
J. Chem. Phys. 154, 144306 (2021); https://doi.org/10.1063/5.0043946 154, 144306

© 2021 Author(s).

Understanding the structure of complex
multidimensional wave functions. A case
study of excited vibrational states of
ammonia
Cite as: J. Chem. Phys. 154, 144306 (2021); https://doi.org/10.1063/5.0043946
Submitted: 12 January 2021 . Accepted: 23 March 2021 . Published Online: 09 April 2021

 Jan Šmydke, and  Attila G. Császár

COLLECTIONS

Paper published as part of the special topic on Quantum Dynamics with ab Initio Potentials

ARTICLES YOU MAY BE INTERESTED IN

Modeling nonadiabatic dynamics with degenerate electronic states, intersystem crossing,
and spin separation: A key goal for chemical physics
The Journal of Chemical Physics 154, 110901 (2021); https://doi.org/10.1063/5.0039371

Energy natural orbitals
The Journal of Chemical Physics 154, 094103 (2021); https://doi.org/10.1063/5.0034810

Time-resolved photoelectron imaging of complex resonances in molecular nitrogen
The Journal of Chemical Physics 154, 144305 (2021); https://doi.org/10.1063/5.0046577

https://images.scitation.org/redirect.spark?MID=176720&plid=1401534&setID=378408&channelID=0&CID=496958&banID=520310234&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=ed5dd4029e63a2f75704dfd96619305ac85f9c8d&location=
https://doi.org/10.1063/5.0043946
https://doi.org/10.1063/5.0043946
http://orcid.org/0000-0002-5837-9725
https://aip.scitation.org/author/%C5%A0mydke%2C+Jan
http://orcid.org/0000-0001-5640-191X
https://aip.scitation.org/author/Cs%C3%A1sz%C3%A1r%2C+Attila+G
/topic/special-collections/qdab2020?SeriesKey=jcp
https://doi.org/10.1063/5.0043946
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0043946
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0043946&domain=aip.scitation.org&date_stamp=2021-04-09
https://aip.scitation.org/doi/10.1063/5.0039371
https://aip.scitation.org/doi/10.1063/5.0039371
https://doi.org/10.1063/5.0039371
https://aip.scitation.org/doi/10.1063/5.0034810
https://doi.org/10.1063/5.0034810
https://aip.scitation.org/doi/10.1063/5.0046577
https://doi.org/10.1063/5.0046577


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Understanding the structure of complex
multidimensional wave functions. A case
study of excited vibrational states of ammonia

Cite as: J. Chem. Phys. 154, 144306 (2021); doi: 10.1063/5.0043946
Submitted: 12 January 2021 • Accepted: 23 March 2021 •
Published Online: 9 April 2021

Jan Šmydke1,a) and Attila G. Császár2

AFFILIATIONS
1Department of Radiation and Chemical Physics, Institute of Physics CAS, Na Slovance 1999/2, 18221 Praha 8, Czech Republic
2MTA-ELTE Complex Chemical Systems Research Group and Laboratory of Molecular Structure and Dynamics,
Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Pázmány Péter Sétány 1/A, Hungary

Note: This paper is part of the JCP Special Topic on Quantum Dynamics with Ab Initio Potentials.
a)Author to whom correspondence should be addressed: jan.smydke@gmail.com

ABSTRACT
Generalization of an earlier reduced-density-matrix-based vibrational assignment algorithm is given, applicable for systems exhibiting both
large-amplitude motions, including tunneling, and degenerate vibrational modes. The algorithm developed is used to study the structure
of the excited vibrational wave functions of the ammonia molecule, 14NH3. Characterization of the complex dynamics of systems with
several degenerate vibrations requires reconsidering the traditional degenerate-mode description given by vibrational angular momentum
quantum numbers and switching to a symmetry-based approach that directly predicts state degeneracy and uncovers relations between
degenerate modes. Out of the 600 distinct vibrational eigenstates of ammonia obtained by a full-dimensional variational computation,
the developed methodology allows for the assignment of about 500 with meaningful labels. This study confirms that vibrationally excited
states truly have modal character recognizable up to very high energies even for the non-trivial case of ammonia, a molecule which exhibits
a tunneling motion and has two two-dimensional normal modes. The modal characteristics of the excited states and the interplay of the
vibrational modes can be easily visualized by the reduced-density matrices, giving an insight into the complex modal behavior directed by
symmetry.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0043946., s

I. INTRODUCTION

It is a common argument against sophisticated quantum-
chemical computations, such as the variational ones, which are
widely performed in the fourth age of quantum chemistry,1 that
they provide a lot of data, some in the form of wave functions,
but only limited understanding. To most chemists, an approxi-
mate characterization of the (ro)vibrational dynamics of molecular
systems requires that certain descriptors are attached to the com-
puted wave functions. These descriptors are most often quantum
numbers arising from simple models.2 Aside from the use of good
quantum numbers, the understanding of the internal structure of
multidimensional excited-state wave functions requires the use of
approximate quantum numbers. When the emphasis is on physical

meaning and interpretation, the descriptors are commonly
associated with the character of a dominant component of the given
state expanded in a particular basis set.3 For example, the 1s12s1

electronic excited state of a helium atom is distinguished by its domi-
nating 1s12s1 two-electron full configuration interaction (FCI) basis
vector, although this state also has many other non-zero FCI basis
contributions. Nevertheless, a general excited state may decompose
to more than one dominant basis vector or the composition of the
state may even be evenly distributed over the whole basis-set space,
not giving a particular vector or a selection of vectors’ significant
preference over the others.

In such ambiguous cases, the question arises naturally whether
one could still associate a given state of interest with a unique
physical meaning other than just energy and overall symmetry
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that come naturally from the quantum-chemical computation. One
may also ask whether changes in the multidimensional basis could
turn more states into those exhibiting a dominant contribution.
Such a smart transformation prescription, however, is not known
generally.

Apart from the state composition, a general and unique charac-
teristic of multidimensional excited states of quantum systems is the
number of the wave-function nodes in each of the systems’ modes
of motion. The given excited state is then associated with a set of
modal quantum numbers, regardless of the particular basis set used.
This approach proved to be a practical way to label excited rovi-
brational states of small molecules.2 As we have shown earlier4,5

for vibrational wave functions resulting from sophisticated varia-
tional computations, the individual mode excitations tend to have a
characteristic and distinguishable density by means of the reduced-
density matrices (vide infra) that are also easier to handle than a
bare multidimensional wave function. Nevertheless, the density, as
a function of coordinates, and the position of the nodes may not
always match with the underlying modal basis functions. The devi-
ation can be significant when several modes interact, and in such
cases, the bare basis-set-decomposition method may fail to char-
acterize the state. A suitable choice of the modes of motion and
the ability to count the number of nodes in each mode of compli-
cated multidimensional wave functions are key to the general and
practical characterization of excited states. It is, however, not well
understood how many states can be unambiguously assigned by this
approach.

In this paper, we examine vibrational excited states of the
ammonia molecule (14NH3), a system exhibiting nontrivial modal
structure. In particular, ammonia is a symmetric-top molecule, it
has two twofold-degenerate vibrational modes, and it exhibits a
large-amplitude internal motion (tunneling). We demonstrate that
by using a simple coordinate system that intuitively mimics the har-
monic vibrational modes of ammonia and with the help of reduced-
density matrices for reading out the number of modal nodes, we
can unambiguously assign hundreds of vibrationally excited states
of 14NH3. We compare our results to the recent state-of-the-art ro-
vibrational line and energy level list of ammonia6 that provides a
quick and fully automatic assignment of all states of interest based
on the dominant basis-set component, but the assignments may not
always be accurate.

The rest of this paper is structured as follows. Section II dis-
cusses a few theoretical aspects of the vibrational assignment pro-
cess together with the treatment of systems possessing degener-
ate modes, which is essential for the correct description of the
vibrations of ammonia. Section III describes the technical details
of variational vibrational wave-function computations. Section IV
shows, explains, and discusses the main results of this paper. The
most important conclusions of the present study are summarized in
Sec. V.

II. THEORY
A. Multidimensional structure of vibrational states

Understanding the dynamical behavior of multidimensional
quantum systems may start with a model in which individual degrees

of freedom (dof) in the ground state are least coupled or can be
considered semi-independent. A well-known example from another
field is the Hartree–Fock approximation7 of electronic-structure
theory, where the individual electrons are moving independently in
the averaged field of the other electrons and the nuclei. This model is
necessarily far from being perfect; the motion of the electrons is not
truly independent as each electron contributes to the self-consistent
field by which all the electrons are driven. Nevertheless, the individ-
ual one-electron functions, the so-called orbitals, have been playing,
for many decades, a crucial role in the qualitative understanding of
the structure and reactivity of molecules, and they also form the
foundation of correlated wave-function expansions of the ground
and of the excited electronic states.

Similarly, the harmonic oscillator model8 of the vibrations of
polyatomic molecules constructs the ground and excited vibrational
states by combining independent (the so-called normal) modes of
vibrations, as can be seen from the harmonic oscillator energy
formula for the ith vibrationally excited state,

Ei =∑
m
v
(i)
m εm + ZPVE, (1)

where the index m runs over all vibrational modes, εm and v
(i)
m are

the energy and the excitation quantum number of the mth mode,
and ZPVE stands for zero-point vibrational energy. The modes are
linear combinations of all the nuclear dofs and are made indepen-
dent due to the quadratic nature of the vibrational potential in the
harmonic approximation. The decomposition of vibrational states
into modes of the harmonic oscillator model is still the de facto stan-
dard description of molecular vibrations, and it is generally accepted
and used by practitioners of the field.

Apart from the anharmonic nature of potential energy sur-
faces (PESs),9–11 which results in mode coupling and considerable
shifting of the harmonic energy levels, when studying higher vibra-
tionally excited states or when dealing with semi-rigid systems with
several shallow potential energy wells, the strategy of combining
the independent normal modes, constrained to a single minimum
by definition, quickly becomes inappropriate. In some cases, it is
preferable to replace the normal-mode description by a local-mode
treatment, for example, for the vibrations of the heavier congeners
of water.12 For semi-rigid molecules, splitting of energy levels due
to tunneling between symmetrically equivalent configurations (such
as the two minima of ammonia linked by an umbrella-like nuclear
motion) makes the spectra more complex and the normal-mode
picture inappropriate, especially for higher excitations.

If the model of a normal-mode combination fails quantita-
tively and even qualitatively for a general polyatomic system, the
question arises whether it is still reasonable and possible to char-
acterize highly excited multidimensional wave functions by means
of combinations of “modes.” No matter what the modal degrees
of freedom are and how strongly coupled they become in various
states, the modes should retain a more-or-less intact character for
portions of the energy spectrum so that they are clearly distinguish-
able and the modal understanding of the excited states remains
meaningful.

Due to their convenience, modal combinations are routinely
used in the qualitative description of vibrational states, although the
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assignment is often cumbersome and tends to become inaccurate as
the excitation increases. There are a variety of techniques of vibra-
tional assignment. They range from energy decomposition, based on
or similar to Eq. (1), finite basis representation (FBR)13 and other2

decomposition schemes based on the wave-function overlap with
modal basis functions and similar yet conceptually different vibra-
tional configuration interaction vector decompositions,14 and var-
ious expectation-value-based2 or even perturbative approaches15,16

to direct inspection of two-dimensional (2D) cuts of vibrational
wave functions. The last technique mentioned can provide a valuable
visual insight into the nodal structure of vibrations and the interplay
of modes. By counting the number of wave-function nodes in each
of the vibrational modes, one can directly assign modal quantum
numbers that characterize the polyatomic vibrational state. Practi-
cally, however, this approach has a limited range of applicability, and
it is mainly useful to states with pure bending or stretching char-
acter and only to low-lying states.17,18 For states excited by more
than just a few quanta or states with strongly coupled modes, the
nodal information from the 2D plots is mostly not legible.4,19 More-
over, the number of 2D plots that needs to be inspected rises as
(
n
2), where n stands for the number of vibrational degrees of free-

dom, which is not easy to handle manually even for a few-atomic
system.

In our recent study about the nuclear dynamics of the vinyl
radical,4 we came up with an alternative way of visualizing the vibra-
tional wave-function modes by means of reduced-density matrices
(RDMs) along selected internal coordinates. While this was not the
first use of RDM in the context of molecular vibrations, we extended
its applicability much further than a simple 2D visual characteriza-
tion tool.20 Our RDM approach proved to be advantageous over the
use of 2D wave-function cuts in several respects. The nodal struc-
ture of a particular vibrational mode is far more legible with RDM
than with wave-function cuts, and as a result, many more states can
be assigned. In contrast to wave-function cuts, RDMs need consid-
erably less data generated and inspected. Moreover, RDMs do not
depend on a reference vibrational configuration. It also turned out
that each modal excitation exhibited a peculiar density pattern that
could be used for identifying modal excitations in a semi-automatic
way; this has already been successfully applied to the assignment of
many vibrational states of the water molecule.5 Although the RDMs
of particular modal excitations tend to retain their characteristic
shapes throughout a large portion of the energy spectrum, heavily
coupled modes can deviate from the regular RDM shapes signifi-
cantly. Nevertheless, such cases tend to be still well assignable by
using a simple logic, and their irregular density shape, then, serves as
a specific pattern for similarly coupled modes in other excited states.
By using various RDM types, one can decode complicated vibra-
tional structures from different contexts, which helps distinguishing
states that look similar, as demonstrated on the vibrational states of
ammonia during this work.

Since the RDM technique proved successful in correctly iden-
tifying modal excitations for a considerable number of states, we
can conjecture that the view of vibrationally excited states as virtu-
ally decomposable to individually excited vibrational modes is truly
meaningful for a much higher number of states than suggested by
other approaches. We do not imply that there is a clear energy
decomposition into modal contributions, but rather that for a given
set of vibrational modes, the excited state can be decomposed into

individual, distinguishable mode excitations with the characteristic
nodal structure. In contrast to the method of wave-function overlap
with modal basis functions, which can yield incorrect modal quan-
tum numbers, the RDM approach allows for a direct visual mode
assessment even in cases when the modal density shape strongly
deviates from the basis functions.

It needs to be stressed that the success of the modal description
may heavily depend on the clever definition of the vibrational modes
and the underlying coordinate system. In the molecules studied
so far, we associated the vibrational modes with intuitively chosen
coordinates, expecting particular vibrational motions. Even though
they were successful choices, it is not yet clear how to select the most
suitable set of coordinates systematically and whether a completely
different set of modes/coordinates would lead to equivalent or infe-
rior results and would still provide an intuitive physical insight.
One question, going beyond the scope of this work, thus, remains
open: How far one can reach in the characterization of a vibrational
spectrum by using just a single set of vibrational modes?

B. Reduced-density matrices and vibrational labeling
First, let us briefly summarize the definitions of various types

of reduced-density matrices that come handy for inspecting multidi-
mensional wave functions. Suppose that we have an N-dimensional
vibrational wave function,

∣Ψvib⟩ ≡ Ψ(q1, . . . , qN). (2)

Then, the one-mode reduced-density matrix (1RDM) is defined as

Γ1(qi′, qi) =∫ dq1 . . .dqi−1dqi+1 . . .dqN

×Ψ∗(q1, . . . , qi−1, qi′, qi+1, . . . , qN)
×Ψ(q1, . . . , qi−1, qi, qi+1, . . . , qN). (3)

We can view the 1RDM as a two-dimensional quantity for a sin-
gle vibrational coordinate qi, obtained after integrating out all the
remaining vibrational degrees of freedom. Taking only the diag-
onal elements of 1RDM, we end up with the diagonal one-mode
reduced-density matrix,

ΓD
1 (qi) ≡ Γ1(qi, qi) =∫ dq1 . . .dqi−1dqi+1 . . .dqN

×Ψ∗(q1, . . . , qN)Ψ(q1, . . . , qN), (4)

which stands as a true wave-function density for the given coordi-
nate qi.

Similarly, one can define a two-mode reduced-density matrix
(2RDM) as a four-dimensional quantity,

Γ2(qi′, qj′, qi, qj)

= ∫ dq1 . . .dqi−1dqi+1 . . .dqj−1dqj+1 . . .dqN

×Ψ∗(q1, . . . , qi−1, qi′, qi+1, . . . , qj−1, qj′, qj+1, . . . , qN)
×Ψ(q1, . . . , qi−1, qi, qi+1, . . . , qj−1, qj, qj+1, . . . , qN). (5)

J. Chem. Phys. 154, 144306 (2021); doi: 10.1063/5.0043946 154, 144306-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The diagonal elements of 2RDM can be viewed as a true two-
dimensional density,

ΓD
2 (qi, qj) ≡ Γ2(qi, qj, qi, qj)

= ∫ dq1 . . .dqi−1dqi+1 . . .dqj−1dqj+1 . . .dqN

×Ψ∗(q1, . . . , qN)Ψ(q1, . . . , qN). (6)

We suggest to look at this quantity as a convenient resolution of
the ΓD

1 (qi) density in one additional dimension. ΓD
2 s greatly improve

the understanding of the characteristics of the vibrational states, and
they are also necessary for the description of degenerate or otherwise
coupled vibrational modes.

In the same manner, one can construct even higher-order
reduced-density matrices. The high-rank tensor quantities are, how-
ever, difficult to visualize, and their storage and manipulation can
quickly become intractable. It is, therefore, preferable to restrict the
analysis to low-order RDMs, whenever possible. This recommenda-
tion was followed in our previous studies.4,5 Nevertheless, for the
present study, we found it necessary to also use three-dimensional
ΓD

3 (qi, qj, qk) diagonal densities,

ΓD
3 (qi, qj, qk) ≡ Γ3(qi, qj, qk, qi, qj, qk)

= ∫ dq1 . . .dqi−1dqi+1 . . .dqj−1dqj+1 . . .

× dqk−1dqk+1 . . .dqN
×Ψ∗(q1, . . . , qN)Ψ(q1, . . . , qN). (7)

In our study of the vinyl radical,4 we used only the diagonal
densities ΓD

1 (qi) and ΓD
2 (qi, qj), and the assignment of the states

was performed exclusively by their visual assessment. It was never-
theless a step forward compared to direct wave-function inspection
as the two-dimensional wave-function cuts were very complex and
extremely confusing, except for the few lowest-energy states. With
the help of the densities, which effectively integrate out misleading
structural details originating from other vibrational modes, we could
clearly count the nodes in any vibrational mode as strongly pro-
nounced kinks in the density profiles. Furthermore, we observed that
each individual mode excitation had a very characteristic density
shape, which did not change in the states of the same modal quan-
tum number. Only states with expected strong coupling between
particular modes exhibited deviations from the otherwise very regu-
lar density pattern. These results were, at the same time, surprising
and encouraging for us to pursue the RDM technique further. Not
only were we able to assign an order of magnitude more vibrational
states with relative ease and confidence than with other methods,
but it also suggested that the modal understanding of the vibra-
tional structure is a phenomenon valid further than only at the small
displacements around local minima and that the same modal char-
acter is retained even at higher-energy states in which interactions
between modes can take place.

In Ref. 5, we further investigated the regular shapes of the
excited vibrational modes and suggested a semi-automatic assign-
ment procedure based on comparing the modal density shapes by
means of overlap integrals. In our study of the water molecule,5

about 200 vibrational states were assigned almost automatically,
mostly without the need of visually checking the density plots. For
water, a molecule with an Abelian molecular-symmetry (MS) group,
C2v(M),21 and free of vibrational tunneling, we could also make use
of a simple build-up principle that helped selecting the appropriate
assignment out of several possibilities. For systems exhibiting tun-
neling splittings, the ordering of states is less “strict” (it is common
that the tunneling splitting is large enough that the + and − states
of the same origin enclose several other energy levels in between
and there is also the possibility of exchanging the energy order of
the + and − states), and one may not generally rely on such a sim-
ple automatic approach. In our study on water, we further realized
that the full Γ1(qi′, qi) matrix can actually reveal the true nodal
structure of a particular mode by visible changes in sign. This is a
stronger node indicator than just the variation of diagonal density
and can be used complementarily for cases with barely recognizable
nodes.

In the present study, we are focusing on the ammonia molecule,
14NH3, which structurally is also a simple but dynamically consid-
erably more challenging system than water, as ammonia exhibits
tunneling and, at the same time, possesses two doubly degener-
ate vibrational modes. The obstacles hindering the assignment of
the states arising from tunneling have been explained above. Next,
we turn our attention to issues related to excitations that involve
degenerate vibrational modes.

C. Excitations of a single twofold degenerate
vibrational mode

Excitations of a twofold degenerate mode are traditionally
described by a two-dimensional (2D) isotropic harmonic oscillator
(TDIHO) model.21 In that model, one transforms the two vibra-
tional quantum numbers (v1 v2) (each of which corresponds to one
of the two equivalent degenerate normal-coordinate components)
into (v l), where v has the meaning of the total number of quanta in
the 2D harmonic oscillator and l is the vibrational angular momen-
tum quantum number describing the angular distribution of the 2D
wave function. For a given number of quanta v, the wave function is
(v + 1)-fold degenerate, with l values ranging v, v − 2, . . ., −v.

The TDIHO model perfectly fits a molecule such as acetylene,
C2H2.22 Nevertheless, considering the high multiplicity (v + 1) of the
TDIHO associated angular momentum operator irreducible vector
spaces, we can see that the group of the TDIHO model is neces-
sarily superior to groups of other molecular Hamiltonians, which
have mostly singly, doubly, or triply degenerate irreducible rep-
resentations (irreps). Hence, the TDIHO-anticipated (v + 1)-fold
degeneracy breaks for most molecular Hamiltonians and results in
a decomposition of the symmetric product of the E representation
with itself, denoted as [E]v ,21 where the E irrep belongs to a group
of a particular molecular Hamiltonian and not to the group of the
TDIHO model. For example, in the C3v(M) molecular-symmetry
(MS) group,21 the vibrational states having two quanta in the E
vibrational mode decompose as

[E]2 ≡ [E⊗ E] = A1 ⊕ E, (8)

and analogously for the D3h(M) group (see Table I). This immedi-
ately shows the breaking of the threefold degeneracy expected from
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TABLE I. Decomposition of the symmetric product for a few powers of [E]v under
C3v (M) and [E′]v and [E′′]v under the D3h(M) molecular-symmetry groups.

v C3v(M): [E]v D3h(M): [E′]v D3h(M): [E′′]v

2 A1 ⊕ E A′1 ⊕ E′ A′1 ⊕ E′

3 A1 ⊕ A2 ⊕ E A′1⊕ A′2⊕ E′ A′′1 ⊕ A′′2 ⊕ E′′

4 A1 ⊕ 2 E A′1⊕ 2 E′ A′1⊕ 2 E′

5 A1 ⊕ A2 ⊕ 2 E A′1⊕ A′2⊕ 2 E′ A′′1 ⊕ A′′2 ⊕ 2E′′

6 2 A1 ⊕ A2 ⊕ 2 E 2 A′1⊕ A′2⊕ 2 E′ 2 A′1⊕ A′2⊕ 2 E′

7 A1 ⊕ A2 ⊕ 3 E A′1⊕ A′2⊕ 3 E′ A′′1 ⊕ A′′2 ⊕ 3E′′

the TDIHO theory into a single A1 and a single E degenerate level.
Therefore, we suggest that it is more appropriate to label single
degenerate-mode excitations (v α) instead of (v ± l), where α denotes
the appropriate irrep. Thus, for the aforementioned states, the labels
would convert as

(2 ± 2)→ (2 E) and (2 0)→ (2 A1). (9)

It is worth noting that this symmetric product decomposition treat-
ment of degenerate systems is not confined to degenerate harmonic
oscillator models but is valid for degenerate anharmonic oscillators
as well.

Although the suggested (v α) labeling scheme may seem merely
as a different notation to the (v l) quantum numbers, it needs to be
emphasized that

1. the information about the actual irrep (and degeneracy) is not
directly available from the l quantum number in a general case,
and

2. in Sec. II D, we explain that for systems with more than one
degenerate mode (such as ammonia), labeling the individual
modes by l does not generally make sense as it could lead to
incorrect symmetry and it is also necessary to deal with the
total irrep of all the excited degenerate modes, for which the
knowledge of the α irreps is inevitable.

Because the decomposition of the symmetric product is not as
straightforward as that of the ordinary direct product, in Table I, we
recall the decomposition for a few powers of [E]v under C3v(M) and
[E′]v and [E′′]v under the D3h(M) MS groups. Note that there are a
number of publications detailing the use and treatment of symmetric
(and antisymmetric) products in theoretical chemistry.21,23–25

D. Excitations of two twofold-degenerate
vibrational modes

Care must be exercised when two degenerate modes are excited
simultaneously. In the ammonia molecule, for example, there are
two E′ vibrational modes under the D3h(M) group. Their simulta-
neous excitation by v3 and v4 quanta, respectively, leads to states
decomposing as

[E′]v3 ⊗ [E′]v4 =

irreps

∑
i

ci Γi, (10)

TABLE II. Decomposition of simultaneous excitation of the two degenerate vibrational
modes of ammonia for both C3v (M) and D3h(M) symmetry models.

v3 v4 C3v(M): [E]v3 ⊗ [E]v4 D3h(M): [E′]v3 ⊗ [E′]v4

1 1 A1 ⊕ A2 ⊕ E A′1 ⊕ A′2 ⊕ E′

1 2 A1 ⊕ A2 ⊕ 2 E A′1 ⊕ A′2 ⊕ 2 E′

1 3 A1 ⊕ A2 ⊕ 3 E A′1 ⊕ A′2 ⊕ 3 E′

1 4 2 A1 ⊕ 2 A2 ⊕ 3 E 2 A′1 ⊕ 2 A′2 ⊕ 3 E′

1 5 2 A1 ⊕ 2 A2 ⊕ 4 E 2 A′1 ⊕ 2 A′2 ⊕ 4 E′

2 2 2 A1 ⊕ A2 ⊕ 3 E 2 A′1 ⊕ A′2 ⊕ 3 E′

2 3 2 A1 ⊕ 2 A2 ⊕ 4 E 2 A′1 ⊕ 2 A′2 ⊕ 4 E′

2 4 3 A1 ⊕ 2 A2 ⊕ 5 E 3 A′1 ⊕ 2 A′2 ⊕ 5 E′

3 3 3 A1 ⊕ 3 A2 ⊕ 5 E 3 A′1 ⊕ 3 A′2 ⊕ 5 E′

where Γi stands for the ith irreducible representation of the D3h(M)
group. For other systems possessing multiple degenerate dofs under
different symmetry groups and different excited combinations of
degenerate irreps, the generalization of Eq. (10) is straightforward.
For the combination of two (or more) degenerate modes, the result-
ing multimode excitation has to be labeled both by the resulting
irrep and by all the excitation quantum numbers of individual con-
tributing degenerate modes such as (v3 v4 α), where α stands for the
particular irrep. In Table II, we provide decompositions of several
excited combinations of the two degenerate modes of ammonia in
both the C3v(M)- and the D3h(M)-symmetry models. An excitation
labeled (1 2 1E′) would mean a state formed by v3 = 1 quantum in
one E′ degenerate mode and v4 = 2 quanta in the other E′ degener-
ate mode, making together the E′ irrep. Since there are two E′ irreps
coming from the v3 = 1 and v4 = 2 excitations, we need to give the
E′ irrep an additional index, 1 (see Table II).

In principle, one could label the individual modes with their
symmetric-product labels (v α), but it remains inevitable to pro-
vide the resulting irrep label. Otherwise, the labeling would not be
unique. This is apparent from Table III for the v3 = 1 and v4 = 2
states, where we compare our suggested labeling scheme, which is
unique, with the combination of individual mode labels, which is
ambiguous. However, one cannot use a particular component of
the degenerate irrep for labeling the individual modes as it would
not generally result in a pure irrep of the given symmetry group.
That would be the same mistake as constructing a two-electron sin-
glet spin state as a simple product of the α and β spin functions
and ignoring the proper Clebsch–Gordan expansion24 that leads

TABLE III. An example showing the uniqueness of the newly suggested labeling
scheme for excited combinations of degenerate modes, in contrast to the ambigu-
ous use of individual degenerate mode labels for the v3 = 1 and v4 = 2 excitation
numbers within the C3v (M) symmetry model.

(v3 v4 α) (v3 α3) (v4 α4)

(1 2 A1) (1 E) (2 E)
(1 2 A2) (1 E) (2 E)
(1 2 1E) (1 E) (2 A1)
(1 2 2E) (1 E) (2 E)
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to the well-known 1
√

2
(αβ − βα) combination. The appropriate

Clebsch–Gordan expansion of the resulting vibrational state in the
direct-product space of ν3 and ν4 modes generally reads

∣v3 v4 Γi j⟩ = ∑
αkβk
∣[E′]v3 αk⟩ ∣[E

′
]
v4 βk⟩ C

ij
αkβk
(v3, v4), (11)

where |v3 v4 Γi j⟩ is the jth [j = 1. . .ci; see Eq. (10)] state of Γi
irrep formed by the v3-quanta-excited ν3 mode and the v4-quanta-
excited ν4 mode [see Eq. (10)], ∣[E′]v3 αk⟩ is the kth component of
the αth irrep produced from the v3-fold symmetric product of the
ν3th E′ irrep with itself (note that for one-dimensional α irrep, the
index k is just 1), ∣[E′]v4 βk⟩ is analogous, and Cij

αkβk
(v3, v4) is the

corresponding Clebsch–Gordan coefficient.
In contrast to the traditional use of vibrational angular momen-

tum quantum number pairs, (v l), the labeling scheme suggested
above directly provides the symmetry and the degeneracy of the
resulting states. Moreover, for reasons explained in the previous
paragraph and directed by Eq. (11), the labeling with a simple prod-
uct of (v3 l3) and (v4 l4) modal quantum numbers, which is common
for the vibrational assignment of systems such as ammonia, cannot
generally lead to the proper state symmetry. Nevertheless, such a
labeling still remains unique, and it is sufficient in that sense.

III. COMPUTATIONAL DETAILS
A. Internal coordinates and embedding

The vibrational motion of the ammonia molecule is parameter-
ized, as shown in Figs. 1 and 2. Before shifting the center of nuclear
mass into the origin of the coordinate system, the coordinates of the
individual atoms read as

FIG. 1. Vibrational parameters r1, r2, r3, and ϑ of the ammonia molecule with the
xz plane shaded.

FIG. 2. The β1 and β2 vibrational parameters of ammonia shown in the xy
projection.

x y z
N 0 0 0
H1 r1 sin ϑ 0 r1 cos ϑ
H2 r2 sin ϑ cosβ1 r2 sin ϑ sinβ1 r2 cos ϑ
H3 r3 sin ϑ cosβ2 −r3 sin ϑ sinβ2 r3 cos ϑ

. (12)

The actual internal coordinates are symmetry adapted in the
radial parameters with respect to permutations of the hydrogen
atoms, which gives q1 = r1 + r2 + r3, q2 = 2r1 − r2 − r3, q3
= r2 − r3, q4 = ϑ, q5 = β1, and q6 = β2. Such an internal-coordinate
system has been chosen to mimic the harmonic oscillator-like vibra-
tional modes. The mapping between the internal coordinates and the
associated modes is given in Table IV.

B. Variational computations
Variational computation of the vibrational states of 14NH3

has been performed using our in-house nuclear-motion code
GENIUSH,26,27 where the abbreviation stands for a general (GE),
numerical (N) rovibrational code employing curvilinear inter-
nal (I) coordinates and user-specified (US) Hamiltonian (H).
Altogether, 600 vibrational states of 14NH3 have been com-
puted on a direct-product grid utilizing the parameters shown in
Table V. The individual coordinates are represented by Hermite- or

TABLE IV. Vibrational modes with the associated internal coordinates and symme-
tries.

Mode Coords. Corresponding normal mode Symmetry

ν1 q1 Symmetric stretch A1
ν2 q4 Umbrella motion A1
ν3 q2, q3 Antisymmetric stretch E
ν4 q5, q6 Antisymmetric bend E
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TABLE V. Parameters of individual internal coordinates in the computational direct-product grid. The radial values are in bohr,
and the angles are in degrees.

Number of Number of PO-DVR
Coord. Min Max Type DVR points PO-DVR points Ref. Conf.

q1 4.40 7.55 Hermite 300 10 5.6373
q2 −1.80 2.10 Hermite 300 10 0.0000
q3 −1.20 1.20 Hermite 300 10 0.0000
q4 40 140 Legendre 101 48 90.0
q5 70 179 Hermite 23 . . . 120.0
q6 70 179 Hermite 23 . . . 120.0

Legendre-type discrete-variable-representation (DVR)28,29 grid
points, four of them further reduced by the potential-optimized
(PO-DVR) procedure with a planar reference molecular configura-
tion. The large-scale eigenvalue problem is solved by the iterative
Lanczos algorithm.30

The spectroscopic potential NH3-Y201031 of Yurchenko and
co-workers has been employed during the nuclear-motion compu-
tations. The masses of the hydrogen and nitrogen nuclei were set to
mH = 1.007 825 u and mN = 14.003 074 u, respectively.

IV. RESULTS, ANALYSIS, AND DISCUSSION

During this study, altogether, 600 vibrational states of ammonia
have been computed and the majority of them assigned. A concise
comparison of our results to the recently published CoYuTe6 line
list is reported in the supplementary material. A selection of states
relevant for this discussion is shown in Table VI. The actual com-
parison is made only after the first two subsections, which discuss the
density structure of the computed excited states with the associated

TABLE VI. Comparison of vibrational states from the CoYuTe6 list with the results of this work. The energy level ordering is
that given by the CoYuTe list. Indices of the states provided by the CoYuTe list and indices of the computed eigenstates of
this study are also shown. The excitation energies are given as wavenumbers (cm−1) with respect to the vibrational ground
state. The zero-point vibrational energy (ZPVE) computed in this study is 7430.28 cm−1. The labels are [n1, n2 p, n3 n4
α], and the CoYuTe labels also include the (l3 l4) quantum numbers (see the text for details). The molecular-symmetry (MS)
group used is D3h(M). The two components of the degenerate E′ and E′′ states of this work are distinguished by + and
− subscripts.

CoYuTe This work

Level Index E Label Index E Label

1 1 0.00 [0, 0+, 0 0 A′1(0 0)] 1 0.00 [0, 0+, 0 0 A′1]
2 7779 0.79 [0, 0−, 0 0 A′′2 (0 0)] 2 0.79 [0, 0−, 0 0 A′′2 ]
3 2 932.43 [0, 1+, 0 0 A′1(0 0)] 3 932.48 [0, 1+, 0 0 A′1]
4 7780 968.12 [0, 1−, 0 0 A′′2 (0 0)] 4 968.13 [0, 1−, 0 0 A′′2 ]
5 3 1597.48 [0, 2+, 0 0 A′1(0 0)] 5 1597.50 [0, 2+, 0 0 A′1]
6 3249 1626.27 [0, 0+, 0 1 E′ (0 1)] 6 1626.20 [0, 0+, 0 1 E′+]

7 1626.20 [0, 0+, 0 1 E′−]
7 9447 1627.37 [0, 0−, 0 1 E′′ (0 1)] 8 1627.29 [0, 0−, 0 1 E′′+ ]

9 1627.29 [0, 0−, 0 1 E′′−]
8 7781 1882.18 [0, 2−, 0 0 A′′2 (0 0)] 10 1882.11 [0, 2−, 0 0 A′′2 ]
10 3250 2540.52 [0, 1+, 0 1 E′ (0 1)] 12 2540.40 [0, 1+, 0 1 E′+]

13 2540.40 [0, 1+, 0 1 E′−]
14 5 3215.95 [0, 0+, 0 2 A′1(0 0)] 19 3215.75 [0, 0+, 0 2 A′1]
16 3252 3240.16 [0, 0+, 0 2 E′ (0 2)] 21 3240.13 [0, 0+, 0 2 E′+]

22 3240.14 [0, 0+, 0 2 E′−]
20 3253 3443.63 [0, 0+, 1 0 E′ (1 0)] 27 3443.45 [0, 0+, 1 0 E′+]

28 3443.54 [0, 0+, 1 0 E′−]
38 3258 4799.22 [0, 0+, 0 3 E′ (0 1)] 55 4799.12 [0, 0+, 0 3 E′+]

56 4799.12 [0, 0+, 0 3 E′−]
40 1825 4840.89 [0, 0+, 0 3 A′2(0 3)] 60 4842.09 [0, 0+, 0 3 A′2]
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TABLE VI. (Continued.)

CoYuTe This work

Level Index E Label Index E Label

41 12 4841.55 [0, 0+, 0 3 A′1(0 3)] 59 4841.33 [0, 0+, 0 3 A′1]
42 6482 4842.96 [0, 0−, 0 3 A′′1 (0 3)] 62 4844.01 [0, 0−, 0 3 A′′1 ]
43 7788 4843.36 [0, 0−, 0 3 A′′2 (0 3)] 61 4842.48 [0, 0−, 0 3 A′′2 ]
47 1826 5052.02 [0, 0+, 1 1 A′2(1 1)] 68 5051.17 [0, 0+, 1 1 A′2]
48 3260 5052.60 [0, 0+, 1 1 E′ (1 1)] 70 5052.36 [0, 0+, 1 1 E′+]

71 5052.37 [0, 0+, 1 1 E′−]
52 14 5067.78 [0, 0+, 1 1 A′1(1 1)] 74 5069.62 [0, 0+, 1 1 A′1]
85 20 6348.84 [0, 2+, 0 3 A′1(0 3)] 124 6341.36 [0, 2+, 0 3 A′1]
88 21 6356.07 [0, 2+, 0 3 A′1(0 3)] 128 6354.33 [0, 0+, 0 4 A′1]
Note: CoYuTe misassignment; see level 85

101 3274 6608.82 [1, 0+, 1 0 E′ (1 0)] 148 6607.21 [1, 0+, 1 0 E′−]
149 6607.55 [1, 0+, 1 0 E′+]

103 24 6650.82 [0, 0+, 1 2 A′1(1 2)] 152 6647.32 [0, 0+, 1 2 A′1]
104 1830 6650.91 [0, 0+, 1 2 A′2(1 2)] 154 6650.66 [0, 0+, 1 2 A′2]
108 3275 6666.07 [0, 0+, 1 2 E′ (1 2)] 156 6666.82 [0, 0+, 1 2 1E′+]

157 6666.88 [0, 0+, 1 2 1E′−]
109 3276 6677.43 [1, 0+, 1 0 E′ (1 0)] 162 6676.34 [0, 0+, 1 2 2E′+]

163 6676.60 [0, 0+, 1 2 2E′−]
Note: CoYuTe misassignment; see level 101

173 37 7860.33 [0, 2+, 0 4 A′1(0 0)] 252 7834.07 [0, 2+, 0 4 A′1]
Note: Noticeably far lower energy in this work; see also level 175

175 3292 7875.62 [0, 2+, 0 4 E′ (0 2)] 255 7852.87 [0, 2+, 0 4 1E′+]
256 7853.15 [0, 2+, 0 4 1E′−]

Note: Noticeably far lower energy in this work; see also level 173

195 1836 8135.74 [1, 0+, 1 1 A′2(1 1)] 289 8131.49 [1, 0+, 0 3 A′2]
Note: CoYuTe misassignment; see level 222

200 1837 8174.12 [0, 0+, 1 3 A′2(1 1)] 300 8175.03 [0, 0+, 1 3 A′2]
215 9496 8261.26 [0, 2−, 0 4 E′′ (0 2)] 314 8246.27 [0, 2−, 0 4 1E′′+ ]

315 8246.56 [0, 2−, 0 4 1E′′−]
Note: Noticeably far lower energy in this work

222 1839 8285.96 [0, 0+, 1 3 A′2(1 1)] 333 8283.76 [1, 0+, 1 1 A′2]
Note: CoYuTe misassignment; see level 200

234 3309 8423.94 [1, 4+, 0 1 E′ (0 1)] 347 8418.16 [1, 4+, 0 1 E′−]
348 8418.23 [1, 4+, 0 1 E′+]

271 9510 8937.31 [1, 4−, 0 1 E′′ (0 1)] 413 9013.63 [1, 4−, 0 1 E′′−]
415 9013.74 [1, 4−, 0 1 E′′+ ]

Note: Noticeably far higher energy in this work

328 7835 9436.75 [1, 0−, 0 4 A′′2 (0 0)] 487 9415.74 [0, 0−, 0 6 1A′′2 ]
Note: CoYuTe misassignment

peculiarities of the ammonia molecule (Sec. IV A) and the actual
assignment process (Sec. IV B).

In this study, we use the following notation for labeling the
ammonia vibrational states: [n1, n2 p, n3 n4 α], where n1, n2, n3,

and n4 are the number of quanta in the respective vibrational modes
(see Table IV), the parity p is either “+” or “−,” reflecting the
inversion symmetry of the molecule, and it is associated with the
umbrella-motion-like coordinate q2, while α is the resulting irrep [in
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the D3h(M) group] of the (ν3 ν4) pair of degenerate modes. Labels
in the CoYuTe list are in addition provided with the vibrational
angular momentum quantum numbers l3 and l4, which we place in
parentheses as the last descriptor of the full label.

At this point, we need to clarify the distinction between the
terms state and energy level, terms we extensively use in this sec-
tion. In this context, the meaning of these terms cannot be freely
interchanged. By an energy level, we mean a particular eigenvalue
of the Hamiltonian operator, no matter whether it is degenerate or
not. However, the states are attributed to particular eigenvectors of
the Hamiltonian, that is, one degenerate level corresponds to several
states. Since the GENIUSH code that we employ in the computation
of the Hamiltonian eigenstates cannot make full use of symmetry,
the resulting eigenstates do not have perfectly degenerate numeri-
cal values for the eigenenergies. Thus, we provide two energy val-
ues, together with two eigenstates, for a single degenerate level. The
CoYuTe list, by contrast, provides only one value for each energy
level.

A. Structure of the vibrational states of ammonia
It may seem straightforward to represent the individual vibra-

tional modes of 14NH3 by the following density matrices: ν1 as
Γ1(q1

′, q1), ν2 as Γ1(q4
′, q4), ν3 as ΓD

2 (q2, q3), and ν4 as ΓD
2 (q5, q6).

The first ten states, indeed, are concisely described this way, as
shown in Fig. 3, where states are in rows and the columns corre-
spond to the various density matrices. For the ground state, state No.
1, the density is concentrated in a simple area around the equilib-
rium geometry. There are two equivalent energy minima on the PES
of 14NH3 related by the inversion symmetry operation and accessed
mutually by tunneling via the umbrella-motion-like coordinate q4.
This is why both minima are populated in the Γ1(q4

′, q4) plot; see
the two red areas on the bottom-left to upper-right diagonal. The
other two populated areas (on the upper-left to bottom-right diago-
nal), representing the cross-terms of the RDM [Eq. (3)], correspond
to a product of the wave function in one minimum with the wave
function in the other minimum. Comparing plots of the first two
states, which differ only in the sign of these two cross-term areas,
we can deduce that the ground state has the same wave-function
sign in both minima and has thus “+” symmetry with respect to
the inversion operation. State No. 2 changes the wave-function sign
between the two minima, and it is thus assigned with the “−” sym-
metry label. In states Nos. 3 and 4, we can see a single wave-function
node in each of the two minima, suggesting that the ν2 mode is
singly excited. From the symmetry of the sign distribution in the
Γ1(q4

′, q4) density plot, we can easily deduce “+” symmetry for state
No. 3 and “−” symmetry for state Nos. 4. State 5 is doubly excited
in ν2 and has “+” symmetry, and its “−” partner is state No. 10.
States Nos. 6 and 7 are degenerate, singly excited in mode ν4, with
“+” symmetry. Their complementary “−” states are Nos. 8 and 9,
respectively. One should note that the ΓD

2 (q5, q6) densities might
more naturally be functions of the q5 + q6 and q5 − q6 coordinate
combinations.

Figure 4 shows another selection of relatively simple states
worth commenting on for an improved understanding of higher-
energy states. State No. 12 is a combination of a single ν2 mode
excitation with “+” symmetry and a single ν4 mode excitation (one
of its degenerate components), as can be deduced by comparing the

FIG. 3. First ten vibrational states of ammonia (rows) depicted for each of its vibra-
tional modes (columns) by an appropriate two-dimensional reduced-density matrix.
First of the two dimensions corresponds to the vertical axis of the plots, while the
other dimension corresponds to the horizontal axis. The stretching coordinates
q1−3 use atomic units, and the bending coordinates q4−6 use degrees. Scale of
the densities is shown by the color boxes underneath.
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FIG. 4. Selected vibrational states of ammonia (rows) depicted for each of its vibra-
tional modes (columns) by an appropriate two-dimensional reduced-density matrix.
First of the two dimensions corresponds to the vertical axis of the plots, while the
other dimension corresponds to the horizontal axis. The stretching coordinates
q1−3 use atomic units, and the bending coordinates q4−6 use degrees. Scale of
the densities is shown by the color boxes underneath.

densities of states Nos. 3 and 6. It turns out that for the vast majority
of cases, the excitation structure of the states can be easily deduced
in the same way by comparing shapes of the individual mode RDMs.
States Nos. 19, 21, and 22 correspond to the doubly excited ν4 mode.
The threefold degeneracy of the TDIHO model is split under the
D3h(M) MS group into the A′1 irrep of state No. 19 and the dou-
bly degenerate E′ irrep of states Nos. 21 and 22 (see Table I). States
Nos. 27 and 28 are degenerate singly excited ν3 modes, and one can
note that each of the E′ irrep components is already well described
by the single internal coordinate, in contrast to the excited ν4 mode
commented above. The four states Nos. 55, 56, 59, and 60 repre-
sent the triply excited ν4 mode, which is split into the degenerate
E′ (Nos. 55, 56) and separate A′1 and A′2 irreps (Nos. 59 and 60,
respectively).

In Fig. 5, another type of state is shown, in which both E′ degen-
erate modes are excited simultaneously. One can immediately note
that the density shapes of the two E′ modes (ν3 and ν4) are not sim-
ple combinations of densities of only individually excited ν3 or ν4
modes. The assignment is thus more complicated than what has just
been described for states with only one of the two degenerate modes
excited. States Nos. 68, 70, 71, and 74 have both the ν3 and ν4 modes
singly excited, which leads to state symmetries,

E′ ⊗ E′ = A′1 ⊕ A′2 ⊕ E′. (13)

Thanks to the observed (computationally obtained) degeneracy
of the states, states Nos. 70 and 71 can be assigned with the E′ label.
Otherwise, the states are hardly distinguishable or assignable just by
comparing the two-dimensional densities, which all look almost the
same in a given mode. Since all the RDM plots look very similar and
they do not resemble any of the E′ RDM shapes of the individual
singly excited ν3 or ν4 mode patterns (i.e., states Nos. 6, 7, 27, and
28) so that we could assign each of the two modes by one compo-
nent of its E′ degenerate pair, we can conclude, in accordance with
Sec. II D, that every time both E′modes are excited simultaneously, it
is necessary to treat both E′ modes as a single two-mode-unit with a
complex label specifying the distribution of the quanta between the
two modes and also the resulting irrep, which needs to be known
from the computation or examined explicitly. Thus, the complex
two-mode-unit label of all these states has one quantum in mode
ν3, one quantum in mode ν4, and the resulting symmetry of the two-
mode-unit is A′1 or A′2 or E′. A shorthand notation is, for example,
(1 1 A′1).

The other six states in Fig. 5 correspond to singly excited ν3 and
doubly excited ν4 modes, which decompose as

E′ ⊗ [E′]2 = E′ ⊗ (A′1 ⊕ E′) = A′1 ⊕ A′2 ⊕ 2E′. (14)

Labeling the non-degenerate states Nos. 152 and 154 by mere visual
inspection of the depicted densities is not productive, and the
explicit knowledge of their irreps is necessary. Looking at the ν3 den-
sity in the degenerate states (Nos. 156, 157, 162, 163), one cannot
fail to note a single excitation pattern similar to the one in states
Nos. 27 and 28. The ν4 mode in these four states exhibits a clear
degenerate doubly excited density pattern, which, however, is very
different from the one in states Nos. 21 and 22. This reaffirms the
above-mentioned observation that excitations of a single degenerate
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FIG. 5. Selected vibrational states of ammonia (rows) depicted for each of its vibra-
tional modes (columns) by an appropriate two-dimensional reduced-density matrix.
First of the two dimensions corresponds to the vertical axis of the plots, while the
other dimension corresponds to the horizontal axis. The stretching coordinates
q1−3 use atomic units, and the bending coordinates q4−6 use degrees. Scale of
the densities is shown by the color boxes underneath.

mode need a different treatment than combined excitation of two
(or generally more) degenerate modes.

To successfully distinguish between the highly similar and
rather featureless density representations of states possessing sev-
eral excited degenerate modes, it is inevitable to resolve the two-
dimensional quantities in yet another dimension. Since the only
way how to resolve a mode’s RDM structure more deeply means
the involvement of another coordinate that is intrinsic to a differ-
ent mode, it actually means that the modes are a priori coupled.
This, again, confirms the necessity of treating all degenerate modes
together and not individually. The new dimension has to be taken
from one of the two coordinates describing the other degenerate
mode so that the three-dimensional quantity serves to characterize
all the coupled modes. How to distinguish the degenerate states Nos.
70 and 71, by resolving the degenerate ν3 and ν4 modes in three-
dimensional densities ΓD

3 (q5, q2, q3) and ΓD
3 (q2, q5, q6), is shown in

Figs. 6 and 7. Apart from resolving the circular 2D density shapes,
which we see in Fig. 5, into more informative 3D structures, one
can see why these states are degenerate as their densities symmetri-
cally differ only in their orientation. Even more remarkable is that
we can see that the modal densities are composed of both E′ irrep
components, that is, the combination of the ν3 densities of states
Nos. 27 and 28 and ν4 densities of states Nos. 6 and 7. This obser-
vation actually confirms the theoretically expected behavior of a pair
of excited degenerate modes (see Sec. II D) that cannot be expressed
as a single product of respective degenerate irrep basis components
but is a combination analogous to the Clebsch–Gordan expansion.
Similarly, in Figs. 8 and 9, we resolve states Nos. 152 and 154, respec-
tively, which have one quantum in ν3 and two quanta in the ν4
modes. By looking at the ΓD

3 (q2, q5, q6) density, which corresponds
to the ν4 mode (Fig. 7), and going down the q2 coordinate, one can
clearly note a transition between density structures recognized in
the degenerate states Nos. 21 and 22. Nevertheless, the states Nos.
152 and 154 are not degenerate. As the last example, we resolve the
degenerate states Nos. 156 and 157 in Figs. 10 and 11, respectively.
One can see there that the 3D density structure is more complex than
what might have been deduced from the relatively simple-looking
2D plots of Fig. 5.

In summary, to understand the multidimensional structure of
vibrational wave functions, one has to start with a wise choice of the
coordinate system that mimics well the modes of vibrations. Apart
from the symmetry of a particular state’s wave function, which is
given by the computation or examined explicitly via projection tech-
niques, the structure of the individual modes can be inspected by
means of appropriate reduced-density matrices. Each mode’s excita-
tion leads to a characteristic RDM pattern that can either be assessed
visually or effectively compared between other states by computing
RDM overlaps and quickly recognized by pattern matching. This
technique is readily applicable to non-degenerate vibrational modes.
For a single degenerate mode that is excited, one has to take into
account the proper symmetry of the states into which the given
excited mode decomposes, as discussed in Sec. II C. In systems with
more than one degenerate mode, such as ammonia, one has to treat
all the degenerate modes with a single comprehensive label describ-
ing both the distribution of quanta among the degenerate modes
and also the resulting symmetry of all those coupled degenerate
modes, as described in Sec. II D. In order to distinguish the RDMs
of the degenerate modes by pattern matching and to correctly assign
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FIG. 6. Resolution of the degenerate vibrational modes by a third dimension of an
appropriate reduced-density matrix for the selected state. Each row depicts two-
dimensional submatrices of the three-dimensional RDMs with the first dimension
fixed at a given coordinate value. The stretching coordinates q2−3 use atomic
units, and the bending coordinates q5−6 use degrees. Scale of the densities is
shown by the color box underneath.

FIG. 7. Resolution of the degenerate vibrational modes by a third dimension of an
appropriate reduced-density matrix for the selected state. Each row depicts two-
dimensional submatrices of the three-dimensional RDMs with the first dimension
fixed at a given coordinate value. The stretching coordinates q2−3 use atomic
units, and the bending coordinates q5−6 use degrees. Scale of the densities is
shown by the color box underneath.
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FIG. 8. Resolution of the degenerate vibrational modes by a third dimension of an
appropriate reduced-density matrix for the selected state. Each row depicts two-
dimensional submatrices of the three-dimensional RDMs with the first dimension
fixed at a given coordinate value. The stretching coordinates q2−3 use atomic
units, and the bending coordinates q5−6 use degrees. Scale of the densities is
shown by the color box underneath.

FIG. 9. Resolution of the degenerate vibrational modes by a third dimension of an
appropriate reduced-density matrix for the selected state. Each row depicts two-
dimensional submatrices of the three-dimensional RDMs with the first dimension
fixed at a given coordinate value. The stretching coordinates q2−3 use atomic
units, and the bending coordinates q5−6 use degrees. Scale of the densities is
shown by the color box underneath.
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FIG. 10. Resolution of the degenerate vibrational modes by a third dimension of an
appropriate reduced-density matrix for the selected state. Each row depicts two-
dimensional submatrices of the three-dimensional RDMs with the first dimension
fixed at a given coordinate value. The stretching coordinates q2−3 use atomic
units, and the bending coordinates q5−6 use degrees. Scale of the densities is
shown by the color box underneath.

FIG. 11. Resolution of the degenerate vibrational modes by a third dimension of an
appropriate reduced-density matrix for the selected state. Each row depicts two-
dimensional submatrices of the three-dimensional RDMs with the first dimension
fixed at a given coordinate value. The stretching coordinates q2−3 use atomic
units, and the bending coordinates q5−6 use degrees. Scale of the densities is
shown by the color box underneath.
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the excited states, each individual (degenerate) mode RDM has to
be additionally a function of other coordinates that are specific to all
the other degenerate modes.

B. The actual assignment process
There are three basic assumptions behind RDM-based vibra-

tional assignments. First, the chosen coordinate system must
mimic the nuclear motion of real vibrational modes. Second, the
multimode-excited wave-function density resembles densities of
individually excited modes. Third, the densities of individual mode
excitations are the characteristic and remain almost constant (i.e.,
recognizable) throughout a large number of excited states. We
note here that the first assumption is mainly a practical prereq-
uisite so that one can visually associate a particular mode exci-
tation to an appropriate quantum number. In other words, one
can use an arbitrary coordinate system, provided that there is a
way of associating particular densities with appropriate quantum
numbers, which is easily accomplished if coordinates mimicking
normal modes are used, for instance. Once a density pattern is
known for a particular mode excitation, there is actually no more
need for the visual assessment of the density shapes as all is done
automatically by pattern matching, even for oddly looking den-
sities. To work with the actual densities and assign the states
based on them with appropriate labels, we used a set of conve-
nient auxiliary codes that made the assignment process relatively
straightforward and semi-automatic. The algorithm has four major
components.

First, each individual state was labeled with symmetry,
by computing wave-function characters with respect to the
{E, (H2 H3),E∗, (H2 H3)

∗
} subgroup of D3h(M). This way the par-

ity was recognized and the non-degenerate states were assigned
with their D3h(M) irreducible representation labels. To distinguish
degenerate states from non-degenerate ones by symmetry, it would
also be necessary to evaluate characters of the (H1 H2) permutation
operator. This is, however, not straightforward in the chosen coor-
dinate system and DVR basis. Fortunately, the degeneracies could
mostly be recognized either by energy, when the levels were suf-
ficiently isolated from each other, or by visual inspection of the
densities, where the two components of a degenerate level formed
a characteristic pair.

Second, labels of not yet assigned states were estimated by
a generalized vibrational build-up principle, similar to what we
already used in our study of the water molecule,5 but also tak-
ing into account the effect of tunneling and that of the degenerate
modes. The appropriate code keeps track of all already assigned
labels and, for the currently examined state, suggests the logically
closest higher excitations accordingly. The basic idea is that for an
n-tuplet of quantum numbers, there is a natural ordering between
certain excited states. Let us take a quadruplet of quantum num-
bers (v1 v2 v3 v4) as an example. Then, the ground state is (0 0 0 0),
by definition. Logically, then, there are four descendant states with
the labels (1 0 0 0), (0 1 0 0), (0 0 1 0), and (0 0 0 1), one of which
has to be the first excited vibrational state. Each excited state thus
has to be followed either by one of its natural descendants or by
one of the not yet assigned descendants of earlier assigned states.
It is also natural that the following ordering of the states, (0 1 0 0)
< (0 1 1 0) < (0 1 2 0) < (1 1 2 5), must be correct, even though

there may be other states in between them. When a system exhibits
vibrational tunneling, which is the case for ammonia, then each
state is split into “+” and “−” components, although the ordering
may differ for each state. This makes the general build-up princi-
ple complicated as it allows for uneven orderings, such as (0 1 2 0)−

< (0 2 2 0)+
< (0 1 2 0)+

< (0 2 2 0)−, although the principle remains
strict. The presence of degenerate modes in ammonia requires inclu-
sion of all the irrep labels that come out of their excited-state
decompositions (see Secs. II C and II D) into the list of candidate
labels for the state under examination. Employing the vibrational
build-up principle helps substantially not only to assign complicated
highly excited states but also to ensure that no excited-state label
is accidentally omitted during the assignment of a large number of
states.

Third, comparison and recognition of known density pat-
terns of individual vibrational modes are performed, similar to that
already described in our earlier work.5 The similarities between
RDMs are quantified automatically by computing their mutual
overlaps. The associated code also keeps track of all the already
assigned states and stores their modes’ appropriate RDMs as unique
patterns corresponding to a particular mode quantum number. All
the degenerate modes need to be treated as a single supermode pos-
sessing of several RDMs and having a single complex label (see
Sec. II D). If there is good match between the RDM of a partic-
ular mode and a known pattern (the overlap with one RDM pat-
tern is typically high above 0.9, while much less with all the other
patterns), then the mode’s label is automatically assigned. Other-
wise, the state is marked as 1 with a label not yet known, and it
is up to the user to decide, in further steps, about the most feasi-
ble label based on hints from the other auxiliary tools or by other
reasoning.

The last resort is an assignment tool based on the visualiza-
tion of the RDMs. Surprisingly, visualization is not needed for
the vast majority of the states as the other automatic utility codes
do an excellent job, leaving little or no doubt about the labels.
Nevertheless, in what follows, we consider the visual inspection of
the RDMs as the final decision-making step for all the assignments.
In some cases, visual assessment is the only way to decipher skewed
poorly converged wave functions when the RDM pattern matching
does not provide plausible suggestions. In other cases, by contrast,
deciphering the RDM plots can lead to a maze, while the pattern
matching suggestions are indisputable. At any rate, the visual inspec-
tion of RDMs remains invaluable for revealing the insight into the
multidimensional structure of vibrational states.

Practically, the assignment process is executed following a
five-step pseudocode:

1. Determine the symmetry, including parity, of all the computed
vibrational wave functions.

2. For the state currently examined, starting from the ground
state, generate all possible label candidates based on the
vibrational build-up principle and in accord with the state’s
symmetry.

3. For the state currently examined, compare its RDMs with the
pool of RDM patterns of states already assigned. Check that the
suggested labels also agree with the list of label candidates from
step (2). If some of the mode RDMs is not recognized from
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the known patterns and the list of label candidates suggests
a not yet assigned quantum number for that mode, consider
including the state RDM into the pattern pool as a new pattern
after approval in step (4).

4. Visually check the RDM plots of the currently examined state
and make sure that they correspond to the suggested label can-
didate from the previous step. If there is no doubt, then do
assign the suggested label to the current eigenstate and also
update the pool of patterns, if appropriate. Then, take the
next eigenstate and go to step (2). If competing label candi-
dates remain or if the visual inspection of the only candidate
raises doubts, then the current eigenstate is marked as not yet
assigned and the procedure continues with the next eigenstate
in step (2).

5. Start again at the ground state and reexamine all the states not
yet assigned. By now, the list of label candidates generated for
each such state by the vibrational build-up principle is much
shorter as many labels have already been assigned to different
levels. The pool of RDM patterns is also broader than during
the first run, which leads to better matches with the appropri-
ate modal assignments. Each newly suggested assignment for
the state is further examined for consistency of energy gaps
between + and − tunneling splitting pairs, completeness of
family of states with excited degenerate modes (e.g., no state
from the family [0, 0+, 1 2 X], where X ∈ {A′1, A′2, 1E′, 2E′}
is left unassigned), energy, and RDM similarities with related
families of states (e.g., states in families [0, 0+, 1 2 X] and [0,
2+, 1 2 X] are related). If necessary, also inspect the eigenstate
by other appropriate RDMs (e.g., three-dimensional) to make
sure that the assignment is correct. When there is no doubt,
the state is assigned with the suggested label; otherwise, it is
left unassigned.

To illustrate the algorithm on a concrete example, we describe
here how the assignment of the first ten states proceeded (see
Table VI and Fig. 3). State No. 1 has + parity, and since there
are no visible nodes in its RDM plots, it is assigned as [0, 0+, 0 0
A′1], and the RDMs are stored as patterns with appropriate modal
labels. State No. 2 has unit overlaps with the stored patterns except
for the second mode. By visual inspection, by symmetry, and in
accord with the build-up principle, the state is assigned with the label
[0, 0−, 0 0 A′′2 ] and the second mode’s RDM is stored as the 0− pat-
tern. State No. 3 also has all RDMs with unit overlap to the stored
ground state patterns except for the second mode, which is not yet
known. The parity is + , and the build-up principle allows only one
such label: [0, 1+, 0 0 A′1]. After the clear visual confirmation, the
label is assigned to the state and the second mode’s RDM is stored
as the 1+ pattern. Similarly, but with the opposite parity, state No.
4 is assigned as [0, 1−, 0 0 A′′2 ], and the second mode’s RDM is
stored as the 1− pattern. State No. 5 has again not yet recognized
RDM for the second mode; otherwise, the other modes have unit
overlap with the stored ground state RDMs. From its symmetry and
in accord with the build-up principle and the visual assessment,
it is labeled [0, 2+, 0 0 A′1]. The second mode’s RDM pattern 2+
is again stored. States Nos. 6 and 7 are degenerate with + parity
and with the first two modes’ RDMs known from the ground state.
There are two possible labels for the degenerate modes suggested by

the build-up principle: either [0, 0+, 1 0 E′] or [0, 0+, 0 1 E′]. By
visual inspection and also by mere anticipation that the bending
character of the fourth mode results in lower energy than the stretch-
ing character of the third mode, the degenerate states are assigned
as [0, 0+, 0 1 E′+] and [0, 0+, 0 1 E′−], respectively, where we intro-
duce the + and − subscripts to distinguish between the two E′ states.
The RDM patterns 0 1 E′+ and 0 1 E′− are stored for the combined
third and fourth modes since the modes are degenerate and thus
need common treatment (see Sec. II D). The pattern matching for
states Nos. 8 and 9 yields a direct assignment and labels [0, 0−,
0 1 E′′+ ] and [0, 0−, 0 1 E′′−], respectively, since all the RDM patterns
are already known and these labels are in accord with the build-up
principle and also with the visual assessment. No new patterns are
needed to be stored. For state No. 10, pattern matching suggests [0,
X−, 0 0 A′′2 ]. The only allowed label of this kind from the build-up
principle and also in accord with the visual inspection of the RDMs
is [0, 2−, 0 0 A′′2 ]. The label is thus assigned with the state, and the
second mode’s RDM is stored as the 2− pattern.

This way, we were able to reliably provide vibrational labels to
about 500 of the lowest 600 eigenstates of 14NH3.

C. Comparison with CoYuTe assignments
For comparison and an impartial assessment of our results

obtained for 14NH3, we chose the recent large ammonia high-
temperature ro-vibrational line and energy level list known as the
CoYuTe6 list, assembled in 2019. There is an even newer list32 sup-
plementing the CoYuTe list, but it is amended by an earlier set of
results of the present study, so the comparison to that list would not
be impartial. The much larger number of states in the CoYuTe6 list
was labeled automatically based on overlaps of the computed wave
functions with the FBR basis functions. A comprehensive compar-
ison of our results to the vibrational states of CoYuTe with exci-
tation energies under 10 000 cm−1 is shown in the supplementary
material. In Table VI, we selected levels relevant for discussion. The
ordering of the energy levels in Table VI is dictated by the CoYuTe
list.

Most of the energy levels reported by the two studies are as
close in energy as a few cm−1. Nevertheless, there are also significant
differences, some mentioned below. For the 600 distinct states com-
puted during this work, we can distinguish three blocks. The first
block covers the lowest 297 energy levels of the CoYuTe list, which
means ∼440 distinct states (after counting the two components of
degenerate levels separately). Within this block, all the states could
be smoothly and unambiguously assigned in this work based on
symmetry and the semi-automatic RDM pattern-recognition tech-
nique. Apart from subtle differences in energy level orderings, where
the energy separation of neighboring states is within a fraction of a
cm−1 (e.g., level Nos. 40 vs 41, Nos. 42 vs 43, Nos. 48 vs 49, Nos.
51 vs 52, and many others), there are also states with unusually
large energy differences between the CoYuTe list and the results
of this work. Examples include levels No. 173 or No. 175, which
differ by more than 20 cm−1 between the two studies, while their
neighbors are nicely matched within 2–6 cm−1. Similar examples
are levels Nos. 215 and 271. Except for level No. 271 out of the
four mentioned, this work provides significantly lower energies than
CoYuTe. This can be rationalized by the superior Hamiltonian (we
employ an exact Hamiltonian) and basis used during our GENIUSH
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computations. The odd result is that level No. 271 is predicted to
be as much as 76 cm−1 above the CoYuTe energy. If we look into
the tunneling splittings of the states instead of their absolute ener-
gies, the results of this work match the CoYuTe list very well, the
exception is again level No. 271. This state is labeled as [1, 4−,
0 1 E′′] and has its tunneling counterpart [1, 4+, 0 1 E′] at level
No. 234. The tunneling splitting predicted by CoYuTe is 513 cm−1,
which is significantly different from this work’s 595 cm−1. Tun-
neling splittings of other states with the same [⋅, 4±, . . .] pattern
are about 600 cm−1 in both CoYuTe and this work. Therefore, we
believe that the CoYuTe energy of 8937.31 cm−1 for level No. 271 is
incorrect.

We identified several misassignments in the CoYuTe list in
the first block. For example, CoYuTe uses the same label for levels
Nos. 88 and 85, while completely omitting the label [0, 0+, 0 four
A′1]. Similar label redundance/omitting characterizes the CoYuTe
levels Nos. 109 vs 101, Nos. 110 vs 102, Nos. 216 vs 219, Nos.
222 vs 200, and Nos. 223 vs 202. For levels Nos. 139 and 143, the
labeling is swapped with respect to results of this work. For lev-
els Nos. 195, 196, 201, 203, 204, 205, 212, and 286, the CoYuTe
list exhibits a bit more complicated misassignments. Here, we dis-
cuss only level No. 195, labeled by CoYuTe as [1, 0+, 1 1 A′2(1 1)].
The reasoning employed for the other states can be understood
from Table VI. The label of level No. 195 suggested by CoYuTe
is assigned during this work for level No. 222. For that level, in
turn, CoYuTe suggests the label [0, 0+, 1 3 A′2]. However, that has
already been assigned to level No. 200 by both CoYuTe and this
work. Moreover, CoYuTe does not have the label [1, 0+, 0 3 A′2]
listed, which is assigned to level No. 195 in our work. This means
that the CoYuTe assignment protocol did not succeed to predict
these few cases correctly, while our labels remain consistent and
complete.

The second block of states involves levels Nos. 298–360. Con-
trary to the first block, not all the states could be assigned unambigu-
ously by the RDM method. States assigned during this work match
their CoYuTe counterparts, except level No. 328 whose CoYuTe
assignment is odd (the CoYuTe label [1, 0−, 0 4 A′′2 (0 0)] is missing
its tunneling counterstate [1, 0+, 0 4 A′1(0 0)], and also the [0, 0−,
0 6 A′′2 (0 0)] label is missing). The other CoYuTe labels within the
second block agree with the RDM-based predictions; nevertheless,
due to ambiguities in RDM patterns, such states were left unassigned
during this work. In this block, there are still many CoYuTe energy
levels that are close to those predicted by this work, but an increasing
number of levels differ significantly.

In the remaining, third block of states, starting from energy
level No. 361, there are only a few states that are reliably assigned
by the RDM method. Most of the states could not even be matched
by energy and symmetry between the CoYuTe list and the results
of this work. Such states are left out from comparison and put at
the very end of the table for reference. In order to assign more
states reliably, a larger basis set and better convergence of the highly
excited wave functions need to be achieved. The auxiliary codes
would also need more development in ranking the plausible label
candidates by estimating their energy according to earlier assigned
levels and tunneling splittings of similarly excited labels. The dif-
ferences in symmetry of the remaining unmatched states between
the CoYuTe list and the states predicted in this study suggest that
at such high energies, the results are sensitive to the qualityof the

computations, which can lead to a considerable shuffle of states
ordering.

V. CONCLUSIONS
We demonstrated, on the example of the ammonia (14NH3)

molecule, that the use of reduced-density matrices helps to achieve
a thorough understanding of the multidimensional structure of
non-trivial excited vibrational wave functions. The reduced-density
matrix approach is not only limited to using normal coordinates but
also particularly suitable for systems described by arbitrary inter-
nal coordinates. The vibrational assignment process based on RDMs
and internal coordinates had already been employed for the vinyl
radical4 and the water molecule.5 The ammonia molecule used in
the present study represents a substantially more complex system
as it not only exhibits internal tunneling motion but also possesses
two degenerate interacting vibrational modes. To succeed, we had
to reformulate the conventional treatment and labeling of systems
with several degenerate modes (the method of vibrational angular
momenta, which is commonly used to describe ammonia vibrations,
does not respect molecular symmetry, cannot predict correct degen-
eracy, and prevents full understanding of mutual inter-state rela-
tions). The result is a general, unique, and insightful labeling scheme
that respects the system’s symmetry.

With the RDM algorithm developed, we were able to correctly
assign several 100 vibrational states of ammonia with relative ease.
Our study also confirms that excited vibrational states tend to have
a truly modal structure, i.e., the multidimensional wave function
is decomposable to individually excited modes to a good degree
of approximation. Reduced-density matrices representing particu-
lar excited vibrational modes are very characteristic and can serve
as reliable patterns for a quick and semi-automatic state assignment.
Moreover, the visual representation of the various RDMs gives an
invaluable insight into the physical meaning of the excited modes
and their mutual relations.

The RDM method presented, together with the reformulated
treatment of excited degenerate modes and through the auxiliary
codes developed, represents a cutting-edge technique for reveal-
ing and understanding the internal structure of excited multidi-
mensional vibrational states. The method is applicable to arbi-
trary (Abelian or non-Abelian) molecular systems for which excited
vibrational wave functions can be practically computed so that
the nodal structure significant to a particular vibrational motion
can be examined. For large molecules, it may also mean that at
least a portion of the PES that is related to a specific vibrational
motion is available. The RDM algorithm developed is a significantly
improved alternative to basis-set-decomposition-based assignment
approaches.

Finally, we note that after comparing our results to the large,
recently published CoYuTe6 list of vibrational states of ammo-
nia, we identified several misassignments and inconsistencies in the
CoYuTe list.

SUPPLEMENTARY MATERIAL

See the supplementary material for a complete version of
Table VI comparing vibrational states of ammonia from the
CoYuTe6 list with the results of this work.
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