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Rovibrational dynamics of the
quasistructural N2 dimer
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Although the collision-induced absorption spectrum of the nitrogen gas is known in considerable
detail, little has been learned experimentally about the structural, dynamical, and rovibrational
characteristics of the nitrogen dimer itself. This study explores all these properties of this prototypical
van der Waals (vdW) dimer and provides definitive quantum chemical results, mostly with attached
conservative uncertainty estimates, particularly for the parent isotopologue, 14N2⋅14N2. The results
obtained are based on three analytical representations of the dimer’s ground-state potential energy
surface (PES), including two full-dimensional models of spectroscopic accuracy, constructed during
the present study. The structural and focal-point analyses confirm that the global minimum of (N2)2 is
planar and has a tilted, Z-shaped form, with an electronic dissociation energy of 109.3(26) cm−1. After
considering zero-point vibrational effects variationally, the first dissociation limit of 14N2⋅14N2 is
estimated to be 72.2(15) cm−1. The full- and reduced-dimensional variational nuclear-motion
computations performed result in almost 6000 bound rovibrational states for 14N2⋅14N2, including
over 100 purely vibrational modes. Effects arising from isotopic substitutions, as well as the
shifts and splittings of the two quasi-bound N ≡ N stretch fundamentals, are also examined. An
in-depth analysis of the rovibrational eigenstates indicates that N2⋅N2 is a quasistructural molecular
complex.

Nitrogen gas is one of the principal atmospheric constituents not only on
Earth, but also on exoplanets, moons, and even certain stars. As the parent
isotopologue of the diatomic N2 molecule, 14N2, has no intrinsic dipole
moment, its typical rovibrational spectral features are due to its nonzero
quadrupole moment1,2. At a sufficiently high pressure, broad spectral fea-
tures in the infrared region of the electromagnetic spectrum have been
observed3,4 for molecules lacking permanent dipole moments, like H2, N2,
O2, CH4, and their mixtures. At lower gas densities, these features are
basically due to binary collisions governed by subtle non-covalent interac-
tions (NCI)5,6, resulting in what are called collision-induced absorption
(CIA) spectra7. For N2⋅N2, the collision-induced dipole arises from the
polarization of one monomer by the quadrupolar field of the other one.

TheCIA spectrumof the nitrogen gas was discovered in the laboratory
in 19493. This observation was followed by numerous experimental8–24 and
theoretical/computational25–28 investigations. In particular, CIA spectra of
thenitrogengashavebeenmeasuredboth in theEarth’s atmosphere20 and in
that of Saturn’s largest moon, Titan11,19. At lowN2 concentrations, it is hard
to record the CIA spectrum3,18, but it becomes much more visible in

nitrogen-rich atmospheres, such as that of Earth. CIA even contributes to a
small extent to the natural greenhouse effect20. It is worth mentioning that
the CIA of the nitrogen gas had to be accounted for to explain that the
atmosphere of early Mars was warm enough to support liquid water on its
surface29.

Starting from its 2012 edition30, the canonical spectroscopic database
HITRAN provides CIA-related parameters22,30. They are available for 20
binary systems in its latest version, HITRAN202031, listed separately from
the more usual line-by-line spectroscopic data. For the N2 dimer, there are
more than250000CIAcoefficients, collected frombothexperimental13,16,17,21

and theoretical/computational23,27,28 data sources, in diverse temperature
ranges between 70 and 400K. These data span the 0 – 650, 1850 – 3000, and
4300 – 5000 cm−1 spectral regions. Thefirst wavenumber range contains the
intermonomer vibrational bands of the N2 dimer, while the second and
third intervals cover transitions involving the two intramonomer (N ≡ N
stretch) fundamentals and their first overtones, respectively. Some of these
CIA coefficients may have limited accuracy, due to (a) experimental
uncertainties, often caused by ill-resolved overlapping lines and/or
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contaminant species, and (b) computational artifacts, arising from the use of
inaccurate potential energy (PES) and property surfaces (often in combi-
nation with deficiencies of the dynamical models applied).

The first step toward the accurate first-principles computation of CIA
spectra is the determination of an accurate potential energy surface (PES).
About this a lot of experience has been gained over the past few decades,
especially for binary van derWaals complexes; see, for example, refs. 32–44.
To build reliable analytical PESs for NCI complexes like N2⋅N2, highly
flexiblemodel functionsmust be selected, trained onNCI energies at a large
number of grid points. For the accurate computation of these rather small
NCI energies, not only electron-correlation effects have to be taken into
account, but the basis-set incompleteness and superposition errors should
also beminimized.All this has usually beenachieved via the “gold standard”
CCSD(T) (that is, the coupled cluster singles, doubles, and iterative triples)
method45, combined with extrapolation46,47 and counterpoise-correction48

schemes. To increase accuracy, consideration of so-called “small
corrections”49,50 may also become necessary. Convergence of the individual
correlation-energy increments to relative energies can be traced with the
help of the focal-point analysis (FPA) scheme49,51, yielding the ultimate first-
principles estimates, with definitive uncertainties52, for the NCI energies at
particular configurations or over the entire PES53. If coupled-cluster com-
putations are unaffordable for a complex, symmetry-adapted perturbation
theory (SAPT) protocols54–58 provide excellent alternatives.

Over the past few decades, several first-principles and empirical PESs
have been developed for the N2 dimer59–73, though most of them within the
rigid-monomer approximation (i.e., keeping the two N≡N bond lengths
fixed, resulting in four-dimensional (4D) dynamical models). Exceptions are
the two full-dimensional (6D) PESs of the Truhlar group74,75, designed for the
investigation of high-energy rovibrational energy transfer and collision-
induced monomer dissociation in the N2⋅N2 system. These PESs, unfortu-
nately, have only chemical (~ 350 cm−1) accuracy. Among the 4D surfaces,
Hellmann’s scaled benchmark PES72 has the highest accuracy, approaching
the full configuration interaction (FCI) and complete basis set (CBS)
limits33,53 and involving small corrections49 at vibrationally averaged mono-
mer bond lengths. This 4D PES leaves no doubt that the global minimum of
the N2 dimer is a planar tilted structure of C2h point-group symmetry, in
contrast to PESs exhibiting T-shaped62,66,71 or nonplanar “twisted”59,60,63 global
minima. Such discrepancies can be ascribed to the lack of accurate first-
principles data points and the use of over-simplified functional forms76.

Despite the extensive literature available on other binary complexes,
see, e.g., refs. 32,37,38,40,41,43,44, to the best of our knowledge, there are
only three articles66,77,78 reporting bound-state rovibrational computations
onN2⋅N2. In a first, ground-breaking study, Tennyson and van derAvoird

77

employed a rigid-monomer Hamiltonian and a simple 4D PES59, with a
twisted global minimum ofD2d point-group symmetry (this PES was fitted
to SAPT-like computations involving Hartree–Fock monomer wavefunc-
tions and small Gaussian basis sets). This analysis produced a large number
of bound states for J≤ 2 (specifically, 92 for J=0),where Jdenotes the overall
rotational quantum number. Next, Brocks and van der Avoird78 simulated
the far- andmid-infrared spectra of 14N2⋅14N2, using the formalismof ref. 77,
up to J=7.A similar protocolwas followedbyAquilanti et al., butwith a fully
empirical PES parametrized for scattering experiments, whose global
minimum has a T-shaped form66. They computed bound rovibrational
states up to J = 6. Unfortunately, all of these otherwise sophisticated studies
relied on qualitatively incorrect PESs, as the global minimum is neither
twisted nor T-shaped72,76.

In this work, the structure, the rovibrational energy levels, and the
nuclear dynamics of N2⋅N2 are reconsidered, using exact kinetic-energy
operators andhighly accuratePESs. The potentials used includeHellmann’s
4D PES72 and two newly created 6D PESs, with the more accurate one
having spectroscopic (1 cm−1) accuracy. The present investigation delivers
an exhaustive list of bound rovibrational states for the 14N2⋅14N2 dimer up to
J=10,with state-by-state uncertainty estimates and correct symmetry labels
corresponding to the irreducible representations of the G16 molecular
symmetry group79. For the first time, accurate shifts and splittings are

deduced for the intramonomer stretch fundamentals, representing quasi-
bound (resonance) states. For the lowest doubly degenerate vibrational state
of 14N2⋅14N2, isotope effects are also considered. Based on our extensive
computational results, it can be firmly established that N2⋅N2 behaves as a
quasistructural80 complex, whose highly unusual and interesting rovibra-
tional states fail interpretationattempts basedon the simplest rigid rotor and
harmonic oscillator models.

Results and discussion
Perhaps the most significant finding of this article is that it provides clear
evidence for the quasistructural nature80 of the nitrogen dimer, a prototype
of weakly-bound vdW dimers. This conclusion is based on cutting-edge
electronic-structure and quasi-)variational nuclear-motion computations81,
employing exact kinetic-energy operators both in reduced and full dimen-
sions. Following some introductory remarks, our discussion focuses only on
the analysis of the numerical results, while the important technical details
about the computational methodology employed are contained in Section
“Methods” and in Supplementary Notes 1–4. Apart from Section “Isotope
effects”, our rovibrational and dynamical results concern the parent N2⋅N2

isotopologue, 14N2⋅14N2.
First, results of rigorous tests performed to determine the level of

electronic-structure theory needed to obtain a highly accurate, spectro-
scopically meaningful, full-dimensional PES for N2⋅N2 are discussed (see
Fig. 1). Second, five salient stationary points on the PES ofN2⋅N2, Z,T, X,H,
and I (see Fig. 2), are investigated. Third, results from our benchmark-
quality first-principles rovibrational computations, yielding a large number
of bound and a few resonance (quasi-bound)82 states are summarized.
Fourth, the peculiar characteristics of these (ro)vibrational quantum states
are explored via probability-density analyses, offering an interpretation of
the computational results.

Potential energy surfaces and stationary points
To decide about the level of electronic-structure theory that should be used
to develop an analytical PES for N2⋅N2 with spectroscopic (≈ 1 cm−1)
accuracy, the computational results of Hellmann72, called here H0B and
producedat a high, composite level of electronic-structure theory, have been
taken as reference values. Since our aim has been to supervise the con-
struction of the PES with the autoPES program system35,39, used suc-
cessfully by us during a similar project83, the present analysis focuses on
levels of electronic-structure theory directly supported by this package
through its interfaces. Specifically, two levels are considered, referred to as
“SAPT” and “CC” (always with double quotes) throughout this paper (for
technical details about the H0B, “SAPT”, and “CC” levels, see Section
“Electronic-structure computations”).

Figure 1 illustrates the unsigned deviations of our intermonomer
energies from their H0B counterparts at grid points selected, up to 10,000
cm−1, from the list ofHellmann72. In Fig. 1(a), a remarkably good agreement
is seen between the results of the coupled-cluster-based “CC” and the H0B
protocols, translating to sub-cm−1 agreement for the majority of the struc-
tures with dominant vdW attractions. As apparent from Fig. 1(b), the
“SAPT” energies also agreewell withHellmann’s benchmark values, though
thedifferences aremostly larger here than in the “CC” case. This encouraged
us to create two 6D surfaces, namedN2d-CCandN2d-SAPT,fitted to “CC”
and “SAPT” energies, respectively, whose parametrization did not benefit
from Hellmann’s grid points. The two PESs nicely reproduce the H0B
energies, to the same extent as the direct “CC”/"SAPT” computations [see
Fig. 1(c)/(d)]. These two PESs (see Section “PES construction” how they
were created), along withHellmann’s original (H0B-based) PES designated
here as N2d-H0B, have been applied in our rovibrational and dynamical
analyses.

To explore the stationary points (SP) of the N2d-H0B, N2d-CC, and
N2d-SAPT PESs, extensive global searches have been made, revealing
altogether five salient SPs with relatively high point-group symmetries (see
Fig. 2). These five nuclear arrangements could be identified as SPs on all
threePESsand their orders are consistent across thedifferentPESs.Toname
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these SPs, the convention applied in ref. 74 has been adopted (see Fig. 2).
Our results show that (a) the tilted, Z-shaped form is the only minimum on
these three PESs, and (b) the intramonomer effects are minuscule, at most
0.05 cm−1 for the relative interaction energies, for the five SPs considered
(see Fig. 2 and Supplementary Table 2 for the structural and interaction
parameters of these SPs).

As a next step, detailed FPA analyses49,51 were performed for three of
the five SPs to further validate the accuracy of the N2d-CC/SAPT PESs (see
Supplementary Note 1). The resulting interaction energies, alongside their
estimated uncertainties in parentheses, are collected in Supplementary
Table 2 (note that part of the electronic-structure results concerning the
global minimum was taken from ref. 36). The various interaction-energy
determinations agree nicely: in fact, almost all of the deviations fall within or
are at least reasonably close to the ultimate FPA uncertainties. As to the
correlation-energy increments given in Supplementary Table 1 for the three
SPs studied via FPA, each post-CCSD(T) term is below ± 6 cm−1, and they
have rather similar values, mostly with the same signs. Thus, these con-
tributions cancel each other to a large extent in the relative interaction
energies, a typical effect for non-covalent complexes84.

First-principles rovibrational results
Making use of the three PESs discussed in Sec. 2.1, variational nuclear-
motion computations, always with exact kinetic-energy operators, have

been carried out, exploiting the permutation-inversion symmetry of the
dimer (see Section “Symmetry-adapted variational nuclear-motion com-
putations”). This subsection gives a description of the computational results
obtained, including accurate rovibrational energies of the 14N2⋅14N2 complex
both below and above the first dissociation limit, corresponding to bound
and resonance states, respectively. The results reported take advantage of
four dynamicalmodels of different dimensionality, that is 6D, 4D, 4D0, and
2D, introduced for the N2 dimer in Section “Internal coordinates and
nuclear-motion models”. The discussion itself is divided into four parts,
focusing on the zero-point vibrational effect, the bound and then the
resonance states, and on isotope effects.

Zero-point vibrational effects. Employing the FPA protocol49,51, the
electronic interaction energy, ΔEint, is estimated to be −109.3 ± 2.6
cm−1 for the global minimum of N2⋅N2. Compared to this value, the
zero-point vibrational energy (ZPVE) correction, δEZPVE

int , is substantial
(see Table 1); thus, knowing its value accurately is essential to char-
acterize the thermodynamic stability of the N2 dimer at absolute zero
temperature. In particular, the sum of these two terms is the interaction
(Gibbs) free energy at 0 K, ΔG0

int, whose absolute value equals the first
dissociation limit of (N2)2 (this quantity is also needed to find the
highest-energy bound state in the dimer’s energy spectrum for each
J value).

Fig. 1 | Comparison of the intermonomer energies of the N2 dimer using various
levels of electronic structure theory. The panels depict the deviations of the direct
electronic-structure results (a, b) and their fitted counterparts (c, d) from the H0B
reference values. For the “C”, “SAPT”, N2d-CC, N2d-SAPT, and H0B protocols, see
Section “Methods”. The reference grid points and their benchmark (H0B) inter-
monomer energies are taken from ref. 72, whereas the other (non-H0B) data were
obtained during the present study. The relative energies are taken with respect to the

intermonomer energy at the global minimum of the H0B energy scheme, with
ΔEH0B;GM

inter � �109:21 cm−1 72. The colored boxes on the left-hand side of each panel
highlight points whose intermonomer energies are below the dimer’s approximate
dissociation limit, �ΔEH0B;GM

inter . In these boxes, the median absolute deviations
(MAD) and the largest absolute deviations (LAD) pertaining to dimer geometries
with negative intermonomer energies are also given.
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Table 1 lists various predictions for three quantities,ΔEint, δEZPVE
int , and

ΔG0
int, extracted from our electronic structure and variational nuclear-

motion computations. Apparently, the variational δEZPVE
int and ΔG0

int values
barely change across the different dynamical models and PESs: their max-
imumunsigneddeviations are as lowas 1.1 and1.5 cm−1, respectively (based
on the deviations observed, uncertainty estimates have been adopted for the

best predictions of all these quantities). A harmonic force field, computed at
the frozen-core CCSD(T) level using an augmented quadruple-zeta basis
set85, provides δEZPVE

int = 49.2 cm−1, which differs significantly, by asmuch as
14 cm−1, from our accurate variational estimate, 35.2(3) cm−1. Interestingly,
previousΔG0

int predictions, −79.866 and −75.078 cm−1, are reasonably close
to our best estimate, − 72.2(15) cm−1, although they are based, respectively,

Fig. 2 | Five salient stationary points on three analytical potential energy surfaces
(PES) of N2⋅N2. For parameter values affected by computational error, the last-digit
(two-sigma) uncertainties are given in parentheses. The boldfaced ΔEbest

int values
represent the best estimates of this study. All the other parameter values correspond
to the N2d-CC PES [see also Section “Potential energy surfaces and stationary
points” and Supplementary Note 1]. The stationary-point order, i.e., the number of
negative Hessian eigenvalues, is given for each shape next to its point-group sym-
metry. As customary, the intermonomer coordinates (see Section “Internal

coordinates and nuclear-motionmodels”) are indicatedwith (dashed) lines and arcs.
Instead of the r1 and r2 bond lengths, the Δr1 and Δr2 relative values are displayed,
respectively (these relative distances are referenced to the equilibriumbond length of
the isolatedN2 unit; see Section “Internal coordinates and nuclear-motionmodels”).
The intramonomer energies, ΔEintra, are negligibly small for all five geometries (see
Section “PES construction”). The uncertainty estimates are based on the deviations
between the N2d-SAPT/H0B and N2d-CC results.

Table 1 | Electronic and zero-point vibrational effects in the Z-shaped global minimum of the N2 dimer〈a〉

Potential〈b〉 ΔEint
hci

δEZPVE
int

hdi
ΔG0

int
hei ZPVEðN2 � N2Þhfi

4D 4D0 6D 4D 4D0 6D 2D + 4D 6D

N2d-H0B –109.2 35.5 –73.7

N2d-CC –107.4 35.4 35.2 35.2 –72.0 –72.2 –72.2 2387.0 2386.7

N2d-SAPT –106.3 33.9 33.6 33.6 –72.4 –72.7 –72.7 2385.4 2385.1

Best〈g〉 –109.3(26) 35.2(3) –72.2(15) 2386.7(16)
〈a〉All numerical values are given in cm−1.
〈b〉The analytical potential energy surfaces are defined in Section “Potential energy surfaces and stationary points”.
〈c〉Estimates for the interaction energy of the Z-shaped global minimum from Supplementary Table 2.
〈d〉First-principles zero-point vibrational energy (ZPVE) corrections determined with different potentials and dynamical models (see also Section “Internal coordinates and nuclear-motion models”). δEZPVE

int

refers to the change due to the intermolecular vibrational modes.
〈e〉Variational estimates for the zero-point-corrected interaction energy (i.e., the interaction free energy at 0 K).
〈f〉Variational ZPVE values for the Z-shaped global minimum. 2D + 4D means the sum of the ZPVEs corresponding to the 2D and 4D dynamical models.
〈g〉Best predictions obtained for the four quantities are highlighted in boldface and their expanded (two-sigma) uncertainties are in parentheses.
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on PESs with (incorrect) T- and X-shaped global minima (the small
deviations observed are most likely due to the extremely similar interaction
energies characterizing these qualitatively different structures).

Bound states. Accurate rovibrational energies have been computed for
nearly 6000 bound states of 14N2⋅14N2, taking advantage of our improved
methodology described in Section “Symmetry-adapted variational
nuclear-motion computations”. The list of the computed energy levels,
including all rovibrational states with J ≤ 10 below the first dissociation
limit, is given in an external repository86 through an Excel file. Readers
interested in individual characteristics of these bound states, such as the
“raw” energy values produced via various dynamical models and PESs,
are invited to study that file. In what follows, our discussion is focusing on
some overall statistical measures, illustrated in Fig. 3.

On the left two panels of Fig. 3 the state distributions represent two
continuous measures, namely the rovibrational energies [panel (b)] and
their uncertainties [panel (a)]. As expected, the overwhelming majority of
the bound states, more than 80 % of them, fall above half of the dis-
sociation energy. Nevertheless, there are also dozens of states in the
lowest energy bin, 0–7.5 cm−1, reflecting the weakly-bound nature and
the relative heaviness of N2⋅N2. Most of the uncertainty, defined in Eqs.
(4) and (5) and stretching over the 0–1.7 cm−1 range, comes from
intermonomer effects, while the error contributions due to intramono-
mer motions remain below 0.15 cm−1.

The two right-hand-side panels of Fig. 3 are based on two dis-
crete variables, namely the J values [panel (d)] and the symmetry
blocks [i.e., irreducible representations (irreps) of the G16 group, panel
(c)]. The distribution along the J values has a maximum at J = 5:
from that point on, the (2J + 1)-fold rotational degeneracy ceases
to be the dominant factor over the energy cutoff represented by the
dissociation energy. It is of interest to observe in Fig. 3(c) that the blocks
E+ and E−, even though their two-fold degenerate states are counted
only once, are about twice as large as the other blocks. The small energy
of the lowest E+ state may explain this (see also Section “Isotope
effects”), as it can form several combination bands with other one-
dimensional irreps.

Resonance states. Among the large number of resonance states82 one
may compute for 14N2⋅14N2, attention is focused here only on the two
long-lived intramonomer stretch fundamentals. The symmetric (sSTRE)
and the antisymmetric (aSTRE) stretch states transform according to the
Aþ1 and Bþ2 irreps of the G16 molecular symmetry group, respectively.

Since the sSTRE and aSTRE states lie at least 30 times higher than the
dissociation limit, their computation was greatly accelerated by the
exploitation of the block-diagonal structure of the Hamiltonian; in par-
ticular, our computations were restricted to the Aþ1 and Bþ2 blocks in this
energy domain, a considerable gain in efficiency. The relatively small
basis set sufficient to achieve converged sSTRE/aSTRE energies also
helped (see Section “Methods”).

Table 2 includesmultiple determinations for the shifts and splittings of
the sSTRE and aSTRE fundamentals, all relative to the energy of the fun-
damental of the N2 monomer. The best results, corresponding to the full-
dimensional N2d-CC PES, are given in the last row of Table 2 (typeset in
boldface). Clearly, there are pronounced changes in these shifts/splittings
across the different PESs and their intermediate versions; thus, estimating
the uncertainties of these computed quantities is exceedingly difficult (the
valueof ± 0.1 cm−1, stated inTable 2, is a conservative estimate).As the even
larger errors of the 2D predictions suggest, the intra- and intermonomer
couplings result in non-negligible contributions to these quantities.

Although the final computed shifts and splittings are small, below
1 cm−1, they are significant given the accuracy and resolution of today’s
spectroscopic measurements. Accordingly, it seems feasible to generate
experimental information about the energy ordering of the free stretchofN2

and the sSTRE and aSTRE fundamentals of 14N2⋅14N2, however small the
differences are.

Isotope effects. Table 3 shows the effects of isotopic substitution for the
lowest two excited vibrational states of the six possible 14N and 15N iso-
topologues, with symmetry labels provided for each case. The double
degeneracy, characterizing these two vibrational modes in the 14N2⋅14N2

dimer, is lifted for the mixed isotopologues, where both 14N and 15N are
present, inducing small shifts and splittings. The largest shift is, of course,
for the fully symmetric 15N2⋅15N2 isotopologue, for which there is again no
splitting. These quantities turned out to be insensitive to the details of the
PES used for their computation, leading to estimated uncertainties on the
order of 10−3 cm−1 (see Table 3).

As expected, the shifts ofTable 3 are always negative, and their absolute
values increase with the number of 15N atoms in the dimer. Assuming
ΔM1 ≤ΔM2, where ΔMi is the change in the mass of the ith monomer
compared to that of the 14N2 isotopologue, the shifts of the vibrational
modes vib1 and vib2 closely follow a simple model,

shiftðvibiÞ � a1 ΔMi þ a2 ΔM3�i; ð1Þ

Fig. 3 | Statistical characteristics of the bound rovibrational states obtained
during this study. In (a, b), the range represented by a bin is given by the actual and
the previous axis ticks (e.g., the blue bin at 0.17 cm−1 contains states with an

uncertainty of 0.00–0.17 cm−1). In contrast, the horizontal axes of (c, d) have discrete
(integer) values. The state counts, i.e., the bin sizes, are shown on a unified bi-
directed vertical axis for both pairs of distributions.
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where a1 = −0.060 8(9) cm−1 u−1 and a2 = −0.112 5(9) cm−1 u−1 are two
fitted parameters, which perfectly coincide with the two shifts of the
14N2⋅14N15N complex [see Supplementary Note 4 for the derivation of Eq.
(1)]. These shifts and splittings are straightforwardlymeasurable; thus, their
accurate estimates given in Table 3 should become useful guides during the
interpretation of the related spectroscopic experiments.

Manifestation of quasistructurality of the N2 ⋅ N2 complex
In ref. 80, it was proposed that a molecular system should be called qua-
sistructural if it satisfies all of the following five criteria: (i) “the notion of a
static equilibrium structure, corresponding to a minimum on the potential
energy surfaceof themolecule, loses its strictmeaning”, (ii) “internal nuclear
motions [...] become dominant, resulting in an effectivemolecular structure
often even qualitatively different from the equilibriumone”, (iii) “separation
of the internal nuclear motions breaks down, rotational and vibrational
degrees of freedom cannot be separated from each other when interpreting
even the lowest rovibrational eigenstates of the molecule, often resulting in
effective rotational constants drastically different from the equilibrium ones
even for the ground vibrational eigenstate”, (iv) “classification of the rovi-
brational states requires the use of permutation-inversion symmetry”, and
(v) “some of the rovibrational eigenenergies assigned to a vibrational parent
state exhibit unconventional [...] rotational contributions”. In the upcoming
analysis, our aim is to study how closely these criteria are met for N2⋅N2.

It is important to clarify the relation of quasistructural molecules80 to
floppy and fluxional/fluctional87 systems. In floppymolecules, there are one
or more large-amplitude internal motions, but their rotational energy-level
structure may be fitted well by a rigid or a semirigid effective Hamiltonian.

As noted by Bunker and Jensen79 about ethane, “except in ultrahigh reso-
lution spectroscopic studies ethane can be considered to be a rigid mole-
cule.” Fluxional systems exhibit rapid, degenerate rearrangements among
physically equivalent structures. Although quasistructural molecules
necessarily fall under the broader categories of floppy or fluxional systems,
the converse is not true.Quasistructurality denotes amore specific structural
and dynamical behavior, one accompanied by a qualitative breakdown of
standard spectroscopic paradigms. In particular, the commonly assumed
separation of rotational and vibrational motion is already not valid even for
the lowest-energy states (see below).

Extremely flat interaction PES. According to the interaction energies
given in Fig. 2, the Z-shaped global minimum of the N2 dimer lies below
the T-shaped transition state by only roughly 6 cm−1. Moreover, two
other salient, higher-order saddle points, X and H, are also energetically
similar to the Z-shaped minimum. This suggests that the PES is shallow
over a large part of the interacting regime. To gain deeper insight into the
overall topology of the PES in the most important regions, contour plots
have been constructed for the (r1, r2), (R, ϕ), and (θ1, θ2) coordinate pairs
(see the three panels of Fig. 4).

As expected and apparent from Fig. 4(a), the energy increases sharply
when the r1 and r2 coordinates describing the two monomer stretches are
distorted. Tohelp interpret Fig. 4(a), recall theminusculeΔr1 andΔr2 values
of Fig. 2 and the small shifts and splittings displayed in Table 2. As seen in
Fig. 4(b), the R variable, that is the dimer’s vdW dissociation coordinate, is
relatively tightly bound at its equilibrium value, ~4.0Å. In clear contrast,
motion along the torsional coordinate ϕ is extremely soft, without

Table 2 | Computed shifts and splittings in the two intramonomer stretch fundamentals of 14N2⋅14N2
〈a〉

Estimate〈e〉 Shift(sSTRE)〈b〉[Aþ1 ] Shift(aSTRE)〈c〉[Bþ2 ] Splitting〈d〉

2D 6D 2D 6D 2D 6D

Range(N2d-SAPT) [0.10, 0.32] [–0.36, –0.18] [–0.29, –0.06] [–0.43, –0.30] [–0.41,–0.27] [–0.12, –0.05]

Best(N2d-SAPT) 0.13 –0.33 –0.17 –0.38 –0.30 –0.05

Range(N2d-CC) [0.10, 0.31] [–0.21, –0.15] [–0.25, –0.09] [–0.35, –0.28] [–0.40, –0.34] [–0.17, –0.10]

Best(N2d-CC) 0.26 –0.19(10) –0.09 –0.28(10) –0.35 –0.10(10)
〈a〉All numerical data are in cm−1. The full-dimensional ‘best’ cases are attached with expanded (two-sigma) uncertainty estimates.
〈b/c〉Shift of the symmetric/antisymmetric stretch (sSTRE/aSTRE) fundamental, relative to its counterpart in the freeN2molecule, 2329.912cm−1 1. The symmetry labels of the sSTRE/aSTREstates,within the
G16 molecular symmetry group, are given in brackets. For the 2D/6D model, see Section “Internal coordinates and nuclear-motion models”.
〈d〉Energy difference defined as aSTRE—sSTRE.
〈e〉Estimates using theN2d-CCandN2d-SAPTpotential energy surfaces (PES). The best values, typeset in boldface, are derived via the final versions of the twoPESs,while the ranges are deduced from five
intermediate PES versions produced during the PES-refinement process.

Table 3 | Isotope effects in the first two excited vibrational states of the N2 dimer〈a〉

Species〈b〉 Group〈c〉
vib1

hdi vib2
hei Splitting〈i〉

Label〈f〉 Shift〈g〉 Dev.〈h〉 Label〈f〉 Shift〈g〉 Dev.〈h〉

14N2 ⋅ 14N2 G16 E+ 0.0 0.0 E+ 0.0 0.0 0.0
14N2 ⋅ 14N15N G4 A+ –0.111(1) 0.001 B+ –0.060(2) 0.001 0.051(1)
14N2 ⋅ 15N2 G8 B002 –0.226(3) –0.001 B02 –0.123(1) –0.001 0.103(4)

14N15N ⋅ 14N15N G4 B+ –0.171(2) 0.002 A+ –0.170(3) 0.003 0.001(1)

14N15N ⋅ 15N2 G4 B+ –0.285(1) 0.001 A+ –0.233(2) 0.001 0.052(3)

15N2 ⋅ 15N2 G16 E+ –0.346(2) 0.001 E+ –0.346(2) 0.001 0.0
〈a〉All numerical data are given in cm−1, with the (two-sigma) uncertainties of their last few digits in parentheses. For the calculation of these uncertainties, Eq. (4) was applied, but replacing the absolute
energies with shifts/splittings.
〈b〉Isotopologue of the N2⋅N2 complex, composed of 14N and/or 15N isotopes with spin-1 and spin-1/2 nuclei, respectively.
〈c〉Molecular symmetry group of a particular species.
〈d/e〉First/second excited vibrational state of a given isotopologue.
〈f〉Symmetry label associated with a specific state of this table.
〈g〉Shifts of the first two excited vibrational energies with respect to their degenerate sibling in the 14N2⋅14N2 species, 3.57(3) cm

−1.
〈h〉Deviation of a shift predicted via Eq. (1) from its variational counterpart. The monomer masses behind Eq. (1) rely on 14N and 15N masses defined in Section “Methods”.
〈i〉Energy splitting between vib1 and vib2, which is equivalent to shift(vib1) – shift(vib2).
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considerable barriers over the complete [0, 2π) angular range, as shown in
Fig. 4(b). As obvious fromFig. 4(c), the Z-shaped form can also distort quite
easily along the two bending coordinates, there is no pronounced angular
preference in the broad, dark-green domain. These observations leave no
doubt that the N2 dimer complies with criterion (i) of quasistructurality.

Heavily mixed vibrational states. To gain insight into the vibrational
characteristics of N2⋅N2, probability densities have been generated for all
the bound J = 0 states of 14N2⋅14N2, as well as for its two intramonomer
stretch fundamentals. Density distributions of the first four vibrational
states, of Aþ1 , E

+, Bþ1 , and A�1 symmetry, in order, are shown in Fig. 5
(plots of the other J = 0 states are available in an external repository86).
Since the (r1, r2) graphs exhibit a simple and regular ground-state density
profile for the bound states, without noticeable variations, in Fig. 5
density distributions are given solely for the (R, ϕ) and (θ1, θ2) subspaces.
Supplementary Fig. 1 provides a density-based comparison between the
ground state and the two intramonomer fundamentals, where the (r1, r2)
plots are also included.

In accordance with the flatness of the interaction PES along the three
angular coordinates (see Section “Extremely flat interaction PES”), the
density distributions of Fig. 5 show that the nuclei of N2⋅N2 are prone to
delocalization along all three of them. This is true even for the ground
vibrational state, where (a) along the torsional coordinateϕ, atfixedR values
the density does not vary noticeably [see Fig. 5(a)], and (b) the points with
high densities are accumulated in the broad and square-shaped central part
of Fig. 5(d). These quasi-isotropic density motifs suggest that the effective
ground-state structure of N2⋅N2 is qualitatively dissimilar to the planar,
Z-shaped global minimum. These non-trivial features observed imply in
themselves that the N2⋅N2 dimer fulfills quasistructurality criteria (ii)
and (iii).

In panel Fig. 4(c), the four minimum-like features correspond to the
four versions79 of the planar Z-shaped form of the 14N2⋅14N2 dimer. This
suggests that our understanding of the complicated energy and density
patterns can be enhanced by a model calculation which artificially localizes
the vibrational eigenfunctions around one of the four equivalent Z-shaped
versions. In this ‘artificial localization model’, whose precise definition is
provided in Section “Methods”, each vibrational state becomes four-fold
degenerate.

The ground-state density distributions of the localized states of the four
Z-shapedversions are shown inFig. 6. In accordancewith the torsionangles,
the (R, ϕ) densities are concentrated around ϕ = 0° [Fig. 6(a)] and ϕ = 180°
[Fig. 6(b)] for versions I/IV and II/III, respectively. As expected, the artificial
localization model gives much simpler density patterns than those seen in
Fig. 5. This holds for the excited vibrational states, as well, whose density
distributions are not given here.

Figure 7 (a) shows the energy-level structure of the artificial localization
model, where the energies are relative to the true vibrational ground state of
14N2⋅14N2. As apparent from Fig. 7(b), the first three vibrational states of
14N2⋅14N2, of A

þ
1 , E

+, and Bþ1 symmetry, are reproduced, with a squared
overlap of ≈ 75 %, by the signed sums of the four artificially localized
ground-state eigenfunctions (the remaining 25 % comes from several
excited vibrational states). Basically the same holds for the antisymmetric
bend shown in Fig. 7(d), with symmetry species Bþ2 ; E

þ, and Aþ2 . This
simple model is unable to explain Fig. 7(c), (e), and (f), whereby further
states, indicatedwithbracketed asterisks,mix in. Excluding these extra states
fromconsideration, the retained state triplets fully reproduce thedegeneracy
factor of the states illustrated in Fig. 7(c), (e), and (f). Overall, these results
yield clear evidence that quasistructurality criteria (iii) and (iv) are satisfied
for N2⋅N2.

Strong rovibrational couplings. For semirigid molecules, separation of
the vibrational and rotational degrees of freedom works extremely well
for at least the ground vibrational state and the fundamentals, as the
vibrational and rotational excitation energies are drastically different,
often by more than an order of magnitude. This is not true for the N2

dimer. The lowest-lying bound vibrational (J = 0) states of 14N2⋅14N2 have
energies of only a few cm−1, and there are four excited vibrational states
with energies less than 10 cm−1 [see Fig. 7(b)–(d)]. Therefore, these
vibrational states can couple effectively with the rotational states, asAeq is
close to 2 cm−1 for 14N2⋅14N2 (for the three rotational constants of the
Z-shaped global minimum, as well as the other symbols used in this
subsection, see the central panel of Fig. 8). Extremely strong coupling
between vibrations and rotations, starting at the lowest rotational exci-
tation, has been identified in several neutral and charged molecular
systems80,88–94. As shown next, similar interactions, which are signs of
quasistructural behavior, are present in 14N2⋅14N2, as well.

Fig. 4 | Contour plots determined from two-dimensional (2D) scans of the N2d-
CC potential energy surface (PES). For each 2D point, the remaining four variables
were fully relaxed. The contour levels represent interaction energies, with scales
given separately on the top of each panel. The energetically equivalent Z-, T-, H-, X-,

and I-shaped forms are shown explicitly in panel (c), following the Sϕθ1θ2 notation for
a shape S, where the specific angle values are / ≈ 49. 5°,⊥≡ 90°, \ ≈ 130. 5°, π≡ 180°,
and ⊤ ≡ 270°.
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Figure 8 shows a collection of rovibrational states with low J and Ka

values, which were subjected to a rigid-rotor decomposition (RRD)
analysis95, where Ka designates the approximate prolate-top rotational
quantum number of the asymmetric-top 14N2⋅14N2 dimer. As clear from
Fig. 8(a), the rigid-rotormodel holds verywell for the lowest J=1 state ofA�2
symmetry, as Beq+Ceq = 0.142 ≈ 0.144 cm−1, the energy of this state. Thus,
the parent vibrational state of this J=1 rovibrational state can be safely given
as the groundvibrational state.On the otherhand, Fig. 8(b) and (c) show the
breakdown of the rigid-rotor model, as more than half of the vibrational
contributions come from excited vibrational states for both the second and
third J = 1 rovibrational states at 3.459 and 3.538 cm−1, respectively. For the
rotational energies of these formally “11,1” [E

−] and “11,0” [E
+] states, the

rigid-rotor model provides significantly different values, with
Aeq+ Ceq = 1.837 cm−1 and Aeq + Beq = 1.839 cm−1, respectively. Thus, in
the case of 14N2⋅14N2, the formal separation of the vibrational and rotational
degrees of freedomleads toqualitatively incorrect energies andunacceptable
assignment attempts even in the case of the lowest rovibrational states.
These are clear signs of quasistructural behavior.

The bottom two panels of Fig. 8 demonstrate how the rotational
energies vary, as a function of the J values, in the rigid-rotor and the var-
iational 4D0 models (note the inverted vertical and horizontal axes). As to

the J0,J states [green curves in Fig. 8(d) and (e)], the results of the twomodels
follow the same quadratic polynomial trend (see the central panel of Fig. 8
for theparameters of thefittedpolynomial).As to the J1,J−1 and J1,J states, the
trends are still quadratic, but the linear and constant terms are considerably
different for the two datasets.

With a Ray asymmetry parameter of κ ≈− 0.997 (see the central panel
of Fig. 8), the equilibrium structure of 14N2⋅14N2 corresponds to a nearly
prolate symmetric top; thus, the rigid-rotor model predicts fairly small
splittings for the J1,J−1 and J1,J states. In contrast, the variationally computed
splittings significantly grow towards larger J values, indicating increased
rovibrational coupling as J increases. While the symmetric-top quantum
numberK, which corresponds toKa for prolate symmetric tops,may behave
as a nearly good quantum number even for vdW dimers96,97, this is see-
mingly not the case for (N2)2.

As shown inFig. 8(b), there is considerable couplingbetween theKa=0
and Ka = 1 rigid-rotor eigenfunctions even for J = 1, a feature documented
neither in ref. 66 nor in refs. 77 and 78. For further insight into the rovi-
brationalmixings present in 14N2⋅14N2, see the RRDfiles given in an external
repository86. In the J=3case,wheremost of the states exhibit pronouncedKa

mixings, the RRD coefficients have been determined using both the N2d-
CCand theN2d-H0BPESs, revealing typical deviations on the order of only

Fig. 5 | Probability-density distributions for thefirst four vibrational states of the
14N2⋅14N2 complex. Panels with identical background color refer to the same state.
The #n symbol is the unique serial number of a vibrational state (in an increasing
energy order, counting the E+ state once). The symmetry labels, as well as the

quantum-state energies are indicated once for each state. The (R, ϕ) distribution is
identical for the two components of the E+ state. The reduced (quasi) density is
calculated as the sumof the squared eigenvector entries (at high grid resolution) for a
specific 2D point, without reliance on the quadrature weights.
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Fig. 6 | Ground-state density distributions derived for the artificial
localizationmodel. a, b and c–f show the (R,ϕ) and (θ1, θ2) localized density plots of
the four Z-shaped versions, respectively. The naming convention applied for these
versions are the same as in Fig. 4. For specific details about these plots, consult the
caption to Fig. 5. The densities of these four versions are localized in coordinate

regions specified in the violet boxes. Note that these versions with the same torsion
angle, namely Z0

== & Z0
nn and Z

π
n= & Zπ

=n , are characterized by identical (R, ϕ) density
plots, as seen in (a, b), respectively. The schematic representation of the four
Z-shaped versions is given in dark blue on (c–f), whereNA≡NB andNC≡ND denote
the monomers.

Fig. 7 | Correspondence of the vibrational states of 14N2⋅14N2 with those of the
artificial localization model. a shows the energies of five vibrational states of the
artificial localization model of Section “Models”. These artificially localized states
correspond to the ground vibrational state (GS), the torsional (tors), the antisym-
metric bend (abend), the intermonomer stretch (stre), and the symmetric bend
(sbend) fundamentals. b–f display each vibrational state of 14N2⋅14N2 whose wave
function expansion, specified in Eq. (7), contains the largest contribution from one
of the states of (a). Symbol #n has the same meaning as in Fig. 5. In each panel, the
energy values are placed into colored boxes. These vibrational energies, given in

cm−1, are relative to that of state #1 in (b). The individual states are illustrated with
horizontal lines, where the number of dashes corresponds to their degeneracy factor.
The states are distributed according to the right-hand-side vertical energy axes (note
the several axis breaks). A sign quadruplet, e.g., (+1,+1,+1,+1) for the GS, serves
as an assignment of a vibrational state, and contains the signs attached to the most
dominant contribution according to Eq. (7). The squared coefficients of these
dominant terms are given as percentages. The asterisks in brackets highlight the
“extra” states which break the four-fold overall degeneracy of the artificial locali-
zation model.
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1–2 %. This means that the mixing appears to be a genuine physical effect
rather than an artifact due to the analytical PESs employed.

Performing a global fit to all of the J ≤ 10 bound rovibrational states
where the ground vibrational state gives the dominant RRD contribution,
the following empirical model, not shown in Fig. 8, was obtained (for
improved transparency, the ±notation is usedhere todisplay the two-sigma
uncertainties of the parameters):

ErotðJ;KaÞ = cm�1 ¼ ð0:071 ± 0:002Þ JðJ þ 1Þ þ ð1:95 ± 0:02ÞK2
a

þ ð1:5 ± 0:1ÞKa:
ð2Þ

Note the importance of the inclusion of the term linear in Ka in the energy
expression. In our previous studies onCH4 ⋅ F-88 andHþ5

89, due to the strong
coupling between the vibrational and rotational degrees of freedom, a term
linear in K was also shown to have a remarkable impact on the rotational-
vibrational energy level pattern. Clearly, the discussion presented above

about the various aspects of the coupling of rotations and vibrations
provides further evidence that N2⋅N2 satisfies quasistructurality criteria
(iii) and (v).

Concluding remarks
Non-covalent interactions govern the dynamical behavior and properties of
numerous molecular systems; thus, their detailed understanding is of
extreme importance when studying weakly-bound molecular systems,
however small or large these interactions are. In this work, the structure,
nuclear dynamics, and rovibrational states of the prototypical vanderWaals
(vdW) dimer, N2⋅N2, have been investigated. Our computational study
relied on two newly created full-dimensional potential energy surfaces,
designed with spectroscopic (≈ 1 cm−1) accuracy in mind.

Symmetry-adapted variational solution of the nuclear Schrö-
dinger equation resulted in some 6000 bound rovibrational states for
the parent 14N2⋅14N2 isotopologue up to J = 10, where J is the

Fig. 8 | Illustration of the strong rovibrational couplings in selected rovibrational
states of the 14N2 ⋅ 14N2 complex. The pie charts of (a–c) demonstrate the results
obtained for the lowest three J = 1 states, using the rigid-rotor decomposition (RRD)
method95 and the Ir axis representation120. The percentages on (a–c) are squared
overlaps among the true eigenstates and the products of the pure vibrational (J = 0)
and the rigid-rotor (RR) eigenstates [the assignments of these products are defined in
the central panel]. The RRD contributions coming from the two eigenvectors of the
degenerate eigensubspaces are summed up in the percentages. Notice that the same
colors are used here and in Fig. 5 to denote the vibrational states. For all the bound
rovibrational states computed during this study, themixing coefficients form part of

an external repository86. d, e describe the J dependence of the lowest three rovi-
brational energies in the RR and the variational (4D0) models, respectively (for
simplicity, the horizontal and vertical axes are swapped). For these two datasets, a
quadratic model was fitted, whose parameters, along with their last-few-digit (two-
sigma) uncertainties in parentheses are given in the central panel. The rotational
constants of the Z-shaped globalminimum, derived from theN2d-CCPES, aswell as
its Ray asymmetry constant κ79, are also reported in the central panel. Those fitted
parameters of the 4D0 dataset which differ considerably from their RR counterparts
are typeset in purple bold italics.
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rotational quantum number. Following the recommendations of
ref. 52 and a recent review on reporting spectroscopic data98, indi-
vidual uncertainty estimates, with a median value of 0.8 cm−1, are
also reported for each state, along with symmetry labels corre-
sponding to the irreducible representations of the G16 molecular
symmetry group. Accurate shifts and splittings have been determined
for the quasi-bound intramonomer stretch fundamentals, as it is
expected that the yet missing experimental results can be most easily
generated in this spectral region. Isotope effects have also been
considered for the lowest excited vibrational states of N2⋅N2, where
the shifts and splittings computed were perfectly explained by a
simple bilinear model.

Based on the extensive computational results of this study and the
thorough analysis of the intriguing structural/dynamical features observed,
it has been firmly established that N2⋅N2 is a quasistructural species,
whereby, for example, considerable mixing can be observed in the lowest-
energy rovibrational quantum states among the four versions of its
Z-shaped globalminimum. Similar vdWdimers are expected to fall into the
class of quasistructural systems, meaning that the interpretation of their
observed high-resolution spectra would require a special view of their
nuclear motion and molecular structure.

Methods
Internal coordinates and nuclear-motion models
During the present study, the nuclearmotions of the nitrogen dimer, N2⋅N2,
have been represented with the six curvilinear internal coordinates given in
thefirst two columnsofTable 4,whereby the functions stre( ⋅ , ⋅ ), bend( ⋅ , ⋅ ,
⋅ ), and tors( ⋅ , ⋅ , ⋅ , ⋅ ) follow the conventional definitions of bond lengths,
bond angles, and torsion angles, respectively99,100. This internal-coordinate
system is ill-defined for θ2 ∈ {0, π}: in that case, ϕ is arbitrary and thus one
can set ϕ = 0. The last four columns of Table 4, under ‘Model’, contain
information about the utilization of the internal coordinates during the
solution of the time-independent nuclear-motion Schrödinger equation
(see Section “Symmetry-adapted variational nuclear-motion computa-
tions”). The 6D, 4D, 4D0, and 2D models are defined by a collection of
active/frozen (A/F) coordinates, as well as by the values where the frozen
coordinates are fixed.

Electronic-structure computations
The electronic-structure computations of this study have been performed at
the Hartree–Fock, MP2, SAPT, and coupled-cluster levels (up to pertur-
bative pentuple excitations in the latter case), utilizing Dunning’s aug-cc-

pVXZbasis sets101 up toX=6. These computational results form the basis of
an FPA analysis49,51, and they helped to construct two full-dimensional PESs
for the N2 dimer at the “CC” and “SAPT” levels (see Table 5). The “SAPT”
protocol corresponds to a density-fitted SAPT(DFT) scheme102–104, where
the PBE0105 functional is adopted, alongside the aug-cc-pVQZbasis set101, to
describe the electronic structure of the isolated N2 monomer. The “CC”
approach represents counterpoise-corrected, frozen-core CCSD(T), where
aCBSextrapolation is carriedoutusing the aug-cc-pVTZandaug-cc-pVQZ
basis sets101 plus midbond functions106. Within the “CC” scheme, the
Hartree–Fock and the correlation terms were extrapolated via formulas
reported in refs. 94 and 107, respectively.

The comparisons given in Fig. 1 are based on Hellmann’s direct
electronic-structure computations72. Hellmann published reference
(intermonomer) interaction energies for 408 dimer configurations,
keeping the two intramonomer distances fixed at the vibrationally
averaged (“r0”) bond length of the isolated N2 molecule. Among the
different levels considered by Hellmann, the highest one is what is
abbreviated here as H0B ( ≡ Hellmann’s r0-based benchmark scheme),
which includes perturbative quadruples [(Q)], counterpoise, core-core
plus core-valence, and relativistic corrections near the complete basis set
(CBS) and full configuration interaction (FCI) limits33,53. The (Q) cor-
rection is indeed the highest-order coupled-cluster term which can be
afforded for hundreds of dimer arrangements using a reasonable basis
set. In the H0B energy values, Hellmann applied a scaling factor of 0.5 for
the (Q) corrections to increase the accuracy of virial coefficients yielded
by his quasiclassical Monte-Carlo simulations. It turns out, however,
from our examination, that the post-CCSD(T) effects do not play a
significant role in achieving spectroscopic (≈1 cm−1) accuracy for the
rovibrational states of N2⋅N2: this justifies the neglect of the expensive
iterative triples and (Q) terms during the determination of the full-
dimensional (6D) PESs.

PES construction
To determine 6D PESs for the N2 dimer, the autoPES program suite35,39,
interfaced to SAPT58, MOLPRO108, and ORCA109, was employed, ensuring a
highly automatic treatment. To help evaluate the uncertainty of our rovi-
brational results, two PES versions, named N2d-SAPT and N2d-CC, were
created with autoPES, corresponding to the “SAPT” and “CC” levels,
respectively (for the specifications of these two computational protocols, see
Section “Potential energy surfaces and stationary points”). Concerning the
final versions of these two PESs, a few important characteristics, those that
guide our description of their generation, are listed in Table 5.

Table 4 | The internal coordinates adopted in this study to describe the molecular structure of the N2 dimer〈a〉

Internal coordinate DVR Model〈g〉

Label Definition〈b〉 Range〈c〉 Type〈e〉 Size〈f〉 6D 4D 4D0 2D

r1 streðN01;N001Þ [0.9 Å, 1.3 Å] PO-Laguerre121,122 6/6 A F{Z} F{Z0} A

r2 streðN02;N002Þ [0.9 Å, 1.3 Å] PO-Laguerre121,122 6/6 A F{Z} F{Z0} A

R stre(COM1, COM2) [3.3 Å, 8.4 Å]〈d〉 Hermite122 45/6 A A A F{Z}

θ1 bendðN001;COM1;COM2Þ (0, π) cotangent117 14/12 A A A F{Z}

θ2 bendðN02;COM2;COM1Þ (0, π) cotangent117 14/12 A A A F{Z}

ϕ torsðN01;COM1;COM2;N
0
2Þ [0, 2π) exponential123–125 12/8 A A A F{Z}

〈a〉The coordinates are defined for a distinguished version79 of theN2 dimer, with its twomonomersN01 � N001 andN02 � N002, whose centers of mass are COM1 andCOM2, respectively. These sites specify the

right-handed embedding chosen in this study, where (i) COM2 COM1
 ���������

is the direction vector of the z axis, (ii) N01 lies on the positive x-side of the xz plane, and (iii) the origin is shifted to the dimer’s COM.
〈b〉Thedefinition of the internal coordinates uses the standard abbreviations “stre”, “bend”, and “tors”, corresponding to stretching, bending, and torsional coordinates, respectively100, which dependon the
positions of the sites listed in parentheses.
〈c〉Coordinate ranges applied for the coordinates, optimized for the variational nuclear-motion computations of this study.
〈d〉For the two intramonomer stretch fundamentals, the R range could be reduced to [3.6, 4.7] Å.
〈e〉Discrete variable representation (DVR) basis types applied during our first-principles nuclear-motion computations. The prefix “PO-”means that potential optimization121 was employed for the underlying
grid points with the help of a 1D model.
〈f〉Optimal DVR sizes for the bound/resonance states, separated by slashes.
〈g〉Dynamical models with active/frozen coordinates designated as A/F. Coordinates with “F{Z}” are frozen at their values within the Z-shaped global minimum. In the 4D0 model, “F{Z0}”means that a
vibrationally averaged N ≡ N ("r0”) bond length is used for the fixed coordinates rather than the equilibrium bond lengths of the Z-shaped form. To obtain r0 values for the two new PESs, a vibrational
correction, estimated as δr0 = 0.0037 Å72, was added to the equilibrium bond lengths.
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To enhance the flexibility of our fitted 6D PESs, five off-atomic (OA)
sites were introduced for both monomers: one at its center of mass (COM)
and two others on the two sides of the COM along the principal symmetry
axis. The OA positions were optimized with the PES parameters, forcing
them to preserve the monomer’sD∞h point-group symmetry. Permutation
invariance of the PESs was maintained by introducing a common set of
parameters for the four nitrogen atoms of the N2 monomers. Under these
constraints, the interaction energies were treated as the sums of the intra-
monomer (deformation) and intermonomer energies:

ΔEintðr1; r2; ρÞ ¼ ΔEintraðr1; r2Þ þ ΔEinterðr1; r2; ρÞ; ð3Þ

where ρ ¼ ðR; θ1; θ2; ϕÞT designates the intermonomer ("relative”) coor-
dinates of the N2 dimer, with the restriction that ΔEintra(re, re) = 0 and
limR!1 ΔEinterðr1; r2; ρÞ ¼ 0 (re symbolizes the equilibriumbond length of
the isolated N2 molecule at the “CC”/"SAPT” level). The term
ΔEinter(r1, r2, ρ) is based on damped interaction (exponential, Coulombic,
induction + dispersion, and polarization) models35,39, while the
ΔEintra(r1, r2) contribution is fitted as a sum of two-body polynomials39 in a
separate phase, trained on “experimental” (Rydberg–Klein–Rees)
deformation-energy values1,110 (see also Supplementary Note 2).

The intermonomer fitting process was divided into two parts, based on
separate short- (R ≤ 7Å) and long-range (R > 7Å) configuration spaces. In
the short-range regime, the intermonomer energies of the grid points were
determinedat the “SAPT” and “CC” levels. In the long-rangedomain,where
the accuracy requirement is less stringent, the intermonomer energies were
computed for 9000 grid points with a multipole expansion along the R
coordinate (see refs. 35 and 111). To produce preliminary versions for the
N2d-SAPT/CC PESs, the standard built-in algorithms of the autoPES
code were employed during the grid-generation and the PES-
parametrization process (see Secs. II–IV of ref. 39). This procedure was
performedaccording to an iterative (grid generation–fitting– identification

of minima – hole fixing) scheme, until a reliable intermonomer fit was
obtained.

After computing the two intramonomer stretch fundamentals for
N2⋅N2, it has become apparent that the accuracy/stability of their splitting
tends to be limited across the intermediate versions of the N2d-CC/SAPT
PESs. This may be due to the fact that autoPES focuses mostly on the
lower-energy (ΔEint < 0) region of the “CC”/"SAPT”PESwhile sampling the
grid points and weighting the fitted data. Thus, a new grid-sampling and
weighting scheme has been implemented in autoPES, using direct-
product-based wave-function coefficients to define point-by-point weights
(this method is akin to density-guided PES sampling advocated in ref. 112).
A couple of important details about this new protocol, called amplitude-
driven sampling (ADS), are provided in Supplementary Note 2. These
modifiedweights, in combinationwithADS, led to accurateN2d-CC/SAPT
PESs, enabling us to compute (a) rovibrational energies for N2⋅N2 with an
uncertainty of 0.5–1.5 cm−1, and (b) the shifts/splittings of theN≡Nstretch
fundamentals with an accuracyof ± 0.1 cm−1 (for details, see Section “First-
principles rovibrational results”).

Symmetry-adapted variational nuclear-motion computations
When breaking the monomer bonds is not allowed, the quantum states
of the N2⋅N2 isotopologues comprising four identical isotopes transform
according to the irreducible representations (irreps) of the G16 molecular
symmetry (MS) group79,113. The 16 distinct symmetry operations of the
G16 group

79,113 can be expressed as products of three elementary opera-
tions, E�, P1, and P12, where E� is the space-inversion operation, P1 is a
permutation within monomer 1, andP12 represents the permutation that
interchanges the two monomers. The character table of the G16 group,
with the ten irreps denoted as A ±

1=2, B
±
1=2, and E

±, is given in Table A-25 of
ref. 79 (note that our study uses the Merer–Watson convention114 for the
irreps). For this group, the selection rules for the dipole-allowed transi-
tions are A±

1 $ B∓
1 , A

±
2 $ B∓

2 , and E± ↔ E∓ 66,78,113. Note that the N2⋅N2

isotopologues containing non-identical nuclei belong to different sub-
groups of G16.

As nuclear spins are not considered explicitly during the solution of the
time-independent nuclear Schrödinger equation, their effectsmust be taken
into account a posteriori. Since 14N is a spin-1 nucleus, themonomers of the
14N2⋅14N2 isotopologue co-exist in separate ortho and para forms (with total
nuclear spins 0/2 and 1, respectively). Thus, the rovibrational states of
14N2⋅14N2 can be divided into three sets: ortho–ortho (A

þ
1 ,A

�
2 , B

�
1 , and B

þ
2 ),

para–para (A�1 , A
þ
2 , B

þ
1 , and B

�
2 ), and ortho–para (E

+ and E−)66,78,113. Since
thenuclear-spinweights havenonzerovalues for all irrepsofG16

113, there are
no missing symmetry blocks for 14N2⋅14N2 (in other words, all computed
quantum states exist). The same holds for all the other isotopologues of the
N2 dimer given in Table 3, with the exception of 15N2 ⋅ 15N2, where the A�2
and Bþ2 states do not exist.

Achieving converged rovibrational results required a large number of
symmetry-adapted92 computations with the code GENIUSH115,116, used for
the variational-like solution of the nuclear Schrödinger equation in both full
and reduced dimensions. In these computations, the masses of the 14N and
15Nnuclei were set to 14.003 074 and 15.000 109 u, respectively. The optimal
discrete variable representation (DVR) basis sizes and radial-coordinate
ranges, see Table 4, were selected so that all the vibrational energies reported
are converged to within 0.02 cm−1 (for the two intramonomer stretch
fundamentals, their shifts and splittings were also monitored, attaining a
computational precision of 0.002 cm−1). Convergence of the two bending
basis sets was significantly accelerated by using the cotangent DVR
scheme117, which yields much smoother variations for the computed
eigenvalues than the traditional Legendre-DVR basis118,119. Note that FBR
(finite basis representation) basis sets exhibit better convergence for dimers
of linear molecules66,77,78. In practice, though, FBR requires handling com-
plicated, non-sparse potential-energy matrices, unlike DVR, where the
potential matrix is diagonal. For further details, see Supplementary Note 3,
as well as an external repository86, where the results of our convergence tests
are placed in a folder called “conv_tests”.

Table 5 | The main characteristics of the two full-dimensional
potential energy surfaces developed during this study〈a〉

Indicator N2d-SAPT N2d-CC

ðzOA
1 ; zOA

2 ; zOA
3 ; zOA

4 ; zOA
5 Þ
hbi (–0.436, –0.219, 0,

0.219, 0.436)
(–0.676, –0.272, 0,
0.272, 0.676)

range(r1/2)
〈c〉 [–0.08, 0.10] +

1.088 83〈d〉
[–0.09, 0.09] +
1.098 66〈d〉

range(R)〈c〉 [2.5, 8.4] [2.7, 8.4]

range(ΔEint)
〈e〉 [–104.8, 6499] [–107.4, 9181]

range(ΔEinter)
〈e〉 [–106.2, 3683] [–107.4, 5127]

range(ΔEintra)
〈e〉 [0, 6200] [0, 9182]

Nhfipar 113 143

Nhg;iigeo
171 / 2263 / 2437 172 / 1699 / 1847

RMSD〈h, i〉 0.48 / 0.64 / 0.62 0.18 / 0.23 / 0.97
〈a〉The parameters listed here pertain to the final version of the two (N2d-SAPT and N2d-CC)
potentials, relying on a new sampling scheme described in Supplementary Note 2.
〈b〉Positions of the five off-atomic (OA) sites, specified inÅ, alongside the z axis; that is, the symmetry
axis of the isolated N2 monomer, whose center of mass (COM) corresponds to (x, y, z) = (0, 0, 0).
〈c〉Ranges of the radial (r1 and r2, and R) coordinates within the fitting dataset, given in Å.
〈d〉Equilibrium N ≡ N bond lengths of the isolated N2 molecule derived from the two PESs.
〈e〉Ranges of the interaction energies and their (intra/inter)monomer contributions, in cm−1, within the
fitting dataset.
〈f〉Number of parameters used in the intermonomer fit. Beyond them, 13 parameters were also
employed in the intramonomer fit to reproduce the Rydberg–Klein–Rees potential of the isolated N2

monomer.
〈g〉Number of dimer geometries generated by the sampling process for the intermonomer fit.
〈h〉Root-mean-square deviations (RMSD), in cm−1, characterizing the intermonomer fit.
〈i〉These rows comprise data triplets separated by slashes, representing two distinguished subsets
of grid points, subsets I and II, and the whole grid set. Subset I contains geometries with negative
interaction energies, while subset II includes those configurationswhose probability-density-based
weights are not smaller than 0.1 [for this weighting scheme, see Supplementary Note 2].
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Rovibrational energies have been computed with the aid of the fol-
lowing three PESs: N2d-H0B, N2d-SAPT, and N2d-CC. The computed
energy values, e[J], have an associated expanded (two-sigma) uncertainty,
U[J]. The e[J=0] energies arededuced froma6Dmodel,whoseuncertainties are
estimated as

U ½J¼0� ¼ ∣e½J¼0�N2d�CCð4D0Þ � e½J¼0�N2d�H0Bð4D0Þ∣
þ ∣δe½J¼0�N2d�CCð6DÞ � δe½J¼0�N2d� SAPTð6DÞ∣;

ð4Þ

where e½J�p ðmÞ designates the rovibrational energy at a given J value, corre-

sponding to PES version p and model dimensionality m, and δe½J�p ð6DÞ ¼
e½J�p ð6DÞ � e½J�p ð4D0Þ is the 6D correction to the 4D0 rovibrational energy.
For J > 0, only 4D0 computations have been made, leading to expanded
uncertainties approximated as

U ½J > 0� ¼ ∣e½J > 0�
N2d�CCð4D0Þ � e½J > 0�

N2d�H0Bð4D0Þ∣þ αmaxe
½J > 0�
N2d�CCð4D0Þ; ð5Þ

where αmax ¼ 0:64% is the maximum value of an adjustment factor,

α ¼ ∣δe½J¼0�N2d�CCð6DÞ � δe½J¼0�N2d� SAPTð6DÞ∣
�

þ∣δe½J¼0�N2d�CCð6DÞ∣
�
=e½J¼0�N2d�CCð4D0Þ;

ð6Þ

obtained for the vibrational (J= 0) states (for the α values, see the “states.xls”
file in an external repository86). Note that this αmax-based term is used to
describe the energy dependence of the 6D – 4D deviations. Since the PES-
related uncertainty is themost dominant contributor to the uncertainties of
the computed energies, Eqs. (4)–(6) should provide realistic estimates for
these uncertainties.

The artificial localization model
To define artificially localized eigenstates for each of the four equivalent
Z-shaped versions of the 14N2⋅14N2 dimer, the potential energy was drasti-
cally increased, to 0.5 Eh, at those direct-product grid points which do not
belong to the (θ1, θ2) coordinate range of the chosenversion (see Fig. 6). This
model, which artificially distinguishes the four versions of 14N2⋅14N2,
requires the execution of four nuclear-motion computations. In this model,
the wavefunction is excluded from three out of the four (θ1, θ2) coordinate
quadrants. For each quadruply degenerate state v of this model, the artifi-
cially localized eigenfunctions form an orthonormal quadruplet
ðΛI

v;Λ
II
v ;Λ

III
v ;ΛIV

v Þ, where ΛV
v is the localized eigenfunction of state v in

version V .
Using the set of eigenfunction quadruplets ðΛI

v;Λ
II
v ;Λ

III
v ;ΛIV

v Þ, a
rovibrational state of the 14N2⋅14N2 dimer can be expressed as

ψ �
X
v

ovðsIvΛI
v þ sIIv Λ

II
v þ sIIIv ΛIII

v þ sIVv ΛIV
v Þ; ð7Þ

where sVv ¼ ± 1 is a sign associated with the ðψ; ΛV
v Þ pair, and ov stands for

the unsigned wave function overlap between ψ andΛV
v , which are the same

for the fourZ-shaped versions. Eachwave functionψ canbe labelledwith (a)
the four-fold degenerate state v having the largest ov value, and (b) its sign
quadruplet ðsIv; sIIv ; sIIIv ; sIVv Þ. To avoid labeling inconsistencies, the (arbitrary)
eigenfunction phases are synchronized by imposing the sIv ¼ þ1 andΛI

v ¼
P2Λ

II
v ¼ P1Λ

III
v ¼ P1P2Λ

IV
v conditions upon each v, where the P1=2

operation interchanges the two 14N nuclei within monomer 1/2.

Data availability
The computational data obtained during this study are available under the
following OSF repository: https://doi.org/10.17605/OSF.IO/RJ6XB. This
repository consists of two main units: (a) “pots.zip”, which contains FOR-
TRAN implementations of the N2d-H0B, N2d-CC, and N2d-SAPT PESs,
as well as (b) “rovib.zip”, a compressed archive of bound-state rovibrational

energies for J≤10, internal-coordinatewavefunction (quasi) densities, rigid-
rotor decomposition files, and convergence tests using various basis func-
tions and PESs.
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