[1]      A. G. Császár, C. Fábri, T. Szidarovszky, E. Mátyus, T. Furtenbacher, and G. Czakó, Fourth Age of Quantum Chemistry: Molecules in Motion, Phys. Chem. Chem. Phys. 2012, 14(3), 1085-1106. http://dx.doi.org/10.1039/c1cp21830a [PDF (3686 kB)]

[2]      M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Császár, M. Berg, A. Petrignani, A. Wolf, Precision Measurements and Computations of Transition Energies in Rotationally Cold Triatomic Hydrogen Ions up to the Mid-Visible Spectral Range, Phys. Rev. Lett. 2012, 108, 023002. http://dx.doi.org/10.1103/PhysRevLett.108.023002 [PDF (307 kB)]

[3]      T. Furtenbacher and A. G. Császár, The role of intensities in determining characteristics of spectroscopic networks, J. Mol. Struct. (Boris Galabov Special Issue) 2012, 1009, 123-129. http://dx.doi.org/10.1016/j.molstruc.2011.10.057 [PDF (848 kB)]

[4]      V. Szalay, T. Szidarovszky, G. Czakó, and A. G. Császár, A Paradox of Grid-Based Representation Techniques: Accurate Eigenvalues from Inaccurate Matrix Elements, J. Math. Chem. 2012, 50, 636-651. http://dx.doi.org/10.1007/s10910-011-9843-2 [PDF (287 kB)]

[5]      D. Barna, B. Nagy, J. Csontos, A. G. Császár, and G. Tasi, Benchmarking Experimental and Computational Thermochemical Data: A Case Study of the Butane Conformers, J. Chem. Theory Comp. 2012, 8, 479-486. http://dx.doi.org/10.1021/ct2007956 [PDF (282 kB)]

[6]      A. G. Császár, Anharmonic Molecular Force Fields, WIREs Comput. Mol. Sci. 2012, 2, 273-289. http://dx.doi.org/10.1002/wcms.75 [PDF (221 kB)]

[7]      I. Szabó, C. Fábri, G. Czakó, E. Mátyus, and A. G. Császár, Temperature-Dependent, Effective Structures of the 14NH3 and 14ND3 Molecules, J. Phys. Chem. A 2012, 116(17), 4356-4362. http://dx.doi.org/10.1021/jp211802y [PDF (750 kB)]

[8]      T. Szidarovszky, C. Fábri, and A. G. Császár, The Role of Axis Embedding on Rigid Rotor Decomposition (RRD) Analysis of Variational Rovibrational Wave Functions, J. Chem. Phys. 2012, 136, 174112. http://dx.doi.org/10.1063/1.4707463 [PDF (1327 kB)]

[9]      O. L. Polyansky, N. F. Zobov, I. I. Mizus, L. Lodi, S. N. Yurchenko, J. Tennyson, A. G. Császár, and O. V. Boyarkin, Global Spectroscopy of the Water Monomer, Phil. Trans. R. Soc. A 2012, 370, 2728-2748. http://dx.doi.org/10.1098/rsta.2011.0259 [PDF (1018 kB)]

[10]    T. Furtenbacher and A. G. Császár, MARVEL: Measured Active Rotational-Vibrational Energy Levels. II. Algorithmic Improvements, J. Quant. Spectr. Rad. Transfer (Flaud, Camy-Peyret, Barbe Special Issue) 2012, 113, 929-935. http://dx.doi.org/10.1016/j.jqsrt.2012.01.005  [PDF(163 kB)]

[11]    M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Császár, Calibration-quality adiabatic potential energy surfaces for H3+ and isotopologues J. Chem. Phys. 2012, 136, 184303. http://dx.doi.org/10.1063/1.4711756 [PDF (1014 kB)]

[12]    J. Demaison and A. G. Császár, Equilibrium CO Bond Lengths, J. Mol. Struct. (Jaan Laane Special Issue) 2012, 1023, 7-14. http://dx.doi.org/10.1016/j.molstruc.2012.01.030 [PDF (357 kB)]

[13]    O. L. Polyansky, A. Alijah, N. F. Zobov, I. I. Mizus, R. I. Ovsyannikov, J. Tennyson, L. Lodi, T. Szidarovszky, and A. G. Császár, Spectroscopy of H3+ Based on a New High Accuracy Global Potential Energy Surface, Phil. Trans. R. Soc. A 2012, 370, 5014-5027. http://dx.doi.org/10.1098/rsta.2012.0014 [PDF (382 kB)]

[14]    A. G. Császár, G. Czakó, T. Furtenbacher, E. Mátyus, C. Fábri, T. Szidarovszky, I. Szabó, and J. Sarka, Molecular Structure and Dynamics, Magy. Kém. Foly. 2012, 118(2-4), 181-189 (in Hungarian). [PDF (681 kB)]