2019
[1] C.
Fábri, R. Marquardt, A. G. Császár,
and M. Quack, Controlling Tunneling in Ammonia Isotopomers, J. Chem. Phys. 2019, 150, 014102. https://doi.org/10.1063/1.5063470 [PDF (5427 kB)]
[2] J.
mydke, C. Fábri, J. Sarka, and A. G.
Császár, Rovibrational Quantum Dynamics of the Vinyl Radical and its Deuterated
Isotopologues, Phys. Chem. Chem. Phys. (Challenges in spectroscopy: Accuracy versus
interpretation from isolated molecules to condensed phases Themed Issue) 2019, 21,
3453-3472.
http://dx.doi.org/10.1039/C8CP04672G
[PDF (3453 kB)]
[3] R.
Tóbiás, T. Furtenbacher, J. Tennyson, and A.
G. Császár, Accurate Empirical Rovibrational Energies and Transitions of H216O,
Phys. Chem. Chem. Phys. (Challenges in spectroscopy: Accuracy versus interpretation from isolated
molecules to condensed phases Themed Issue) 2019, 21, 3473-3495. http://dx.doi.org/10.1039/C8CP05169K
[PDF (3241 kB)]
[4] T. Furtenbacher,
M. Horváth, D. Koller, P. Sólyom, A. Balogh, I. Balogh, and A. G. Császár, MARVEL
Analysis of the Measured High-Resolution Rovibronic Spectra and Definitive
Ideal-Gas Thermochemistry of the 16O2 Molecule, J.
Phys. Chem. Ref. Data 2019, 48, 023101. https://doi.org/10.1063/1.5083135
[PDF (2191 kB)]
[5] A. G. Császár, T. Szidarovszky, O. Asvany,
and S. Schlemmer, Fingerprints of Microscopic Superfluidity in HHen+ Clusters, Mol. Phys. (Dieter Cremer Memorial Issue)
2019, 117, 1559-1583. https://doi.org/10.1080/00268976.2019.1585984
[PDF(4190 kB)]
[6] A. G. Császár and M. Hochlaf, Special
Issue: Atoms, Molecules, and Clusters in Motion, Mol. Phys. (Atoms, Molecules, and Clusters in
Motion Special Issue) 2019, 117, 1587-1588. https://doi.org/10.1080/00268976.2019.1602377
[PDF (636 kB)]
[7] J. mydke
and A. G. Császár, On the Use of Reduced Density Matrices
for the Semi-Automatic Assignment of Vibrational States, Mol.
Phys. (Atoms, Molecules, and Clusters in Motion Special Issue) 2019, 117, 1682-1693. https://doi.org/10.1080/00268976.2018.1562124
[PDF (2662 kB)]
[8] D.
Darby-Lewis, H. Shah, D. Joshi, F. Kahn, M. Kauwo, N. Sethi, P. F. Bernath, T.
Furtenbacher, R. Tóbiás, A. G. Császár,
and J. Tennyson, MARVEL Analysis of the Measured High-Resolution Spectra of 14NH,
J. Mol. Spectrosc. 2019,
362, 69-76. https://doi.org/10.1016/j.jms.2019.06.002
[PDF (1182 kB)]
[9] M.
P. Metz, K. Szalewicz, J. Sarka, R. Tóbiás, A. G. Császár, and E. Mátyus, Molecular Dimers of Methane
Clathrates: ab initio Potential
Energy Surfaces and Variational Vibrational States, Phys. Chem. Chem. Phys. 2019, 21,
13504-13525.
https://doi.org/10.1039/c9cp00993k [PDF (2064 kB)]
[10] I.
Simkó, T. Szidarovszky, and A. G.
Császár, Toward Automated Variational Computation of Rovibrational
Resonances, Including a Case Study of the H2 Dimer, J. Chem. Theory Comput. 2019,
15, 4156-4169. https://doi.org/10.1021/acs.jctc.9b00314
[PDF (994 kB)] Free full text
from publisher
[11] A. G. Császár, Digital Chemistry, Magy. Kém. Foly. 2019, 125, 105-110 (in Hungarian).
https:doi.org/10.24100/MKF.2019.03.105
[PDF (313 kB)]
[12] O.
Asvany, S. Schlemmer, T. Szidarovszky, and A.
G. Császár, Infrared Signatures of the HHen+ and DHen+,
n = 36, Complexes, J. Phys. Chem. Lett. 2019, 10, 5325-5330. https:doi.org/10.1021/acs.jpclett.9b01911
[PDF (864 kB)]
[13] T.
Szidarovszky, G. J. Halász, A. G.
Császár, and Á. Vibók, Rovibronic Spectra of Molecules Dressed by Laser
Fields, Phys. Rev. A 2019, 100, 033414. https://doi.org/10.1103/PhysRevA.00.003400
[PDF (2351 kB)]
[14] B.
Lu, C. Song, W. Qian, Z. Wu, A. G.
Császár, and X. Zeng, Heterocumulenic Carbene Nitric Oxide Radical OCCNO, Chem. Comm. 2019, 55, 13510-13503. https://doi.org/10.1039/c9cc07056g
[PDF (2986 kB)]