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ABSTRACT
A model based on the finite-basis representation of a vibrational Hamiltonian expressed in internal coordinates is developed. The model
relies on a many-mode, low-order expansion of both the kinetic energy operator and the potential energy surface (PES). Polyad trunca-
tions and energy ceilings are used to control the size of the vibrational basis to facilitate accurate computations of the OH stretch and
HOH bend intramolecular transitions of the water dimer (H 16

2 O)2. Advantages and potential pitfalls of the applied approximations are
highlighted. The importance of choices related to the treatment of the kinetic energy operator in reduced-dimensional calculations and the
accuracy of different water dimer PESs are discussed. A range of different reduced-dimensional computations are performed to investigate
the wavenumber shifts in the intramolecular transitions caused by the coupling between the intra- and intermolecular modes. With the
use of symmetry, full 12-dimensional vibrational energy levels of the water dimer are calculated, predicting accurately the experimentally
observed intramolecular fundamentals. It is found that one can also predict accurate intramolecular transition wavenumbers for the water
dimer by combining a set of computationally inexpensive reduced-dimensional calculations, thereby guiding future effective-Hamiltonian
treatments.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090013

I. INTRODUCTION

For more than half a century, vibrational spectroscopy of the
water dimer, (H2O)2, has been of interest from both experimental1–9

and theoretical10–29 aspects. In the dimer, the H2O monomers are
held together by an OH⋅ ⋅ ⋅O hydrogen bond, considered to be the
archetype of hydrogen bonds.30 Within the many-body-expansion
approach, the interaction of the two water monomers provides the
leading contribution to potential energy surfaces (PESs) of larger
water clusters.18,29

Similar to other weakly bound complexes, understanding the
low-energy states of the water dimer is complicated by large-ampli-
tude motions and, in particular, by complex splitting patterns
caused by low-energy barriers. Developing the ability to compute
these observable splittings has been an important goal of the-
oretical and computational spectroscopies.14,27,31,32 For the water
dimer, there are eight versions32 of its equilibrium structure, of

Cs point-group symmetry, if the possibility to break the four
covalent OH bonds is ignored. The eight versions, correspond-
ing to different numberings of the identical nuclei, can be inter-
converted by the so-called “tunneling” rearrangements, defin-
ing “donor-tunneling,” “acceptor-tunneling,” and “donor–acceptor
interchange” paths.32 The low-energy vibrational–rotational tunnel-
ing (VRT) states of the water dimer are sensitive to minor changes
in the PES; thus, they provide important checks for modeling
efforts.12 The benchmark of computed line lists against experimen-
tally observed transition wavenumbers provides another accurate
measure of the quality of the PES. As a result, there are several
studies12,20 that have been designed to observe and assign VRT
states. Due to its importance and its complex nuclear dynamics,
different theoretical and computational approaches, including
variational(-type) nuclear-dynamics computations, have been tested
for the water dimer. The HBB,16 HBB2,17,18 WHBB,18 MB-pol,20

and CCpol-8sf19,23 PESs are examples of water-dimer potentials that
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allow for displacements along all 12 vibrational degrees of freedom
(DoF). VRT levels have been computed with each of these PESs.

Computation of VRT states is reported in Ref. 19 based on
the CCpol-8sf PES (which was renamed to CCpol-8sfIR[2012] in
Ref. 23). The authors of Ref. 19 used a (6+ 6)-dimensional (6D+ 6D)
adiabatic approach, in which the six high-energy (small-amplitude)
intramolecular DoFs were separated from the six low-energy
(large-amplitude) intermolecular DoFs. For the water dimer, and
for its fully deuterated analog, this adiabatic approach resulted in
accurate VRT energy levels.19 At the same time, relatively large
discrepancies from experiments were observed for the high-energy
intramolecular transitions. The source of these discrepancies was
not determined. More recently, numerically exact 12-dimensional
(12D) calculations of the VRT levels, also based on the CCpol-8sf
PES, were performed up to the region of the HOH bend states.27

The (6D + 6D) and 12D results were in excellent agreement with
each other and with experiments for the low-lying intermolecu-
lar energy levels, confirming that the adiabatic approximation is
excellent in the low-energy region.19,27 However, large differences
(up to 11 cm−1) between the 12D and (6D + 6D) calculations
were found for the bending fundamentals, implying a breakdown
of the adiabatic approximation for the intramolecular transitions.
Due to the rapidly increasing density of states, the 12D calcu-
lations could not be extended to the region of the OH-stretch
fundamentals.27

Here, the focus is not on the low-energy VRT states but rather
on the modeling of OH stretch and HOH bend intramolecular vibra-
tional transitions of the water dimer. The formation of the hydrogen
bond redshifts and increases the intensity of the bound OH stretch,
OHb, fundamental transition. These hydrogen bond characteris-
tics were captured in the early anharmonic local mode effective
Hamiltonian calculations.13,33,34 Later, the inclusion of intermolec-
ular low-energy modes that partially break the hydrogen bond was
found to affect the size of the redshift.22,24,35 As a consequence,
to calculate accurate intramolecular transitions with an effective
Hamiltonian, one needs a good description of both the intramolec-
ular and intermolecular modes, as well as the coupling between the
two sets of modes. However, it is not obvious which types of approx-
imations are suitable to calculate accurate intramolecular transitions
from an effective Hamiltonian.

To address this question, we have developed a novel, flexible
finite-basis representation (FBR) model based on a many-mode
expansion of both the PES and the G matrix elements in the
vibrational kinetic energy operator expressed in internal coordi-
nates. The model and the associated code are termed VibMEMIC,
in reference to its main characteristics: Vibrational Many-mode
Expansion Model in Internal Coordinates. With VibMEMIC, we
perform a set of reduced-dimensional calculations to investigate
the transition wavenumber shifts caused by the interaction between
the intramolecular and intermolecular modes. Results are pre-
sented for VibMEMIC, as well as from computations performed
with a discrete-variable-representation-based model, GENIUSH
(General code with Numerical, Internal-coordinate, User-Specified
Hamiltonians),36–38 in which neither the PES nor the kinetic energy
operator is approximated. We used a newly calculated coupled-
cluster singles, doubles and perturbative triples [CCSD(T)]-F12a/cc-
pVTZ-F12 PES, abbreviated as F12, with VibMEMIC and the
CCpol-8sfIR19,23 and the MB-pol20 surfaces with GENIUSH. We

discuss the degree to which the transition wavenumber shifts caused
by each of the low-energy intermolecular modes are additive. In
addition, we provide accurate intramolecular transition wavenum-
bers from full-dimensional 12D computations performed with Vib-
MEMIC. We show that not only do the reduced-dimensional cal-
culations provide physical insights into the transition wavenumber
shifts but they can also predict the intramolecular transitions rather
accurately.

II. VibMEMIC
The VibMEMIC model was developed for the purpose of

calculating accurate stretch and bend intramolecular transitions
for hydrogen bound complexes. Most previous vibrational models
focus either on the low-energy intermolecular modes or on the
high-energy intramolecular modes. In earlier work, the coupling
between the two sets of modes have typically been approximated
or neglected. Models based on an adiabatic separation of the two
sets of modes have proven useful for describing the effect of the
intramolecular modes on the intermolecular transitions; however,
this separation has been shown to work less well for the intramolec-
ular transitions.19,27 Models built on effective Hamiltonians can yield
accurate intramolecular transitions for hydrogen bound complexes,
but often these types of models rely to some extent on cancellation of
error. Their accuracy depends on both the type of transitions and the
validity of the introduced approximation for the specific complex in
question.22,24 The VibMEMIC model may be viewed as an extension
of the effective Hamiltonian approaches to include a more accurate
description of the low-energy intermolecular modes and their cou-
pling with the high-energy intramolecular modes. Alternatively, it
can be viewed as a reduction of the exact or near-exact models, typ-
ically used for the intermolecular modes, to facilitate calculations
including more vibrational modes. In Sec. II A, the general frame-
work for constructing the Hamiltonian in the VibMEMIC model
is introduced. In Secs. II B–II E, we describe the employed coor-
dinate system for the water dimer, general symmetry aspect of the
water dimer and how symmetry is utilized, how the basis is trun-
cated, and the employed notation for the intramolecular transitions,
respectively.

A. The Hamiltonian
The current version of VibMEMIC can solve only the vibra-

tional Schrödinger equation, i.e., rotations are not treated. The
M-dimensional vibrational Hamiltonian is expressed in the form
derived by Podolsky,39

Ĥ =
1
2

M

∑
ij

g̃ −1/4p̂†
i Gijg̃ 1/2p̂jg̃ −1/4

+ V , (1)

where M is the number of vibrational modes [M ≤ 3N − 6(5), and
N is the number of atoms in the molecule], p̂i = −ih̵ ∂

∂qi
, with qi

being the ith coordinate, and g̃ = det(g). The 3N × 3N-dimensional
g and G matrices (covariant and contravariant metric tensors,
respectively) can be expressed as40

gij =
3N

∑
α=1

mα
∂xα
∂qi

∂xα
∂qj

⇔ g = JMJT (2)

J. Chem. Phys. 156, 164304 (2022); doi: 10.1063/5.0090013 156, 164304-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

and

Gij =
3N

∑
α=1

1
mα

∂qi

∂xα
∂qj

∂xα
⇔ G = g−1, (3)

where the sum is over all Cartesian coordinates of the atoms of
the molecule, mα denotes the associated masses, the qi coordinates
include all vibrational, rotational, and translational coordinates, J is
the Jacobian matrix (Jiα =

∂xα
∂qi
), and M is the mass matrix (Mαβ =

mαδαβ). The matrix G is obtained by inverting g, with elements of
the Jacobian calculated using the finite-difference method. The Jaco-
bian is of size 3N × 3N, and a full internal-coordinate definition,
including the three rotational and three translational coordinates,
is therefore required even for the reduced-dimensional vibrational
models. The volume element of integration is dτ = dq1dq2 . . . dqM
(Wilson’s normalization), for which the p̂i operator is Hermitian.
We use g̃ = J̃ 2M̃ [Eq. (2)] and write the Podolsky form of the
Hamiltonian as

Ĥ =
1
2

M

∑
ij

J̃ −1/2p̂†
i Gij J̃p̂j J̃ −1/2

+ V. (4)

In reduced dimensional models, where M < 3N − 6, there are con-
strained vibrational coordinates. These constraints can be taken into
account either by deleting the corresponding rows and columns of
g and then inverting it to obtain G or by inverting the full g matrix
and deleting the corresponding rows and columns of G.

The vibrational basis functions in VibMEMIC are defined as
products of eigenfunctions of 1D Hamiltonians (ĥi). These 1D
Hamiltonians describe each mode as being decoupled from the
remaining vibrational modes,

ĥi =
1
2

J̃ −1/2p̂†
i Gii J̃p̂i J̃ −1/2

+ V(1D)
i (qi), (5)

where Gii is evaluated at the reference value of all other vibrational
coordinates and V(1D)

i (qi) is the PES along the ith mode from the
reference geometry. Details on the 1D Hamiltonians, the chosen
basis functions, and the selected types of quadrature can be found
in the Appendix.

To evaluate integrals needed to solve the M-dimensional
Schrödinger equation, both the elements of the G matrix and the PES
are represented with a many-mode expansion, truncated at third
order,

V(q1, q2, . . . , qM) = V(qref
1 , qref

2 , . . . , qref
M )

+
M

∑
i

V1D
i (qi) +

M

∑
i<j

V2D
ij (qi, qj)

+
M

∑
i<j<k

V3D
ijk (qi, qj, qk) (6)

with

V1D
i (qi) = V(qref

1 , qref
2 , . . . , qi, . . . qref

M ) − V(qref
1 , qref

2 , . . . , qref
M ) (7)

and

V2D
ij (qi, qj) = V(qref

1 , qref
2 , . . . , qi, . . . , qj, . . . qref

M )

− V(qref
1 , qref

2 , . . . , qref
M ) − V1D

i (qi) − V1D
j (qj) (8)

and likewise for V3D
ijk (qi, qj, qk), i.e., with V(qref

1 , qref
2 , . . . , qref

M ), the 1D
and the 2D surfaces involving the ith, jth, and kth mode subtracted
from the 3D cut of the full PES from the reference geometry.

In this work, a new CCSD(T)-F12a/cc-pVTZ-F1241,42 (abbre-
viated as F12) PES was calculated with the Molpro2020 program.43

The CCSD(T)-F12a/cc-pVTZ-F12 calculations were performed with
the recommended correlation factor of β = 1.0, the frozen core
approximation, and default convergence criteria.41,42 For the 1D, 2D,
and 3D PES cuts, we use the displacement ranges given in Table S1
with a step size of 5○/0.05 Å, 10○/0.10 Å, and 15○/0.15 Å, respectively.
The PES was subsequently evaluated at the respective quadrature
points using cubic spline interpolation to reduce the number of
single point CCSD(T)-F12a/cc-pVTZ-F12 calculations. In contrast,
the G matrix elements were not interpolated, but calculated directly
at each quadrature point.

B. Coordinates
The structure of the water dimer can be described by 12 curvi-

linear internal coordinates, chosen to be r1, r2, ta, r3, r4, td, R, θ, ϕ,
α, β, and γ. The intramolecular coordinates {r1, r2, ta} and {r3, r4, td}
are the bond lengths (r) and the bond angles (t) of the acceptor
and donor units, respectively. As seen in Fig. 1, R is the distance
between the center of masses (CoMs) of the two units. The inter-
molecular angles ϕ and γ describe the rotation of the acceptor and
donor around the bisector of their bond angles, respectively, and θ
and β denote the angle between these bisectors and the CoM–CoM
axis, respectively. The angle α describes the rotation of the two H2O
units relative to each other along the CoM–CoM axis. In Sec. S2 A of
the supplementary material, we provide instructions on how Carte-
sian coordinates are obtained from the internal coordinates. The
values of the internal coordinates corresponding to the equilibrium
structure for the different PESs are shown in Table S7. Since the
CoM–CoM distance depends on the masses of the atoms, we note
here that the masses mH = 1.007 825 u and mO = 15.994 915 u have
been used.

C. Symmetry aspects
Molecular symmetry (MS) groups32 can be employed to

describe the true (observable) symmetry of vibrational–rotational
tunneling (VRT) states of molecules. The MS group includes fea-
sible permutations of identical nuclei and the inversion operator.
The MS group of the water dimer is G16 [isomorphic to the D4h(M)
group], which includes permutation of the hydrogens within the

FIG. 1. Definition of the intermolecular internal coordinates of the water dimer and
the numbering of the atoms of the two H2O units.
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monomers, permutation of the donor and acceptor, and the inver-
sion operation.32,44 In Table I, we show the effect of the generators
of G16, and its subgroup G8 (where the permutation of the donor
and acceptor units is excluded), on the internal coordinates. Apply-
ing the operators of G16 results in 16 different numberings of the
nuclei of the water dimer. However, since the equilibrium structure
has Cs point-group symmetry (see Fig. 1), there are only eight dis-
tinct versions of the equilibrium structure that can be interconverted
into each other. These eight versions are separated by relatively small
barriers; therefore, tunneling between the different minima is pro-
nounced, causing each vibrational level to split into eight VRT levels.
For further details on employing symmetry for the water dimer, see
Refs. 32 and 44.

As the VRT states transform according to the irreducible rep-
resentations of the MS group(s), it is possible to construct the
Hamiltonian matrix in a block-diagonal form, where each block cor-
responds to one irreducible representation of (a subgroup of) the
MS group. This facilitates the assignment of the computed states and
improves the convergence properties of the diagonalization routine,
as the almost degenerate states are treated independently.

To take advantage of permutation-inversion symmetry, the ref-
erence structure and the coordinate choice should be compatible
with the generators of the group. This means that the 1D eigen-
functions (or their product) corresponding to the 1D Hamiltonian of
Eq. (5) should be eigenfunctions of the permutation-inversion oper-
ators as well. Based on this restriction, we use the G8 MS group32 to
construct the block-diagonal form of the Hamiltonian matrix. For
the coordinate definition used in this work, the reference value of
OH bond lengths of the donor should be equal as should the OH
bond lengths of the acceptor. We define the reference structure of a
given PES from the optimized geometry, where the OH bond lengths
of the donor are set to the average of the two OH bond lengths
(see Table S7 for reference and optimized structures). In this case,
the 1D potential along ϕ is symmetric for ϕ→ ϕ + π and ϕ→ 2π − ϕ,

TABLE I. Action of the generatorsa of the molecular symmetry groups G8 and G16 on
the internal coordinates. See Fig. 1 for the definition of the coordinates.

G16

G8

E (12) (34) E∗ Pda

β β β β π − θ
θ θ θ θ π − β
ϕ ϕ + π ϕ 2π − ϕ γ + π
α α α −α α
γ γ γ + π 2π − γ ϕ + π
r1 r2 r1 r1 r3
r2 r1 r2 r2 r4
ta ta ta ta td
r3 r3 r4 r3 r1
r4 r4 r3 r4 r2
td td td td ta

aGenerator (12) permutes H1 and H2 , (34) permutes H3 and H4 , and E∗ denotes the
inversion. The generator Pda ≡ (O1O2)(13)(24) permutes the donor and acceptor nuclei.

and the same is true for γ, and the 1D potential along α is symmetric
for α→ 2π − α. Therefore, the 1D eigenfunctions for ϕ, γ, and
α are eigenfunctions of the generators [(12), (34) and E∗] of G8
[see Table I]. For the chosen reference structure, the potential energy
surface in the β and θ directions is not symmetric around π/2. There-
fore, the 1D eigenfunctions for β and θ are not eigenfunctions of the
Pda operator present in G16, and primitive basis functions should
be used for these two coordinates in order to utilize G16. As Pda
interchanges the donor and acceptor units, and in addition to the
constraint on the basis functions associated with the β and θ coordi-
nates, both OH-bond lengths and HOH-bond angles of the reference
structure should be equivalent to take advantage of G16. To avoid
this constraint, we have opted for using the subgroup G8, rather
than G16. Using only G8 also allows us to use reduced-dimensional
models, where the internal coordinates of one monomer are frozen
while active for the other monomer. The symmetry adaptation of the
OH-stretching basis functions is described in the Appendix.

In order to construct the block-diagonal Hamiltonian, we
determine the character of each permutation-inversion operator for
a given basis function and compare the result with the character
table of G8 to determine which irreducible representation the given
basis function belongs to.32 Then, we construct the individual blocks
of the Hamiltonian matrix from those basis functions that trans-
form as a given irreducible representation. Using the G8 MS group
results in eight blocks, which significantly reduces the cost of the
diagonalization.

D. Polyad truncation and energy ceiling
In VibMEMIC, two strategies are followed to limit the size of

the variational basis: a polyad number truncation and an energy
ceiling. The polyad truncation is of the type

P =
M

∑
n

Pnvn ≤ Pmax,

where vn is the nth quantum number, Pn is a coefficient, and Pmax
is the maximum polyad number. For the three vibrations of H2O,
one would typically choose P1 = 2, P2 = 1, and P3 = 2 such that the
stretch–bend Fermi resonances are included in the basis for each
value of the quantum numbers included for the OH stretches. Defin-
ing effective polyad truncations is crucial in terms of reducing the
computational cost of FBR calculations. The maximum polyad num-
ber controls the size of the Hamiltonian, but not the relative size of
its blocks. For a given value of Pmax, blocks with basis functions that
transform as different irreducible representations can be of differ-
ent sizes. The states associated with the largest block will be better
converged compared to states associated with smaller blocks. The
vibrational tunneling states of the water dimer transform as differ-
ent irreducible representations. An inappropriate value of Pmax can
introduce errors in the calculated tunneling splittings if the magni-
tude of the tunneling splittings is comparable to the convergence of
the energy levels. Hence, we use a polyad truncation for the ϕ and γ
modes to ensure that the different blocks in the Hamiltonian are of
similar size.

Setting an energy ceiling is another way to control the size of
the basis (Ev1v2...vM ≤ Emax). However, as the Ev1v2...vM energy lev-
els are not known a priori, the ceiling is typically based on a sum
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of the 1D energy levels (Ev1v2...vM ≈ ∑
M
n E1D

vn = Eapproximate
v1v2...vM ≤ Emax).

Again, care must be taken with respect to resolving tunneling split-
tings that are comparable to the convergence of the energy levels
as Emax also controls the total size of the Hamiltonian, but not
the relative size of its blocks. In VibMEMIC, both the maximum
polyad number and the energy ceiling are chosen to best address
the specific problem, and only basis functions that satisfy both
truncations are included. In computations with both intramolec-
ular (high-frequency) and intermolecular (low-frequency) modes,
polyad truncations and energy ceilings are defined for each set of
modes (see Sec. S1). For the HF dimer, it was recently demonstrated
that few intermolecular (compact) basis functions were needed
to converge the intramolecular transitions.45 This illustrates why
separate truncations of the intra- and intermolecular modes are
effective.

E. Notation of transitions
In Sec. IV, we present intramolecular transitions calculated

with different vibrational models. We only give the final state of the
transitions as all arise from the ground state. The final state for the
intramolecular acceptor transitions is denoted as ∣vivj⟩±∣vk⟩, where
vi and vj refer to the OH stretch quanta and vk refers to the HOH
bend quanta. The two OH stretches of the donor are not equiva-
lent, and the final states for the intramolecular donor transitions
are denoted as ∣vm⟩f∣vn⟩b∣vl⟩, where vm and vn refer to the free (f)
and bound (b) OH stretch quanta, respectively, while vl refers to the
HOH bend quanta.

III. FBR VS DVR
The so-called fourth-age46 variational nuclear-motion code

GENIUSH,36–38 based on the discrete variable representation (DVR)
of the Hamiltonian,47–52 was employed extensively to benchmark the
FBR-based VibMEMIC code. GENIUSH can be used to solve the
time-independent nuclear Schrödinger equation and obtain rovi-
brational eigenenergies for systems that exhibit several interacting
minima. Furthermore, the code allows for the straightforward setup
of reduced-dimensional models in arbitrary curvilinear internal
coordinates. In GENIUSH, both the kinetic and the potential energy
operators are treated “exactly,” that is, no approximations are intro-
duced. The latest version38 of the GENIUSH code is capable of
treating block-diagonal Hamiltonian matrices, formed according to
the irreducible representations of the MS group32 of the molecule, or
at least a subgroup of it.

Although GENIUSH is able to treat rotations,37 here, we only
discuss vibrations, for which the Hamiltonian is given in Eq. (1).
The basis is the direct product of one-dimensional primitive DVR
functions corresponding to each internal coordinate,

ψn1 ,n2..,nM(q1, . . . , qM) =
M

∏
k=1

χnk(qk), (9)

where χnk(qk) is the nkth DVR basis function corresponding to the
qk coordinate. If N0

1 , N0
2 , . . . , N0

M primitive DVR functions are used
for the first, second, . . ., and Mth coordinate, the size of the full

direct-product basis is Ntot
=∏

M
k=1N0

k . The Ntot
×Ntot-dimensional

matrix of the potential energy becomes diagonal in this basis,

V(n1 ,...,nM),(n′1 ,...,n′M) = V(q1,n1 , . . . , qM,nM)
M

∏
k=1

δnk ,n′k
, (10)

where qk,nk is the nkth DVR quadrature (grid) point correspond-
ing to the kth coordinate. The representation of the kinetic energy
operator is also an Ntot

×Ntot-dimensional matrix. Therefore, the
elements of G and g̃ are evaluated at all the grid points and the matri-
ces of the differential operators are also constructed in DVR. The
resulting Ntot

×Ntot-dimensional vibrational Hamiltonian matrix
is symmetric and sparse. The required eigenvalues are computed
using an iterative Lanczos eigensolver.53 Table S11 specifies the DVR
vibrational basis used in the computations.

To test the accuracy of the FBR-based VibMEMIC model, we
have performed a set of reduced-dimensional computations with
both VibMEMIC and GENIUSH. In Sec. S3, we show several exam-
ples, illustrating that the 1D, 2D, and 3D results with VibMEMIC
and GENIUSH generally agree to within ≤0.2 cm−1.

The water dimer has eight equivalent versions of its equilibrium
structure. These version are sampled, for example, in 5D calcula-
tions with β, θ, ϕ, α, and γ. However, these eight versions are not
equivalent within the many-mode expansion of the PES truncated
at third order, which is the approximation utilized in VibMEMIC.
As a consequence, the energy levels computed with VibMEMIC
appear as two sets of four states, rather than one set of eight states
(see Table S3). This symmetry breaking for the many-mode expan-
sion also leads to small non-zero elements in the Hamiltonian con-
necting the different blocks. We set these small non-zero elements
to zero in VibMEMIC to preserve the block-diagonal structure of
the Hamiltonian. From our reduced-dimensional computations, we
estimate that the difference between enforcing and neglecting this
symmetry leads to differences in the intramolecular fundamentals of
no more than 0.2 cm−1.

Both the new FBR-based VibMEMIC code and the DVR-based
GENIUSH code have advantages and limitations and are optimal
for slightly different situations. The size of the Hamiltonian matrix
is much smaller in the FBR-based VibMEMIC code than in the
DVR-based GENIUSH code, which allows for inclusion of more
vibrational modes. Furthermore, the efficient truncation of the basis,
by the polyad numbers and by the energy ceilings, also helps limit
the size of the Hamiltonian matrix within VibMEMIC. Thus, com-
pared to GENIUSH, the diagonalization part of the computation is
significantly faster with VibMEMIC.

IV. RESULTS AND DISCUSSION
A. The kinetic energy in reduced dimensions

In reduced-dimensional (ro)vibrational models with M active
coordinates, the remaining 3N −M coordinates are inactive
(constrained), and an effective Hamiltonian that incorporates these
constraints must be constructed. The constraints can either be taken
into account by removing the rows and columns involving the con-
strained coordinates in G or by removing the corresponding rows
and columns in g. The latter option results in a constrained G after
inversion of g [see Eqs. (2) and (3)]. If the coordinates are orthogo-
nal, the two approaches are equivalent. However, if the coordinates
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are not orthogonal, the two approaches give rise to different effective
Hamiltonians and, consequently, different results. In classical
mechanics, constraining the coordinates corresponds to dqi/dt = 0,
where i is an index of an inactive mode. The G matrix obtained
from these types of constraints corresponds to removing columns
and rows in g. In comparison, the reduction in G is equivalent to
setting pi = 0.

In Table II, we present reduced-dimensional (3D) calculations
of the fundamental intramolecular transitions of the two water units
in the water dimer, where the two monomers have been separated
by 20 Å (R = 20 Å). Since the two monomer units are separated by
20 Å, we expect the fundamentals of the donor and the acceptor
to be identical. This is, indeed, the case when G is reduced. How-
ever, the calculated intramolecular transitions presented in Table II
clearly depend on whether the constraints are introduced in g or G.
When g is reduced, the intramolecular fundamentals of the two units
differ significantly for the bend and the antisymmetric stretch. If G
is reduced, then the resulting G matrix is the same as that of the
free water molecule (see Sec. S2 B). In the 3D computations for the
donor or acceptor units, the G matrix does not depend on R, and the
3D kinetic energy operator is the same if R is fixed to its equilibrium
value or 20 Å. As shown in Table II, for this particular constrained
model, reduction in g results in an erroneous description of the
intramolecular transitions of the two H2O units as clearly illustrated
in the dissociation limit. Therefore, we employ the reduction in G
for the rest of this paper.

B. Choice of the intermolecular distance coordinate
(O–O vs CoM–CoM)

For weakly bound dimers, the coordinates associated with
the intermolecular modes are typically defined as five Euler angles
and one distance, describing the relative orientation and dis-
tance between the donor and acceptor units, respectively. The
donor–acceptor distance coordinate is typically defined from the
CoMs of the two units, for which an analytical expression for
the kinetic energy operator has been derived.54 In both GENIUSH
and VibMEMIC, the kinetic energy operator is represented numer-
ically, which facilitates the exploration of alternative coordinate
definitions. One alternative intermolecular distance coordinate in
the case of the water dimer is the O–O distance, which is often
the distance coordinate of choice if one defines the coordinates
from a Z matrix. The CoM–CoM definition is general for bimolec-
ular complexes, but unlike the O–O definition, it is not isotopically
invariant.

TABLE II. Fundamental intramolecular transitions (ν̃), in cm−1, of the donor (D) and
acceptor (A) unit in the water dimer separated by 20 Å. The results are obtained
with a 3D vibrational model utilizing the MB-pol potential20 and the DVR-based code
GENIUSH.

Reduction in g Reduction in G

Final state ν̃ (D) ν̃ (A) ν̃ (D) ν̃ (A)

∣0⟩∣0⟩∣1⟩ 1586.8 1590.6 1594.4 1594.4
∣10⟩+∣0⟩ 3656.1 3656.1 3656.1 3656.1
∣10⟩−∣0⟩ 3741.8 3748.6 3755.0 3755.0

TABLE III. Wavenumber differences (Δν̃, in cm−1) of the intramolecular fundamentals
with and without including the R mode. Two different definitions of the donor–acceptor
distance coordinate are used. Results are shown for both the donor, (D), and acceptor,
(A), unit. The results are obtained with the MB-pol PES20 using GENIUSH.

CoM–CoM O–O

Final state Δν̃ (D) Δν̃ (A) Δν̃ (D) Δν̃ (A)

∣0⟩f∣0⟩b∣1⟩ or ∣00⟩∣1⟩ −0.38 0.07 −1.21 0.72
∣0⟩f∣1⟩b∣0⟩ or ∣10⟩+∣0⟩ −0.10 0.01 1.21 −0.10
∣1⟩f∣0⟩b∣0⟩ or ∣10⟩−∣0⟩ 3.41 0.28 −4.63 0.31

We define the optimal intermolecular distance coordinate as
the one that has the least impact on the intramolecular fundamental
transitions. This choice would likely require fewer basis functions to
converge the intramolecular fundamental transitions. In Table III,
we show the wavenumber shift of the intramolecular fundamen-
tals calculated from a (3 + 1)D and a 3D calculation of the donor
and acceptor intramolecular modes. 3D in (3 + 1)D represents the
donor or acceptor intramolecular modes, and “+1D” refers to adding
the intermolecular mode associated with the distance coordinate,
in other words, 4D calculations without an adiabatic separation.
The inactive coordinates were fixed to their reference values. As
seen in Table III, the CoM–CoM coordinate choice has signifi-
cantly smaller impact on the intramolecular fundamentals than the
O–O choice. Therefore, we employ the CoM–CoM coordinate in all
computations.

C. Interunit coupling
For most practical purposes, the coupling between the

intramolecular modes of the donor and acceptor units is expected
to be negligible. The addition of such coupling terms to a har-
monically coupled anharmonic-oscillator model resulted in transi-
tion wavenumber changes of ∼1 cm−1.55 In Table IV, we compare
selected intramolecular transition wavenumbers calculated with a
3D model for the three intramolecular modes of either the donor
or acceptor with those calculated with a 6D model that includes
all intramolecular modes simultaneously. As seen in Table IV, the

TABLE IV. Calculated transition wavenumbers, in cm−1, for selected OH stretch and
HOH bend transitions in the water dimer. Results from a 3D model for either the donor
or the acceptor modes are compared with the results from the 6D model that includes
all six intramolecular modes. The results are obtained using VibMEMIC and the F12
PES.

Final state 3D 6D Δν̃

∣00⟩∣1⟩ 1596.7 1595.2 −1.5
∣0⟩f∣0⟩b∣1⟩ 1614.2 1614.5 0.3
∣00⟩∣2⟩ 3157.1 3155.1 −2.0
∣0⟩f∣0⟩b∣2⟩ 3191.1 3188.7 −2.4
∣0⟩f∣1⟩b∣0⟩ 3558.0 3555.5 −2.5
∣10⟩+∣0⟩ 3651.7 3651.6 −0.1
∣1⟩f∣0⟩b∣0⟩ 3726.9 3726.9 0.0
∣10⟩−∣0⟩ 3746.6 3746.0 −0.6
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computed intramolecular transition wavenumbers with (6D) and
without (3D) interunit coupling (IUC) do not deviate more than 2.5
cm−1. These transition wavenumber changes are small compared to
the shifts induced by the intermolecular modes (vide infra). In Secs.
IV D and IV E, we focus on the coupling of either the donor or the
acceptor intramolecular modes with the intermolecular modes, with
the approximation that the interunit coupling can be neglected.

D. Coupling between intramolecular
and intermolecular modes

In spectra of hydrogen-bonded complexes, the bound XH-
stretch fundamental (where X is an electronegative donor atom, for
example, O) is often detected, as it typically becomes redshifted, and
its intensity is enhanced relative to the corresponding transition of
the isolated monomer.56,57 For complexes with water as the donor
unit, the two OH stretches become partly decoupled upon complex
formation due to the frequency shift associated with hydrogen-bond
formation. The bonded OH stretch, OHb, is redshifted relative to
both OH stretches of the monomer because the hydrogen bond
weakens the OHb bond. The free OH stretch, OHf, is redshifted
relative to the antisymmetric fundamental of the water monomer, as
the coupling between the two OH stretches is reduced. In contrast,
the bending transitions of the donor unit are blueshifted because the
hydrogen bond “locks” Hb, which hinders the bending motion.

In order to investigate the effect of the individual intermolec-
ular modes on the OH stretch and HOH bend transitions, we
performed a series of (3 + 1)D computations, where the three modes
of either the donor or the acceptor unit and one of the intermolec-
ular modes were active. In these computations, symmetry was not
utilized. In Fig. 2, we show the shifts of the donor and accep-
tor fundamentals based on the (3 + 1)D computations relative to
3D computations. The shifts presented in Fig. 2 are obtained with
the F12 PES with VibMEMIC, while the results calculated with
GENIUSH for the MB-pol and CCpol PESs are given in Sec. IV E.
For all computations, the inactive intermolecular coordinates were
fixed to their equilibrium values (see Table S7 for the reference
structures). Overall, the shifts are similar to previous results obtained
with a simplified effective Hamiltonian approach with a similar
coordinate system as the one employed here.22

For the donor unit, the calculated shifts for the free OH
(OHf) stretch are small, as this oscillator is not directly involved
in hydrogen bonding. The shifts induced by coupling to the
intermolecular modes can be traced back to either potential
or kinetic energy coupling. The small shifts associated with
this mode suggest not only that the potential energy coupling
with the intermolecular coordinates is small but also that the
G matrix elements of the intermolecular modes depend only
weakly on the OH bond lengths. The shift of the OHb stretch
is positive for all coordinates, and it is largest for β and γ.
Coupling of β or γ to the donor vibrations enables partially break-
ing the hydrogen bond,22,24 thus significantly blueshifting the OHb
stretch with respect to the 3D values. A positive displacement of the
R coordinate increases the CoM–CoM distance, partially breaking
the hydrogen bond, but negative displacements along this coordi-
nate have the reverse effect. For the water dimer, the net effect of
including R is small, in agreement with what has been found in pre-
vious studies.22,58 For the donor bending fundamental, we observe

FIG. 2. Shifts of the donor (upper panel) and acceptor (lower panel) transitions due
to coupling one intermolecular mode [resulting in (3 + 1)D models] to the donor
or acceptor intramolecular modes (3D model). The shifts are calculated relative
to the 3D results in Table IV. The results were obtained using the F12 PES with
VibMEMIC.

negative shifts for θ and β and positive shifts for the other angle
coordinates, but practically zero shift for R.

Potential energy coupling is evident when 1D PES cuts along
the OHb (r4) or the bending (td) coordinates depend on the value
of the intermolecular coordinates. Kinetic energy coupling is mostly
caused by the dependence of Gii (for the intermolecular angles) on
the value of the bond lengths and bond angle. The Gr4r4 and Gtdtd

elements do not depend on the intermolecular angles, and the off-
diagonal elements of the G matrix have minuscule effect on the
vibrations of the donor unit. Cuts of the PES along r4 and td, corre-
sponding to different values of the intermolecular angles, are shown
in Figs. S1 and S2. The Gii element for i = α,β, γ, as a function of i
and r4 or td, is shown in Fig. S4. In addition, (3 + 1)D computations
where all two- and three-mode terms involving the intermolecu-
lar mode were excluded from the PES, were used to “turn off” the
potential energy coupling (see Table S13). If the results from such
computation are similar to the 3D results, then the potential energy
coupling is responsible for the shift, while if it is similar to the
original (3 + 1)D results, then the shift is due to kinetic energy
coupling.

In the case of θ and ϕ, the shifts of the donor bend and the OHb
stretch modes are fully due to potential energy coupling between the
inter- and intramolecular coordinates since the G matrix elements
involving θ and ϕ do not depend on the donor’s intramolecular
coordinates and vice versa. This was also confirmed by the fact
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that we retrieved the 3D results when we turned off the potential
energy coupling in the (3 + 1)D calculations. In addition, the PES
along r4 or td depends on the value of θ and ϕ chosen for the
cut, and this dependence mostly explains the direction of the shift.
For example, the potential along r4 becomes steeper if ϕ is not
at its equilibrium value, and activating the ϕ coordinate means
that these non-equilibrium values are sampled; therefore, the OHb
fundamental transition wavenumber increases.

In the case of α, β, and γ, both the potential and the kinetic
energy coupling may affect the donor bend and the OHb stretch
modes. The shift of the donor bend induced by α and γ is caused
mainly by kinetic energy coupling since the PES along td only slightly
depends on α and γ. In contrast, Gαα and Gγγ strongly depend on
td. The redshift of the bending due to β can be traced to potential
energy coupling. This is evident from the (3 + 1)D calculations with
the potential energy coupling turned off. The PES along td becomes
less steep if β is not at its equilibrium value, and Gββ depends only
slightly on td. The shift of OHb due to β and γ involves both the
kinetic and potential energy coupling. In the case of β and γ, the
potential energy coupling causes a large positive shift (in agreement
with the 1D PES cuts), while the kinetic energy coupling causes a
small negative shift in the case of β. The kinetic energy coupling
between γ and the donor turned out to be very sensitive to the OH
bond lengths, and consequently, the induced shifts depend on the
average bond length, which depend on the PES. For example, in
the case of the MB-pol PES, kinetic energy coupling for γ induces
−3.9 and −0.5 cm−1 shifts in the OHb and OHf transition wavenum-
bers, respectively, while the shifts are 1.2 and −1.9 cm−1 for the
F12 PES.

For the acceptor unit, the wavenumber differences between the
(3 + 1)D and the 3D computations are shown in the lower panel of
Fig. 2. The intramolecular fundamentals of the acceptor unit are not
strongly affected by complex formation and are similar to those of

an isolated water molecule. The shifts seen for the fundamentals of
the acceptor unit are, indeed, much smaller than those seen for the
donor unit in the upper panel of Fig. 2. The largest corrections to
the bending transition are seen for θ and ϕ, the two intermolecu-
lar modes directly associated with the acceptor unit. By performing
calculations with only kinetic energy or potential energy coupling
between the intra- and intermolecular modes, we traced the major-
ity of the effect to a single term in the kinetic energy operator for
each intermolecular mode. The diagonal G matrix elements for θ
and ϕ, Gθθ and Gϕϕ, respectively, both strongly depend on the HOH
bending angle of the acceptor unit. This dependence is far from
linear, and the vibrationally averaged kinetic energy of these inter-
molecular modes is thus different for the HOH-bending ground
and excited states, resulting in the observed wavenumber correc-
tions seen in the lower panel of Fig. 2 for the acceptor bending
transition.

To investigate whether the shifts from each of the intermolec-
ular modes are additive, we performed 15 sets of (3 + 2)D model
calculations. The “+2D” means adding a pair of intermolecular
modes to the 3D model of the intramolecular modes, resulting in a
5D calculation. The shifts calculated with 15 different (3 + 2)D mod-
els for the OHb stretch and HOH bend fundamental of the donor
unit are shown in the upper triangles of the two panels of Fig. 3. In
the lower triangles of Fig. 3, we show the shifts computed for the (3 +
2)D models minus the shifts calculated for the related two (3 + 1)D
models. The upper triangles thus display the total shifts calculated
with different (3 + 2)D models, while the lower triangles reflect the
degree to which the shifts are additive.

For the donor HOH bend fundamental, the (3 + 2)D shifts for
pairs involving γ are positive, while negative values occur for pairs
involving β. This correlates with the (3 + 1)D results for γ or β
(Fig. 2). The largest discrepancies in the additivity of the (3 + 1)D
shifts for the bending are observed for the (θ,β) and (ϕ,β) pairs

FIG. 3. The upper triangles show the shifts of the bend and OHb stretch donor vibrations obtained by coupling two intermolecular modes to the three donor modes
[(3 + 2)D model]. The shifts are calculated relative to the 3D results in Table IV. In the lower triangles, the error of additivity is shown and is defined as the difference
between the (3 + 2)D shifts and the two (3 + 1)D shifts, which involve the two intermolecular modes in the (3 + 2)D model. For example, the shift of the OHb stretch from
coupling to θ and ϕ is 18.9 cm−1, but is calculated to be 15.6 cm−1 from the corresponding two (3 + 1)D calculations, resulting in “an error of additivity” of 3.3 cm−1. Note
the significant difference in the two color scales. The results were obtained using the F12 PES with VibMEMIC.
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[1.6 and −3.4 cm−1 error in the −6.0 and −6.8 cm−1 (3 + 2)D shifts,
respectively]. For the bound OH stretch fundamental, the largest
discrepancy is found for the (θ,ϕ) pair, with a 3.3 cm−1 error in
the 18.9 cm−1 shift. For most pairs, the (3 + 2)D corrections are
approximated well by the sum of two (3 + 1)D shifts.

We attribute the partial breakdown of the additivity of the
shifts for the bend, but not for the bound OH stretch, to the
difference in the nature of the coupling to the intermolecular
modes. The PES along the bound OH-stretching coordinate changes
significantly upon varying the value of some of the intermolecular
coordinates. The intermolecular modes predominantly affect the
bound OH stretch due to vibrational averaging effects, and not
through resonances between states with excitations in both the
bound OH stretch and the intermolecular modes. In contrast, anal-
ogous resonances do play an important role for the bending states.
The strength of a resonance depends on the size of the coupling
element and the energy difference between the states involved in
the resonance. When two intermolecular modes are included simul-
taneously, the two intermolecular modes couple, thus altering the
energy levels associated with each intermolecular mode and hence
the strength of the resonance(s)—leading to a partial breakdown of
the additivity of the shifts for the bend.

In general, the additivity of the calculated shifts works well,
which indicates that the total shift induced by all intermolecular
modes can be approximated by the sum of the six (3+ 1)D shifts. The
error of this approximation can be estimated by the size of the errors
in the additivity found from the (3+ 2)D calculations. The advantage
of replacing a 9D calculation, including three intramolecular and six
intermolecular modes, with six 4D calculations is obvious.

E. Comparison of potential energy surfaces
We have used three different PESs: CCSD(T)-F12a/cc-pVTZ-

F12 (abbreviated as F12), CCpol-8sfIR,19,23 the (CCpol-8sfIR[2012],
Radau f = 1 embedding) version from the supplementary mate-
rial of Ref. 23 (abbreviated as CCpol), and MB-pol.20 In Table V,
we show the OH stretch and HOH bend transition wavenum-
bers from 3D calculations and from 3D, including the sum of
the shifts from the six (3 + 1)D computations [the (3 +∑ 1)D
model]. We observe that the 3D wavenumbers of the stretching
transitions are similar for the F12 and the MB-pol PESs, while
the CCpol results are different. For example, the OHb stretch

TABLE V. Transition wavenumbers, in cm−1, for selected intramolecular transitions
calculated for different PESs based on either 3D calculations or including the sum of
the six calculated (3 + 1)D shifts, (3 +∑1)D.

3D (3 +∑1)D

Final state F12 MB-pol CCpol F12 MB-pol CCpol

∣00⟩∣1⟩ 1596.7 1594.4 1597.1 1603.8 1600.6 1601.5
∣0⟩f∣0⟩b∣1⟩ 1614.2 1607.9 1608.8 1618.7 1614.2 1613.3
∣00⟩∣2⟩ 3157.1 3150.9 3157.3 3172.6 3165.2 3167.6
∣0⟩f∣0⟩b∣2⟩ 3191.1 3177.5 3180.6 3197.7 3188.5 3189.6
∣0⟩f∣1⟩b∣0⟩ 3558.0 3553.6 3543.3 3602.1 3598.5 3585.0
∣10⟩+∣0⟩ 3651.7 3654.4 3657.3 3649.9 3649.7 3647.5
∣1⟩f∣0⟩b∣0⟩ 3726.9 3728.4 3738.0 3723.4 3731.4 3734.0
∣10⟩−∣0⟩ 3746.6 3745.9 3750.7 3744.6 3743.8 3738.9

fundamental obtained with the CCpol PES is about 15 cm−1 lower
than the F12 and MB-pol values, while the OHf stretch fundamen-
tal is higher by a similar amount. The three PESs also give rise to
considerable differences for the donor bend, where there is ∼6 cm−1

difference between the F12 and MB-pol values for the fundamental
transition.

In Figs. 4 and 5, we show (3 + 1)D shifts computed with the
different PESs for the donor and acceptor OH stretch and HOH
bend transitions, respectively. The F12 and the MB-pol PES give very

FIG. 4. Upper panel: F12 PES, VibMEMIC. Middle panel: MB-pol, GENIUSH.
Lower panel: CCpol-8fsIR PES, GENIUSH. Shift of the donor vibration energies
due to coupling one intermolecular mode [(3 + 1)D model] to the intramolecular
modes of the donor (3D model). The shifts are calculated relative to the 3D results
in Table V. Note the different scale with respect to Fig. 5.
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FIG. 5. Upper panel: F12 PES, VibMEMIC. Middle panel: MB-pol PES, GENIUSH.
Lower panel: CCpol-8fsIR PES, GENIUSH. Shift of the acceptor vibration energies
due to coupling one intermolecular mode [(3 + 1)D model] to the internal coordi-
nates of the donor (3D model). The shifts are calculated relative to the 3D results
in Table V. Note the different scale with respect to Fig. 4.

similar (3 + 1)D shifts, the most noticeable difference is the dif-
ference in sign of the shift of the OHf wavenumber due to R. The
difference in sign gives rise to the increase in the difference of the
OHf wavenumbers computed with the MB-pol and F12 PESs from
1.5 cm−1 in the 3D model to 8.0 cm−1 in the (3 +∑ 1)D model.

The most significant difference between the results with CCpol
and the two other PESs is the large negative shift of −12.1 cm−1 for
OHb due to R. The OHb shifts calculated with CCpol are slightly

larger for the other intermolecular modes. For the F12 and MB-pol
PES, the 1D cuts along OHb (see Figs. S2 and S3) become less steep
if R is decreased and steeper if R is increased. The magnitude of the
change is similar for positive and negative displacements of R from
the reference value. Furthermore, the 1D ground state wave func-
tion for R can to a first approximation be treated as being symmetric
with respect to positive and negative displacements, which explains
the close to zero total shift of OHb. For the CCpol PES, the 1D cuts
along OHb are similar to those obtained with the other two PESs
for increasing R, but become much less steep for negative displace-
ments of R, thus explaining the large redshift of OHb due to R seen
in Fig. 4. Interestingly, for the OHb fundamental transition, the large
redshift due to R is partly compensated by the increased blueshift for
the other modes in the (3 +∑1)D model, and the difference between
the F12 and the CCpol values is quite similar in the 3D model and
the (3 + ∑1)D model (Table V). However, for the CCpol PES, the
resulting OHb fundamental in the (3 + ∑1)D model is 16 cm−1 less
than the experimental value of 3601 cm−1 (vide infra), while the
agreement with experiment is better than 2 cm−1 for the two other
PESs. This suggests that the coupling of OHb with R is overestimated
in the CCpol PES, which is partly compensated by the overestima-
tion of the coupling with the other coordinates. For the CCpol PES,
we find from the (3 + 2)D donor computations that the additivity
of the (3 + 1)D shifts breaks down if one of the coordinates is R,
while there are no problems for F12 and MB-pol. This again sug-
gests that the coupling with R may not be perfectly described in the
CCpol PES.

The calculated (3 + 1)D shifts of the acceptor vibrations are
also different for the CCpol PES and the two other PESs. The red-
shifts of the symmetric and antisymmetric stretches are larger in
the case of the CCpol PES. Overall, the results for the F12 surface
and the MB-pol PES are very similar for these reduced-dimensional
computations, but the CCpol PES gives somewhat different results.

F. Reduced- vs full-dimensional models
In Table VI, observed and computed wavenumbers are pre-

sented for selected OH stretch and HOH bend intramolecular transi-
tions. The observed values are obtained from different jet-expansion
experiments.59–64 The computed values are obtained with differ-
ent reduced-dimensional vibrational models and with a full 12D
vibrational model using VibMEMIC and the F12 PES.

As seen in Table VI, the wavenumbers computed with the 3D
model are already within about 6 cm−1 of the observed values for
five of the six fundamentals. The exception is the bound OH-stretch,
which is the mode most affected by dimer formation and, as a con-
sequence, also by the intermolecular modes.22,56 For the bound OH
stretch fundamental, the shifts induced by the intermolecular modes
were found to be largely additive (see Sec. IV D). Based on the
additivity analysis, it is not surprising that the (3 + ∑1)D model
significantly improves the OHb fundamental transition wavenum-
ber. The 3D calculated OHb fundamental transition wavenumber is
43 cm−1 from the observed value, but improves to within ∼1 cm−1 of
the observed value with the (3 +∑1)D model.

For the other intramolecular fundamentals, the calculated dif-
ferences between the 3D and (3 +∑1)D results are less than 7 cm−1,
and the agreement with the experimental values remains good. The
interunit coupling is small (Sec. IV C), and adding the calculated
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TABLE VI. Transition wavenumbers, in cm−1, for selected intramolecular transitions of the two water units in the water dimer
calculated with different vibrational models. The calculated results were obtained using the F12 PES with VibMEMIC. The
convergence of the 9D and 12D results is shown in Sec. S1.

Final state 3D (3 +∑1)D (3 +∑1)D+IUC 9D 9D+IUC 12D Jet

∣00⟩∣1⟩ 1596.7 1603.8 1602.3 1605.8 1604.3 1605.5 1600.661

∣0⟩f∣0⟩b∣1⟩ 1614.2 1618.7 1619.0 1616.6 1616.9 1616.7 162061

∣00⟩∣2⟩ 3157.1 3172.6 3170.6 3178.0 3176.0 3177.2 ⋅ ⋅ ⋅

∣0⟩f∣0⟩b∣2⟩ 3191.1 3197.7 3195.3 3194.9 3192.5 3198.8 ⋅ ⋅ ⋅

∣0⟩f∣1⟩b∣0⟩ 3558.0 3602.1 3599.6 3600.0 3597.5 3597.5 360160

∣10⟩+∣0⟩ 3651.7 3649.9 3649.8 3648.1 3648.0 3648.2 365164

∣1⟩f∣0⟩b∣0⟩ 3726.9 3723.4 3723.4 3721.9 3721.9 3723.0 373059

∣10⟩−∣0⟩ 3746.6 3744.6 3744.0 3744.2 3743.6 3740.7 3745.559

corrections to the (3 +∑1)D results slightly improves the agreement
of the two bending fundamental transitions and has little impact on
the stretching transitions.

The transition wavenumbers calculated with the 9D models,
where we include the three intramolecular modes of one H2O unit
and all six intermolecular modes, are similar to those computed with
the computationally inexpensive (3 + ∑1)D model. The (3 + ∑1)D
and 9D fundamental transitions are within about 2 cm−1.

The transition wavenumbers calculated with the 12D model
are similar to the results calculated with the 9D and (3 + ∑1)D
models. The error arising from the inaccuracy of the electronic
structure method is expected to be about 5 cm−1 with CCSD(T)-
F12a/cc-pVTZ-F12.65–67 The estimated convergence error of the
12D calculations is less than 2 cm−1 (Table S6). All models give
results in excellent agreement with the experimentally observed
transitions from jet-expansion experiments. The largest difference
between the 12D vibrational calculations and the observed values is
seen for the OHf stretch fundamental transition, i.e., also the transi-
tion with the largest difference in the (3 + 1)D shifts computed with
the MB-pol PES and the F12 PES (Sec. IV E).

Even in recent years, the assignment of the OHb stretch fun-
damental transition in the water dimer has been debated.34 In
jet expansion experiments, both dimers and higher-order (trimer,
tetramer, etc.) clusters often contribute to the observed spectra.
In our 3D calculations, the OHb stretch fundamental transition is
located at 3558 cm−1, which happens to be close to the observed
OHb stretch fundamental transition of the water trimer. How-
ever, including the coupling to the intermolecular modes, the OHb
stretch transition of the water dimer blueshifts to about 3600 cm−1,
as seen from the (3 +∑ 1)D, the 9D, and the 12D models. The
agreement of these vibrational models suggests that the 12D val-
ues are reliable, and the calculated OHb fundamental transition
is indeed in excellent agreement with the transition observed at
3601 cm−1.60

V. CONCLUSIONS
A new vibrational model and an associated computer code

have been developed. The model is based on the finite-basis rep-
resentation (FBR) of a Hamiltonian expressed in internal coordi-
nates and employs a low-order many-mode expansion of both the
kinetic energy operator and the potential energy surface (PES). The

truncations are needed to make the computations on many-mode
systems feasible. We use polyad truncations and energy ceilings to
control the size of the variational basis. In addition, permutation-
inversion symmetry is used to obtain a block-diagonal Hamiltonian,
further reducing the cost of the computations. The FBR-based
VibMEMIC code developed is applicable to all molecular systems
described with either user-defined internal coordinates or inter-
nal coordinates based on a Z matrix. While the code is general in
this sense, the polyad truncation, the energy ceiling, and the use of
symmetry need to be manually defined for the system of interest.

The VibMEMIC results were benchmarked against a nuclear-
motion code, GENIUSH, in which neither the kinetic energy
nor the PES operator is approximated. For the OH stretch
and HOH bend transitions in the water dimer, we find that
the errors resulting from truncations in the VibMEMIC model
appear to be less than the intrinsic inaccuracy of the PESs
employed. The truncation of the many-mode expansion of the PES
leads to a breakdown of the permutation-inversion symmetry
(G8) of the Hamiltonian, which primarily affects the tunneling-
splitting pattern. Most importantly, the approximations applied in
VibMEMIC significantly reduce its computational cost when com-
pared with more exact vibrational models and, as illustrated, facil-
itate computations with the full 12 vibrational modes of the water
dimer.

We have performed a set of computationally inexpensive
reduced-dimensional computations with both the FBR- and
DVR-based models to understand the applicability of reduced-
dimensional effective Hamiltonian approaches. These were designed
to investigate how the high-frequency intramolecular transitions
are affected by their coupling to the low-frequency intermolecular
modes. Not surprisingly, the effects are largest for the OH stretch
directly involved in the hydrogen bond. For this mode, the
wavenumber shifts from each of the six intermolecular modes were
found to be largely additive. The difference between the calculated
and experimental transition wavenumber for the bound OH stretch
fundamental is improved from ∼43 cm−1 in the 3D calculations to
only ∼1 cm−1 upon combining the shifts obtained from six (3 + 1)D
calculations. The same reduced-dimensional models provide valu-
able physical insight into the origin of the observable shifts, which
may be used to predict intramolecular transition wavenumbers
of related molecules and to guide the construction of effective
vibrational models.
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The 12D results, augmented with the additivity analysis, indi-
cate that the excellent agreement between the observed and the
computed transitions is not due to error cancellation. We show
that this excellent agreement can be achieved even with the use
of reduced-dimensional vibrational models. The accurate calcula-
tions of intramolecular transition wavenumber are the first step in
obtaining reliable calculated water dimer vibrational spectra.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional details on both
the VibMEMIC and GENIUSH calculations, benchmarking of the
VibMEMIC code, a technical definition of the water dimer coordi-
nate system, a detailed description of why the reduction in g leads
to an erroneous description of the intramolecular transitions in the
presented 3D model of the donor and acceptor unit, converge tests,
and additional tables and figures related to the presented results.
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APPENDIX: DETAILS OF VibMEMIC

In Subsection 1 of the Appendix, a detailed description of the
formulation of the 1D Hamiltonians, the basis functions, and the
choice of quadrature is given. In Subsection 2 of the Appendix, we
describe symmetry adaptation of the OH-stretch basis functions.

1. 1D Hamiltonians
In Eqs. (4) and (5), the rotational and translational part of the

determinant of the Jacobian can be excluded as the p̂i (and p̂j) oper-
ator only operates on the vibrational coordinates. The vibrational
part of the absolute value of the determinant of the Jacobian can be

expressed as ∣J̃vib∣ =∏
N−1
k=1 r2

k∏
N−2
l=1 sin(θl), where r is a bond length

and θ is an angle between 0 and π.68

The Jacobian does not depend on angles with a 0 to 2π range.
The 1D Hamiltonian for these angles is

ĥi =
1
2

p̂†
i Giip̂i + V(1D)

i (qi), (A1)

where we use a basis set of sine and cosine functions ({χ(qi)}

= {(2π)−1/2,π−1/2 cos(qi ⋅ n),π−1/2 sin(qi ⋅ n)}, with n = 1, 2, . . .)
and define the derivatives of these functions with respect to the
coordinate as χ′l (qi) ≡

∂χl(qi)

∂qi
.

For angles with a 0 to π range, the 1D Hamiltonian is

ĥi =
1
2

sin−1/2
(qi)p̂†

i Gii sin(qi)p̂isin−1/2
(qi) + V(1D)

i (qi), (A2)

where we use a basis set of associated Legendre polynomials (Pm
l (z)

with m = 0), parameterized in terms of z = cos(qi). Matrix elements
of this Hamiltonian are now expressed as

⟨k∣hi∣l⟩ =
−h̵2

2 ∫
π

0
χ′k(qi)Giiχ′l (qi)dqi

+ ∫

π

0
χk(qi)V(1D)

i (qi)χl(qi)dqi, (A3)

where χl(qi) = Nl sin1/2
(qi)P0

l (cos(qi)), with the normalization
constant Nl = (l + 1

2)
1/2, and we define

χ′l (qi) ≡ Nl sin1/2
(qi)

∂P0
l (cos(qi))

∂qi

=
Nl ⋅ l

sin1/2(qi)
⋅ [cos(qi) ⋅ P0

l (cos(qi)) − P0
l−1(cos(qi))]. (A4)

Note that for angles with a 0 to π range, the χ′l (qi) functions are
not the derivative of the χl(qi) functions with respect to the coordi-
nate as they were defined for angles with a 0 to 2π range. However,
the χ′l (qi) functions are chosen to satisfy Eq. (A3) with the appro-
priate limits of integration. The associated Legendre polynomials
are orthogonal with respect to the volume element of integration,
dτ = sin(qi)dqi, thus making the χl(qi) functions orthonormal with
respect to the volume element of integration, dτ = dqi,

∫

π

0
χk(qi)χl(qi)dqi

= NkNl∫

π

0
P0

k(cos(qi))P0
l (cos(qi)) sin(qi)dqi = δkl. (A5)

Associated Legendre polynomials with m = 0 are also used to solve
the 1D Schrödinger equation for the stretches, analogous to what
have just been shown for angles with a 0 to π range, but with
qi → (qi −min(qi))

π
max(qi)−min(qi)

.
For stretches and bends, we use Gauss–Legendre quadrature,

and for angles with a 0 to 2π range, we use Clenshaw–Curtis quadra-
ture, both with a total of 101 points. In Table S1, we show the
displacement ranges used for each internal coordinate. We store the
1D eigenfunctions,

ψv(qi) =∑
l

cvlχl(qi), (A6)
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where cvl is the lth coefficient of the vth eigenfunctions obtained
from diagonalizing the 1D Hamiltonian and also the functions

ψ′v(qi) =∑
l

cvlχ
′

l (qi). (A7)

Evaluating elements of the M-dimensional kinetic energy operator
with the ψ′v(qi) functions has the advantage of removing the J̃ terms
in the Podolsky Hamiltonian. The functions in Eqs. (A6) and (A7)
simplify the kinetic-energy matrix elements,

∫

qmax
i

qmin
i
∫

qmax
j

qmin
j

ψv(qi)ψu(qj)Tijψv′(qi)ψu′(qj)dqidqj

=
−h̵2

2 ∫
qmax

i

qmin
i
∫

qmax
j

qmin
j

ψ′v(qi)ψu(qj)Gijψv′(qi)ψ′u′(qj)dqidqj,

(A8)

where Tij =
1
2 J̃ −1/2p̂†

i Gij J̃p̂j J̃ −1/2 and qmin
i and qmax

i are the minimal
and maximal values of the qi coordinate. Equation (A8) can be veri-
fied from the definitions of ψ′v(qi), χ′l (qi), and J̃vib, all of which have
known analytical expressions.

2. Symmetry adaptation of basis functions
Generators (12) and (34) interchange the OH bonds of the

acceptor and the donor units, respectively (see Table I). The two
acceptor OH stretches are equivalent, and we chose their basis
functions as the 1D eigenfunctions. The product of the acceptor
basis functions is, indeed, eigenfunctions of generator (12) if the
associated quantum numbers are equivalent,

(12)ψv(r1)ψv(r2) = ψv(r2)ψv(r1) = 1 ⋅ ψv(r1)ψv(r2). (A9)

The two donor OH stretches are not equivalent. However, the basis
functions for both the OHf stretch and for the OHb stretch are cho-
sen as the 1D eigenfunctions of the OHf stretch. With this choice,
the product of the donor basis functions becomes eigenfunctions of
generator (34) if the associated quantum numbers are equivalent.

If the quantum numbers are different (v ≠ v′), products of the
1D basis functions are not eigenfunctions of the generators,

(12)ψv(r1)ψv′(r2) = ψv(r2)ψv′(r1) ≠ λ ⋅ ψv(r1)ψv′(r2), (A10)

where λ is a constant. There are two apparent solutions to this chal-
lenge, either changing the coordinates to symmetric/antisymmetric
displacements of the OH bond lengths from their equilibrium values
or using a linear combination of the 1D eigenfunctions as basis func-
tions. We have chosen the latter strategy, resulting in basis functions
of the type

ψvv′±(r1, r2) =
1
√

2
(ψv(r1)ψv′(r2) ± ψv′(r1)ψv(r2)) (A11)

for both the donor and the acceptor OH stretches. The full (12D)
basis functions thus take the following form (with the label of the
quantum numbers excluded for ease of notation):

Ψ(r1, r2, ta, r3, r4, td, R,β, θ,ϕ,α, γ)
= ψ(r1, r2)ψ(ta)ψ(r3, r4)ψ(td)ψ(R)ψ(β)ψ(θ)ψ(ϕ)ψ(α)ψ(γ).

(A12)
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