[1] C. Fábri, E. Mátyus, and A. G. Császár, Numerically Constructed Internal-Coordinate
Hamiltonian with Eckart Embedding and Its Application
for the Inversion Tunnelling of Ammonia, Spectrochim. Acta A 2014, 119, 84-89. http://dx.doi.org/10.1016/j.saa.2013.03.090
[PDF (420 kB)]
[2] J.
Tennyson, P. F. Bernath, L. R.
Brown, A. Campargue, A. G. Császár, L. Daumont,
R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S.
Rothman, A. C. Vandaele, and N. F. Zobov, A Database of Water Transitions from Experiment and
Theory (IUPAC Technical Report), Pure Appl. Chem. 2014, 86(1),
71-83. http://dx.doi.org/10.1515/pac-2014-5012 [PDF (977 kB)]
[3] C. Fábri, J. Sarka, and A. G. Császár, Communication: Rigidity of the Molecular Ion H5+,
J. Chem. Phys. 2014, 140, 051101. http://dx.doi.org/10.1063/1.4864360
[PDF (221 kB)]
[4] T. Furtenbacher,
P. Árendás, G. Mellau, and A. G. Császár,
Simple Molecules as Complex Systems, Sci.
Rep. 2014, 4, 4654. http://dx.doi.org/10.1038/srep04654
[PDF (1831 kB)]
[5] J. Tennyson, P. F. Bernath,
L. R. Brown, A. Campargue, A. G. Császár, L. Daumont,
R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S.
Rothman, A. C. Vandaele, N. F. Zobov,
N. Dénes, A. Z. Fazliev, T.
Furtenbacher, I. E. Gordon, S.-M. Hu, T. Szidarovszky, and I. A. Vasilenko,
IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part IV. Energy Levels and Transition Wavenumbers
for D216O, D217O, and D218O,
J. Quant. Spectr.
Rad. Transfer 2014, 142, 93-108. http://dx.doi.org/10.1016/j.jqsrt.2014.03.019
[PDF (1592 kB)]
[6] T. Szidarovszky
and A. G. Császár,
Grid-based Empirical Improvement of Molecular Potential Energy Surfaces, J. Phys. Chem. A 2014, 118, 6256-6265. http://dx.doi.org/10.1021/jp504348f [PDF (1009 kB)]
[7] T. Softley, A. G. Császár, P. De Natale, M.
Herman, and M. Quack, Special Issue: 23rd Colloquium on High Resolution
Molecular Spectroscopy, Mol. Phys. 2014, 118(18),
2373. http://dx.doi.org/10.1080/00268976.2014.943982 [PDF (67 kB)]
[8] C. Fábri, T. Furtenbacher, and A. G. Császár,
A hybrid variational-perturbational nuclear motion
algorithm, Mol. Phys. 2014, 112(18),
2462-2467. http://dx.doi.org/10.1080/00268976.2014.921341
[PDF (133 kB)]
[9] E. Mátyus, T. Szidarovszky, and A.
G. Császár, Modelling Non-Adiabatic Effects in H3+:
Solution of the Rovibrational Schrödinger Equation
with Motion-Dependent Masses and Mass Surfaces, J. Chem. Phys. 2014, 114, 154111. http://dx.doi.org/doi:10.1063/1.4897566 [PDF (511 kB)]
[10] J.
Tennyson, P. F. Bernath, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T.
Hodges, D. Lisak, O. V. Naumenko,
L. S. Rothman, H. Tran, N. F. Zobov, J. Buldyreva, C. D. Boone, M. D. De Vizia,
L. Gianfrani, J.-M. Hartmann, R. McPheat,
D. Weidmann, J. Murray, N. H. Ngo, and O. L. Polyansky, Recommended Isolated-Line Profile for
Representing High-Resolution Spectroscopic Transitions (IUPAC Technical
Report), Pure Appl. Chem. 2014, 86, 1931-1943. http://dx.doi.org/10.1515/pac-2014-0208
[PDF (1100 kB)]
[11] G. Czakó, A. G. Császár,
and H. F. Schaefer, Surprising Quenching of the Spin-Orbit Interaction
Significantly Diminishes H2O…X [X = F, Cl, Br, I] Dissociation
Energies, J. Phys. Chem. A (David R. Yarkony Festschrift)
2014, 118, 11956-11961. http://dx.doi.org/10.1021/jp506287z [PDF (739 kB)]