[1]      C. Fábri, E. Mátyus, and A. G. Császár, Numerically Constructed Internal-Coordinate Hamiltonian with Eckart Embedding and Its Application for the Inversion Tunnelling of Ammonia, Spectrochim. Acta A 2014, 119, 84-89. http://dx.doi.org/10.1016/j.saa.2013.03.090 [PDF (420 kB)]

[2]      J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, A. C. Vandaele, and N. F. Zobov, A Database of Water Transitions from Experiment and Theory (IUPAC Technical Report), Pure Appl. Chem. 2014, 86(1), 71-83. http://dx.doi.org/10.1515/pac-2014-5012 [PDF (977 kB)]

[3]      C. Fábri, J. Sarka, and A. G. Császár, Communication: Rigidity of the Molecular Ion H5+, J. Chem. Phys. 2014, 140, 051101. http://dx.doi.org/10.1063/1.4864360 [PDF (221 kB)]

[4]      T. Furtenbacher, P. Árendás, G. Mellau, and A. G. Császár, Simple Molecules as Complex Systems, Sci. Rep. 2014, 4, 4654. http://dx.doi.org/10.1038/srep04654 [PDF (1831 kB)]

[5]      J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, A. C. Vandaele, N. F. Zobov, N. Dénes, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, S.-M. Hu, T. Szidarovszky, and I. A. Vasilenko, IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part IV. Energy Levels and Transition Wavenumbers for D216O, D217O, and D218O, J. Quant. Spectr. Rad. Transfer 2014, 142, 93-108. http://dx.doi.org/10.1016/j.jqsrt.2014.03.019 [PDF (1592 kB)]

[6]      T. Szidarovszky and A. G. Császár, Grid-based Empirical Improvement of Molecular Potential Energy Surfaces, J. Phys. Chem. A 2014, 118, 6256-6265. http://dx.doi.org/10.1021/jp504348f [PDF (1009 kB)]

[7]      T. Softley, A. G. Császár, P. De Natale, M. Herman, and M. Quack, Special Issue: 23rd Colloquium on High Resolution Molecular Spectroscopy, Mol. Phys. 2014, 118(18), 2373. http://dx.doi.org/10.1080/00268976.2014.943982 [PDF (67 kB)]

[8]      C. Fábri, T. Furtenbacher, and A. G. Császár, A hybrid variational-perturbational nuclear motion algorithm, Mol. Phys. 2014, 112(18), 2462-2467. http://dx.doi.org/10.1080/00268976.2014.921341 [PDF (133 kB)]

[9]      E. Mátyus, T. Szidarovszky, and A. G. Császár, Modelling Non-Adiabatic Effects in H3+: Solution of the Rovibrational Schrödinger Equation with Motion-Dependent Masses and Mass Surfaces, J. Chem. Phys. 2014, 114, 154111. http://dx.doi.org/doi:10.1063/1.4897566 [PDF (511 kB)]

[10]    J. Tennyson, P. F. Bernath, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, D. Lisak, O. V. Naumenko, L. S. Rothman, H. Tran, N. F. Zobov, J. Buldyreva, C. D. Boone, M. D. De Vizia, L. Gianfrani, J.-M. Hartmann, R. McPheat, D. Weidmann, J. Murray, N. H. Ngo, and O. L. Polyansky, Recommended Isolated-Line Profile for Representing High-Resolution Spectroscopic Transitions (IUPAC Technical Report), Pure Appl. Chem. 2014, 86, 1931-1943. http://dx.doi.org/10.1515/pac-2014-0208 [PDF (1100 kB)]

[11]    G. Czakó, A. G. Császár, and H. F. Schaefer, Surprising Quenching of the Spin-Orbit Interaction Significantly Diminishes H2O…X [X = F, Cl, Br, I] Dissociation Energies, J. Phys. Chem. A (David R. Yarkony Festschrift) 2014, 118, 11956-11961. http://dx.doi.org/10.1021/jp506287z [PDF (739 kB)]