energy alone, to the anisotropy of the potential, and to a
radial shift of the potential.

5 The stabilization method (SM)

We begin the discussion of the various bottom-up approaches
with the stabilization method,84–87,185,186 which has a history of
at least 50 years85 and provides the simplest technique to
identify and characterize rovibrational resonances. The stabili-
zation method remains within the realm of variational techni-
ques built upon HQM and L2 functions. It is important to note
right at the start that SM allows the computation of not only
resonance positions, en, but also resonance lifetimes, Gn

�1.86,187

5.1 General background

The principal idea behind the SM technique is based on the
observation of stabilization of some of the eigenenergies in
the (discretized) continuum part of the eigenspectrum of the
Hermitian Hamiltonian with respect to (slight) changes in
selected computational parameter(s), collectively named t.
During SM computations the size of the basis or the coordinate

range on the dissociation coordinate(s) is changed within a
narrow interval. The SM techniques differ by how the para-
meters are selected and how stabilization of certain eigenvalues
of the Hermitian Hamiltonian is observed. It is important to
emphasize that stabilization of resonances is not an empirical
observation but it is based on fundamental properties of basic
scattering theory. Stabilization can be understood via simple
models of isolated resonances. A detailed exposure is given, for
example, in ref. 87.

In the stabilization method we approximate the eigenstates
above the dissociation threshold by performing a number of
bound-state-type computations with slightly different values for
the computational parameter(s), t. The wave function of a
stable resonance state has large amplitudes localized within
the interaction region of the fragments; thus, the energy is not
sensitive to minor changes in the basis. Contrary to this, the
continuum states (a) become ‘‘discretized’’ due to the finite
range of the dissociation coordinate, (b) are characterized by
wave functions which have significant amplitude outside the
deeper region of the potential well, and (c) have energies
varying with the coordinate range and the type of the basis
used. Thus, due to the large density of continuum states around
a resonance, minuscule changes in the basis will yield minus-
cule change in the resonance energy, while the eigenenergies of
continuum states will shift considerably.

The traditional technique to observe resonances through the
SM method employs En(t) stabilization graphs, usually the
principal outputs of SM computations. A resonance is observed
when a plateau is seen in En(t), a result of a slowly varying
eigenvalue, identified as a resonance position. However, in the
large basis limit, the density of states becomes infinite, and no
plateau can be observed in En(t). In this case resonance
energies are indicated by inflection points of the En(t) curves.
Another possibility is to compute the expectation value of
R2 (hR2i), where R is a dissociation coordinate. Since hR2i is
much smaller for resonance wave functions than for the
discretized continuum states, hR2i values provide good criteria
for the identification of resonances.

In perhaps the simplest form of SM, identification of
resonance eigenvalues is achieved using the technique of
histogram binning.64 The TInSE computations are performed
for a small number of cases, say 20–25, with slightly different
ranges along the dissociation coordinate. The eigenvalues are
collected from all computations, and histograms are generated
with a certain bin size. The horizontal axis corresponds to the
binned energy scale, while the number of repeated simulations
determines the count number on the vertical axis of the
histogram (see Fig. 9 for the case of the Ar–NO+ complex with
an energy scale of 0–8000 cm�1). As expected, the smaller the
bin size the better the performance of the method, a good
choice in the case of tightly converged eigenstates is
0.001 cm�1. The stable resonance energies are indicated by
peaks on the histogram.

So far the SM technique has not been used in the Budapest
group for the determination of resonance lifetimes. This is due
to the fact that this requires considerably more computational
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effort than the determination of the positions. In the experi-
ence of the Budapest group, the SM technique is quite success-
ful in identifying long-lived quasibound states. Finding
resonances with short lifetime may be difficult though as the
energy of these states is considerably more sensitive to compu-
tational parameters than those of the long-lived resonances.
Furthermore, the CAP-based and CCS techniques are much
more appropriate to obtain a large number (if not all) reso-
nances (both positions and lifetimes).

5.2 Application: SM analysis of the vibrational resonances of
Ar–NO+

During the study reported in ref. 64 the SM method was used to
identify high-lying vibrational resonance states of the Ar–NO+

complex. In fact, the SM histogram of Fig. 9 represents the
computed eigenvalues of the Ar–NO+ complex between 0 and
8000 cm�1.64 Because the dissociation energy, D0, of the Ar–NO+

complex is 887 cm�1,64 the states with green color at the left of the
figure correspond to bound states. The bound states show a clear
and well-defined termination upper limit at D0. The three further
stacks between 2300–3200, 4600–5500, and 6900–7800 cm�1 show
significant similarity with the stack corresponding to the bound
states. They correspond to the first, second, and third excited NO+

stretch states of Ar–NO+ and the width of each stack is approxi-
mately D0 (with a very slight variation). Thus, Fig. 9 can be
explained via a very simple physical picture: the nearly ideal
adiabatic separation of the small-amplitude NO+ stretch motion
from the other two, large-amplitude, intermonomer motions.

Pushing the computations to even higher NO+ stretch quan-
tum numbers is hindered by the extremely large number of
eigenvalues that would need to be computed variationally. In
fact, Fig. 9 is based on the first 12 000 vibrational eigenenergies
of the Ar–NO+ system, computed iteratively.64

6 The complex absorbing potential
(CAP) technique

Complex absorbing, or as sometimes called optical, potentials have
been used both in the time-independent and time-dependent

formulations of quantum mechanics. The CAP
technique56,88,89,188–193 is probably the most commonly used
approach to compute rovibrational resonance states. In the CAP
technique the rovibrational Hermitian Hamiltonian is ‘‘per-
turbed’’ with a complex potential, introduced to absorb the
outgoing part of the resonance eigenfunctions, making them
square integrable. This approach to resonance wave functions
employs an expansion using an L2 basis, e.g., the bound
states and the eigenstates with energies above dissociation
originating from a bound-state computation. Even though
CAP-perturbed Hamiltonians act on square-integrable func-
tions, it is not a Hermitian formalism because of the complex
potential. Ref. 88 explores the CAP method and its properties
with mathematical rigor, while a more general review of the
CAP technique can be found in ref. 89.

6.1 General background

The modified CAP Hamiltonian can be written as

Ĥ0(Z) = Ĥ � iZW(R), (59)

where Ĥ is the unperturbed and Ĥ0 is a complex Hamiltonian, Z
is the CAP-strength parameter, and W(R) is usually a real-valued
function of the R dissociation coordinate assuming nonzero
values at the asymptotic region of the PES (more than one
dissociation coordinate, of course, is also feasible). Complex
valued W(R) CAP functions have also been studied.194

A useful approach emerges when the CAP-perturbed non-
Hermitian Hamiltonian is represented in the basis of the
eigenvectors computed with a bound-state code up to and
above the first dissociation threshold. Some of the eigenvalues
of the complex matrix representation of Ĥ0(Z) are approxima-
tions to the true resonance energies. The resonance eigenener-
gies are characterized by two sources of error. The first error is
caused by the presence of the CAP function added to the
Hamiltonian. This error is small for small Z values and large
for large Z values. The second error is the basis set error, arising
because we try to represent a non-square-integrable function
with L2 basis functions. This type of error becomes small for
sufficiently large Z values, and remains large if the Z value is
small and the wave function is not damped sufficiently.

To find an optimal Z value, where the two types of error
either cancel each other out or at least their sum becomes
minimal, eigenvalue ‘‘trajectories’’ in the complex plane need
to be generated by varying the CAP-strength parameter. Reso-
nance cusps within the trajectories are then detected and they
are associated with an optimal Z, yielding resonance positions
and lifetimes. Here ‘‘cusp’’ means that there is a sharp bend
(local maximum of the curvature) on the trajectory and the
density of points has a maximum.

The efficiency of different types of CAP functions has been
investigated in a number of studies and various recommenda-
tions have been made; see, for example, ref. 192–198. In our
own experience, if the applied L2 basis set is large enough, then
the resonance eigenvalues are not particularly sensitive to the
specific form of the CAP function used (as long as the CAP
function has significant magnitude in the coordinate ranges,

Fig. 9 Overview of the stabilization-method (SM) histogram of Ar–NO+ in
the 0–8000 cm�1 energy interval based on 25 separate vibrational bound-
state (L2) computations.
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appropriate for absorbing the outgoing part of the wave
function).

6.2 GENIUSH-CAP

One implementation of the CAP method for the computation of
rotational–vibrational resonance states of arbitrary systems is
part of the GENIUSH-CAP code.65 One needs to perform one
expensive bound-state-type computation with the bound-state
code GENIUSH,146,147 which solves TInSE quasi-variationally, in
order to compute energies and wave functions above the first
dissociation threshold. The GENIUSH eigenvectors are then
used as a basis to build the matrix of Ĥ0(Z), whose complex
eigenvalues are finally computed. Repeating this for a few
hundred Z values leads to complex eigenvalue trajectories. In
the traditional CAP method visual analysis is used to identify
resonance cusps in the trajectories.

The CAP approach has several advantages over the stabili-
zation method. First, in the case of the SM technique one needs
to perform a few tens of variational bound-state computations,
which can take a considerable amount of computer time, while
the CAP technique may require only one expensive bound-state
computation. Second, the follow-up computation of CAP tra-
jectories is inexpensive, because the matrix of the modified
Hamiltonian Ĥ0(Z) is much smaller than that of the original
Hamiltonian, Ĥ. Third, the CAP method is significantly better
suited to identify both short- and long-lived resonances.

When compared to the complex coordinate scaling (CCS)
technique, see Section 7, the CAP technique has another major
advantage: the CAP changes only the potential-energy part
of the Hamiltonian. Thus, CAP-based techniques do not require
the knowledge of the Hamiltonian in an analytic form and
the CAP technique can be incorporated straightforwardly into
numerical techniques based upon the discrete variable
representation181,182 of the Hamiltonian. This is exactly why
the Budapest group decided to extend its fourth-age quantum-
chemical83 code GENIUSH,146,147 built upon the DVR represen-
tation of the Hamiltonian, with the CAP capability.

The only considerable drawback of the CAP method is the
need for visual searches for cusps. This takes a lot of human
effort, and introduces some subjectivity to the collection of
resonance states. There have been some reports about auto-
matic cusp recognition, e.g., the method of Silva et al.62 There
the cusps are identified based on the curvature of the CAP
trajectories and the density of the points. In our experience it is
easy to either miss rovibrational resonances or to assign false
positives this way. Thus, the Budapest group considered another
approach for automating CAP computations, named the
extended Tremblay–Carrington (ETC) method,61,68 discussed in
the next subsection.

6.3 The ETC method

The principal advantage of the ETC method68 is that it makes
the computation of rovibrational resonance states automatic.
Using the ETC method the resonance energies are obtained as
eigenvalues of an unmodified Hamiltonian matrix built in a
suitable basis, which is composed of selected eigenvectors of a

CAP computation. This way one completely circumvents the
computation of CAP trajectories.

The algorithm of the ETC method is as follows. First, solve a
CAP-type eigenvalue equation with a suitable CAP-strength
parameter, Zguide,

Ĥ0(Zguide)|fki = (Ĥ � iZguideW(R))|fki = Ek|fki. (60)

This step can be performed, among others, with the GENIUSH-CAP
code.65 Second, select carefully a basis set {|fki} from the
eigenvectors obtained in the first step. This is a very important
step as one must choose only those eigenvectors which became
square-integrable due to the CAP, i.e., they are small where the
CAP function is large. As shown in ref. 68, selection of the basis
{|fki} can be done more or less automatically, based on the
complex eigenvalues Ek. The basis functions are normalized
such that hfk*|fli = dkl, contrary to the conventional normal-
ization hfk|fli = dkl. Third, build the matrix of the original
Hamiltonian in this basis,

Hkl = hfk*|Ĥ|fli, (61)

and solve the eigenvalue equation. The Hamiltonian matrix
built this way is clearly not Hermitian and thus it has complex
eigenvalues. Furthermore, there are more basis functions than
resonances. In order to identify which complex eigenvalues
belong to resonance states, one needs to repeat the three steps
described, with a few (let’s say 11) slightly different Zguide

values. The resonance eigenvalues are less sensitive to the
choice of Zguide than the ones that do not correspond to
resonance states. In the plot of the computed eigenenergies
resulting from all Zguide values on the complex plane they form
well-defined clusters. The points within a cluster belong to the
same state but they are obtained with different Zguide values.
Eigenvalues corresponding to resonance states form compact
clusters, while non-resonance eigenvalues form clusters that
are considerably more extended. In order to make this
approach automatic, clusters must be characterized by suitable
appraisal algorithms facilitating their observation. For a suita-
ble choice of a scoring algorithm ref. 68 should be consulted, in
which appraisal scores are assigned to each cluster to guide the
selection of resonance states.

Because the computations following the usually expensive
bound-state computation are inexpensive, due to the small size
of the Hamiltonian matrix built with the carefully selected
{|fki} basis, the additional computations with different Zguide

values do not increase the overall cost of the determination of
rovibrational resonances via the ETC method at all.

6.4 Applications

6.4.1 Vibrational resonances of Ar–NO+. In ref. 64, not only
the SM but also a CAP-based method (and a scattering method,
see above) was used to identify and characterize the resonance
states of the Ar–NO+ complex. The long-lived resonance states
found by the SM method (see Fig. 10) have been confirmed by
the GENIUSH-CAP method as states with long lifetimes when
compared to the other resonance states in their vicinity.
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Fig. 11 shows a few selected GENIUSH-CAP eigenvalue
trajectories with various forms of cusps. The three different
colors indicate the different basis set sizes along the NO+–Ar
distance used in the bound-state-type GENIUSH computation,
thereby reflecting graphically the convergence of the resonance
energies and lifetimes.

6.4.2 Vibrational resonances of CO–H2. In ref. 65, the
vibrational resonances of the weakly-bound complex CO–H2

were computed using the GENIUSH-CAP approach and a

four-dimensional model PES. Thus, this is one of the few cases
where reduced-dimensional resonance treatments have been
reported for a vdW complex.

Resonances of both para- and ortho-CO–H2 were identified and
characterized with the help of the computations. Quantum-number
assignments for the resonances were achieved by inspecting the
vibrational probability density plots and by computing wave func-
tion overlaps with eigenstates of reduced-dimensional models.

6.4.3 Rotational–vibrational resonances of (H2)2. Computation
of the rovibrational resonances of (H2)2 served as a test of the
ETC method,68 described in Section 6.3. (H2)2 is a very weakly-
bound vdW complex, its dissociation threshold is only about
D0((H2)2) = 3 cm�1. The rotational constant of the H2 molecule is
approximately 60 cm�1, larger than the dissociation energy.
Therefore, if either of the two H2 monomers is in a rotationally
excited state, the energy of the dimer exceeds the lowest
dissociation threshold. Thus, there is a large number of shape
and Feshbach-type rovibrational resonances for (H2)2. In fact, only
the ground state of the intermonomer stretch is bound, and there
are multiple dissociation channels corresponding to the different
rotational states of the H2 monomers. Both bound and resonance
states are located near each dissociation channel, in which the H2

molecules are rotationally excited.
The computations of ref. 68 revealed some extremely long-

lived resonance states, whose energy is lower than the dissocia-
tion threshold corresponding to the rotational state of the
monomers. These states dissociate into a symmetry-accessible
lower-lying dissociation channel. These resonances are very
similar to bound states, and their very long lifetime cannot
be determined precisely.

Fig. 10 Stabilization-method (SM) histogram of Ar–NO+, with a bin size
of 0.01 cm�1, within the energy range 20 cm�1 above the first dissociation
limit, D0(Ar–NO+) = 887 cm�1. Eigenvalues are obtained from 25 GENIUSH
computations.

Fig. 11 GENIUSH-CAP eigenvalue trajectories in the vicinity of six selected resonances of Ar–NO+ in the energy region above the first dissociation
threshold. Zero energy is taken as the energy of the separated Ar and NO+ (v = 0, j = 0) systems. The CAP eigenvalue trajectories are obtained using three
different computations performed with 150, 200, and 250 DVR points along the R dissociation coordinate (Ar� � �NO+), reflecting the convergence of the
resonance energies and lifetimes. In each panel, the points of intersection of the vertical and horizontal lines point out the cusps in the trajectories.
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There are short-lived resonances whose energy is larger than
the dissociation limit corresponding to the rotational state of
the monomers. These states were determined using both the
ETC and the GENIUSH-CAP methods. The two techniques
resulted in very similar resonances. The ETC method proved
to be an outstanding and automatic alternative to the original
CAP method.

6.5 Comparison of GENIUSH-CAP and scattering results for
Ar–NO+

Since in ref. 64 both the CC Hermitian scattering and a non-
Hermitian CAP method were utilized to compute vibrational
resonance states for Ar–NO+, it is worth discussing the relation
of the results obtained with the two different approaches.

Although there are several reasons why the comparison
between the resonance states obtained via the CAP and CC
computations of ref. 64 is not straightforward, it was found that
the two basically different approaches provide results in good
agreement not only for the bound but also for the resonance
states: all significant CC resonance peaks could be paired with
a CAP resonance within a few 0.1 cm�1 (the expected agreement
of the results obtained with the two techniques). The lifetimes
obtained as the eigenvalues of the close-coupling Smith life-
time matrix and GENIUSH-CAP lifetimes also showed reason-
able agreement for the longer-lived resonances.

7 The complex coordinate scaling
(CCS) method
7.1 General background

In the non-Hermitian CCS scheme rovibrational resonance
states are computed as the exponentially diverging solutions
of the TInSE, see eqn (50). Within the CCS scheme one
introduces an invertible operator Ŝ, so that the functions Fn =
ŜCres

n become square integrable. The similarity-transformed
Schrödinger equation reads as

ŜĤŜ�1Fn = Eres
n Fn, F A L2. (62)

Eqn (62) is an eigenvalue equation for the transformed
Hamiltonian ŜĤŜ�1, whereby the eigenfunctions are square
integrable and the eigenvalues are the desired resonance
eigenenergies. Eqn (62) can be solved with the well-developed
L2 techniques of quantum chemistry.

In the conventional CCS method, a choice for the operator
Ŝ is

Ŝy f (R) = f (Reiy), (63)

where y is a free parameter and R is the dissociation coordinate.
Therefore, the operator Ŝy rotates the argument of a function of
the dissociation coordinate by y in the complex plane. If there
is more than one dissociation coordinate, each should undergo
a complex coordinate scaling transformation. Due to the trans-
formation by Ŝy,

77,90–92,96,97 (a) resonance states for which 2y 4
arctan(G/(2(e � D0))) = Arg(Eres � D0) will become square
integrable, (b) bound states remain square integrable for

y o p/4 (which is true in all practical applications), and (c)
the scaled Hamiltonian has scattering eigenfunctions which
are associated with a continuum that is rotated into the lower
half of the complex energy plane by the angle 2y.91,92,96,97 Thus,
in the spectrum of the scaled Hamiltonian of eqn (62), (a) real
discrete eigenvalues (unaffected by the CCS) correspond to
bound states, (b) the scattering continuum is rotated into the
lower half of the complex plane by 2y for each dissociation
channel, and (c) discrete complex eigenvalues in the area
between the real axis and the rotated scattering continua
correspond to resonance states, see Fig. 12.

Obtaining the form of the scaled Hamiltonian is rather
straightforward in the case of conventional complex scaling.
For differential operators corresponding to the dissociation

coordinate R, one needs to make the change
@

@R
! @

@R
e�iy.

For operators depending only on the coordinate the change
R - Reiy is required.96,97 In its simplest form, CCS requires a
PES that can be evaluated at complex coordinate values, which
can be achieved for PESs having a fitted analytical form, once
one rewrites the PES subroutine into complex arithmetic. In
addition, various techniques, also applicable for non-analytical
PESs, are available; for examples, see ref. 98, 199 and 200.

Somewhat more involved but often more convenient and
numerically more efficient extensions of the CCS method
have been developed. These include the method of exterior
complex scaling,201,202 whereby the transformation is defined,
for R Z Rs, as

Ŝy f (R) = f (Rs + eiy(R � Rs)). (64)

The exterior complex scaling transformation has been imple-
mented for grid-based techniques,203,204 and a smooth exterior
complex scaling method73 has also been advocated. Note that
the CAP method can be derived from smooth exterior complex
scaling by applying certain approximations.73,205

Naturally, resonance eigenenergies with a physical meaning
should be independent of the scaling parameter y in eqn (63).
However, in practice, when finite basis sets are used, the form
of the Fn eigenfunctions of eqn (62) and thus the ‘‘goodness’’ of
the basis depends on the scaling parameter. Similar to the CAP

Fig. 12 Illustration of the eigenvalues of a complex-scaled Hamiltonian in
the vicinity of one dissociation channel. The blue and purple arrows point
out the bound and resonance eigenvalues, respectively, while the red
arrow points out the rotated scattering continuum.
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method, resonance eigenenergies can be identified in the CCS
formalism by locating stationary points in eigenvalue trajec-
tories obtained by varying the scaling parameter y.

7.2 Applications

7.2.1 Rotational–vibrational resonances of H2
16O. H2

16O is
a strongly-bound molecule for which rovibrational resonance states
have been identified experimentally.12 Therefore, performing
rovibrational resonance computations for this species is extremely
important to test the utility of the different techniques. In ref. 13 the
spectrum of H2

16O was simulated above the first dissociation
threshold using advanced electronic structure and nuclear motion
computations, and the simulated spectrum was compared to the
experimental one from ref. 12. Several Feshbach and shape
resonances were determined with the CAP method, and a broad
spectral feature resulting from the direct photodissociation to the
continuum was also revealed in this study.

In ref. 14 the low-lying rovibrational resonances of H2
16O

were computed using the CCS method. During these calcula-
tions the matrix representation of the scaled Hamiltonian was
obtained in two steps. First, all the bound states of the unscaled
Hamiltonian were computed, using the code D2FOPI,104 along
with many eigenpairs having energies above the dissociation
threshold. In the second step, using a subset of the computed
eigenvectors as an orthonormal basis set, the matrix of the
scaled Hamiltonian was constructed,

Hy
kl = hCk|ŜyĤŜy

�1|Cli, (65)

resulting in a matrix with modest size, on the order of around a
thousand-by-thousand, which could be directly diagonalized
for the few dozen y values required to form the complex
eigenvalue trajectories. Inspection of the vibrational probability
density plots from the stationary resonance calculations
revealed several types of (dynamical) dissociation behavior,
varying among the states. The calculations aided the proper
assignment of some observed rovibrational transitions beyond
the first dissociation threshold of H2

16O.13

7.2.2 Rotational–vibrational resonances of H2He+. In
ref. 67, a large number of rovibrational resonances has been

computed and characterized for the H2He+ molecular ion,
using the CCS, the CAP, and the SM techniques. These
accurate computations of the bound and resonance states
facilitate the first experimental observation of rovibrational
transitions of this fundamental molecule, made up of the two
most abundant elements of the universe. The CCS algorithm
employed was basically the same as that detailed for H2

16O in
the previous subsection. Fig. 13 shows some CCS eigenvalue
trajectories computed in ref. 67, reflecting a number of
dissociation channels, corresponding to the different rotational
states of the H2

+ moiety in the dissociated system.
Beyond the spectroscopic data, valuable for future high-

resolution experiments, the quantum-chemical computations

Fig. 13 Eigenvalue trajectories of H2He+ on the complex energy plane, obtained by varying the scaling parameter of the complex coordinate scaling
(CCS) method between 0.02 and 0.80 in 40 steps. See ref. 67 for computational details.

Fig. 14 The nodal structure of a J = 0 vibrational resonance state of
H2He+ located at around 2109.4 cm�1 above its zero-point vibrational
energy, where R2 and y denote the H2

+–He distance and the Jacobi angle
defined by the H2

+–He and H–H bonds, respectively. See ref. 67 for
computational details.
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on H2He+ also revealed dissociation pathways, dissociation
branching ratios, and the stabilization mechanism of
the long-lived resonances. Because the H–H stretching funda-
mental lies above the first dissociation threshold of H2He+,
D0(H2He+) = 1775.4 cm�1, resonances are expected to play a
crucial role in the collision and association reactions involving
H2He+, including radiative association and radiative charge-
transfer reactions. Fig. 14 shows the probability density plot of
a selected vibrational resonance of H2He+, computed in ref. 67.
The resonance shown in Fig. 14 is a Feshbach resonance, in
which the H2

+ moiety is rotationally highly excited in the
interaction region.

7.2.3 Understanding the ultraslow decay in Coulomb
explosion of hydrocarbons. In the experiments described in
ref. 206, the C2H2

2+ and C2H4
2+ dications were generated by

double ionization with few-cycle intense laser pulses. In the
deprotonation pathway of the Coulomb explosion for both
C2H2

2+ and C2H4
2+, an ultraslow, microsecond timescale expo-

nential decay channel was observed.
Reduced-dimensional resonance-state computations,206

utilizing the CCS method, revealed that in both cases the slow
decay channel is due to quasibound states along the C–H
vibrational mode, where tunneling through a barrier is respon-
sible for the exponential decay, see Fig. 15.

8 Summary and outlook

The extremely rich internal dynamics of molecular systems just
below and above the first dissociation threshold can be studied
with a variety of quantum-chemical bound, resonance, and
scattering techniques employing accurate potential energy sur-
faces, corresponding usually to the ground electronic state and
exhibiting correct asymptotic behavior. This Perspective
focuses on the first-principles computation and characteriza-
tion of rovibrational resonances, proving that, depending on

the chemistry, getting together or breaking up are complex
processes even for molecular systems.

Most rovibrational resonance states can be categorized based
on their physical origin, they can be shape or Feshbach-type
resonances. One can approach resonance states either from the
direction of bound states (a bottom-up approach) or from
scattering states (a top-down approach). Next, we concentrate
first on the bottom-up and then on the top-down first-principles
approaches. Then we give some information about experiments
related to rovibrational resonance states.

The complex algorithms and codes developed for bound-
state computations during the fourth age of quantum chem-
istry are suitable to determine and describe the numerous L2

bound rovibrational states. As to resonances, the stabilization
method (SM) allows the utilization of bound-state computa-
tions to determine long-lived resonances (both their position
and lifetime). The SM method is based on the fact that the
eigenenergies of a Hermitian Hamiltonian corresponding to
resonances are rather insensitive to slight changes in certain
parameters of the bound-state-type computation. Thus, if one
can perform a considerable number of bound-state computa-
tions yielding a large number of unbound states, a histogram
binning approach can be utilized to identify long-lived reso-
nances among the unbound states in a straightforward manner.

Apart from the simple ‘‘trick’’ of repeating them many times,
bound-state variational approaches are unsuitable for the com-
putation of resonances without appropriate modifications.
There are two basic routes one can take, both are based on
the regularization of the diverging resonance wave functions. In
the case of the complex absorbing potential (CAP) method, the
outgoing part of the wave function is damped by a complex
potential added to the molecular PES along the dissociative
mode(s). The CAP ensures that resonance wave functions can
be expanded in an L2 basis. A variant of the CAP methods, the
extended Tremblay–Carrington (ETC) scheme allows an almost
automatic (black-box-type) determination of rovibrational reso-
nances. Since the ETC method can be coupled to the best
general-purpose solvers of the time-independent nuclear Schrö-
dinger equation, the resulting algorithm and code is available
to compute rovibrational resonances of larger systems, perhaps
in reduced dimension, in a semi-automatic way.

The alternative complex coordinate scaling (CCS) technique
involves a complex coordinate transformation along the dis-
sociation degree of freedom. Most variants of this technique
require the availability of the Hamiltonian, including the
PES, in an analytic form, which is usually not a significant
restriction.

Variants of the SM, the CAP, and the CCS techniques have
been successfully applied by members of the Budapest group
for several small systems, such as triatomic molecules (the
strongly-bound H2

16O and H2He+), atom–diatom complexes
(Ar–NO+), diatom–diatom complexes (CO–H2 and (H2)2), and
small cationic systems (C2H2

2+ and C2H4
2+).

The scattering problem can also be solved using different
first-principles techniques. The coupled-channels (or some-
times called close-coupling) technique employs a Hermitian

Fig. 15 Calculated potential energy curves along a C–H stretching
coordinate of the planar ethylene dication, C2H4

+. The gray dotted line
shows the electronic ground state, while the blue solid line and the green
dashed line correspond to the first and second electronically excited
states, respectively. Horizontal lines represent vibrational states. See
ref. 206 for computational details.
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Hamiltonian and a coupled-channel basis corresponding to the
different quantum states of the colliding molecules and pro-
ducts. The coupled-channels equations are solved by numerical
integration. In the case of the Kohn variational method the trial
wave function, which contains both scattering basis functions
and bound-state basis functions, is optimized variationally.
Sometimes the adiabatic-bender model is applicable to simplify
the scattering problem. This is achieved by separating the
radial motion from the rotation and vibration of the colliding
molecules. Solving the scattering problem results in the scatter-
ing matrix and state-to-state integral and differential cross
sections. By analyzing the energy-dependent elements of the
scattering matrix, one can separate the contribution of the
resonances from the contribution of the background. Reso-
nances can be characterized either by the complex poles of the
scattering matrix, peaks of the integral scattering cross section,
or the sharp increase of the phase shift by p as a function of
energy. These scattering computations have been employed to
investigate the resonances in systems such as NH3–He, NH3–
H2, NO–He, NO–H2, OH–He, OH–Ne, and H2–He*. In the few
cases tried, bottom-up and top-down techniques yield the same
information about rovibrational resonances, though perhaps
only after significant effort.

Several techniques which can yield experimental information
about rotational–vibrational resonances are available. There is a
plethora of crossed-molecular-beam experiments, starting in the
1960s,207 which are able to yield detailed results about reso-
nances. Depending upon its resolution, photoelectron velocity-
map imaging spectroscopy may provide spectra with a wealth of
information about Feshbach resonances. Scattering experiments
are becoming increasingly sophisticated, as state-selective pre-
paration of reactants, state-resolved detection of products, as
well as velocity and angle resolution of both reactants and
products are more and more feasible. As the computational
tools for describing rovibrational resonances of polyatomic
molecules become ever more efficient and sophisticated, they
are expected to play an increasing role in supporting the high-
resolution spectroscopy of molecules near and above their dis-
sociation threshold, the experimental efforts in molecular
dynamics, including those induced by strong fields, as well as
ever more complex scattering experiments.

Finally, we mention that Feshbach resonances may play a
role in at present exotic applications, such as the production of
(molecular) Bose–Einstein condensates.208 As explained in the
Introduction, it is important for this application that reso-
nances in ultracold collisions can be manipulated with external
electric and/or magnetic fields. The manipulation of reso-
nances by external electric and magnetic fields is also of more
general interest, since it may open up new possibilities to steer
the outcome of reactive and non-reactive collisions, photo-
chemical reactions, unimolecular decay, etc., as shown for
model systems and realistic systems alike; see, for example,
ref. 209–213. Crossed molecular beam studies of low-energy
molecule–molecule collisions in external fields to explore these
possibilities are being prepared.214 Some related preliminary
calculations have already been performed.215–218
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P. S. Żuchowski, J. Narevicius and E. Narevicius, Nat.
Chem., 2014, 6, 332–335.

47 S. N. Vogels, J. Onvlee, S. Chefdeville, A. van der Avoird,
G. C. Groenenboom and S. Y. T. van de Meerakker, Science,
2015, 350, 787–790.

48 T. Yang, J. Chen, L. Huang, T. Wang, C. Xiao, Z. Sun,
D. Dai, X. Yang and D. H. Zhang, Science, 2015, 347, 60–63.

49 A. Bergeat, J. Onvlee, C. Naulin, A. van der Avoird and
M. Costes, Nat. Chem., 2015, 7, 349–353.

50 M. Beyer and F. Merkt, Phys. Rev. Lett., 2016, 116, 093001.
51 A. Klein, Y. Shagam, W. Skomorowski, P. S. Żuchowski,
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119 T. Köhler, K. Góral and P. S. Julienne, Rev. Mod. Phys.,
2006, 78, 1311–1361.

120 J. Zirbel, K.-K. Ni, S. Ospelkaus, J. D’Incao, C. Wieman,
J. Ye and D. Jin, Phys. Rev. Lett., 2008, 100, 143201.

121 A. Micheli, G. K. Brennen and P. Zoller, Nat. Phys., 2006, 2,
341–347.
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197 A. Vibók and G. G. Balint-Kurti, J. Phys. Chem., 1992, 96,

8712–8719.
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