2019  

[238][1]      C. Fábri, R. Marquardt, A. G. Császár, and M. Quack, Controlling Tunneling in Ammonia Isotopomers, J. Chem. Phys. 2019, 150, 014102. https://doi.org/10.1063/1.5063470 [PDF (5427 kB)]

[239][2]      J. Šmydke, C. Fábri, J. Sarka, and A. G. Császár, Rovibrational Quantum Dynamics of the Vinyl Radical and its Deuterated Isotopologues, Phys. Chem. Chem. Phys. (Challenges in spectroscopy: Accuracy versus interpretation from isolated molecules to condensed phases Themed Issue) 2019, 21, 3453-3472. http://dx.doi.org/10.1039/C8CP04672G [PDF (3453 kB)]

[240][3]      R. Tóbiás, T. Furtenbacher, J. Tennyson, and A. G. Császár, Accurate Empirical Rovibrational Energies and Transitions of H216O, Phys. Chem. Chem. Phys. (Challenges in spectroscopy: Accuracy versus interpretation from isolated molecules to condensed phases Themed Issue) 2019, 21, 3473-3495. http://dx.doi.org/10.1039/C8CP05169K [PDF (3241 kB)]

[241][4]      T. Furtenbacher, M. Horváth, D. Koller, P. Sólyom, A. Balogh, I. Balogh, and A. G. Császár, MARVEL Analysis of the Measured High-Resolution Rovibronic Spectra and Definitive Ideal-Gas Thermochemistry of the 16O2 Molecule, J. Phys. Chem. Ref. Data 2019, 48, 023101. https://doi.org/10.1063/1.5083135 [PDF (2191 kB)]

[242][5]      A. G. Császár, T. Szidarovszky, O. Asvany, and S. Schlemmer, Fingerprints of Microscopic Superfluidity in HHen+ Clusters, Mol. Phys. (Dieter Cremer Memorial Issue) 2019, 117, 1559-1583. https://doi.org/10.1080/00268976.2019.1585984 [PDF(4190 kB)]

[243][6]      A. G. Császár and M. Hochlaf, Special Issue: Atoms, Molecules, and Clusters in Motion, Mol. Phys. (Atoms, Molecules, and Clusters in Motion Special Issue) 2019, 117, 1587-1588. https://doi.org/10.1080/00268976.2019.1602377 [PDF (636 kB)]

[244][7]      J. Šmydke and A. G. Császár, On the Use of Reduced Density Matrices for the Semi-Automatic Assignment of Vibrational States, Mol. Phys. (Atoms, Molecules, and Clusters in Motion Special Issue) 2019, 117, 1682-1693. https://doi.org/10.1080/00268976.2018.1562124 [PDF (2662 kB)]

[245][8]      D. Darby-Lewis, H. Shah, D. Joshi, F. Kahn, M. Kauwo, N. Sethi, P. F. Bernath, T. Furtenbacher, R. Tóbiás, A. G. Császár, and J. Tennyson, MARVEL Analysis of the Measured High-Resolution Spectra of 14NH, J. Mol. Spectrosc. 2019, 362, 69-76. https://doi.org/10.1016/j.jms.2019.06.002 [PDF (1182 kB)]

[246][9]      M. P. Metz, K. Szalewicz, J. Sarka, R. Tóbiás, A. G. Császár, and E. Mátyus, Molecular Dimers of Methane Clathrates: ab initio Potential Energy Surfaces and Variational Vibrational States, Phys. Chem. Chem. Phys. 2019, 21, 13504-13525. https://doi.org/10.1039/c9cp00993k [PDF (2064 kB)]

[247][10]    I. Simkó, T. Szidarovszky, and A. G. Császár, Toward Automated Variational Computation of Rovibrational Resonances, Including a Case Study of the H2 Dimer, J. Chem. Theory Comput. 2019, 15, 4156-4169. https://doi.org/10.1021/acs.jctc.9b00314 [PDF (994 kB)] Free full text from publisher

[248][11]    A. G. Császár, Digital Chemistry, Magy. Kém. Foly. 2019, 125, 105-110 (in Hungarian). https:doi.org/10.24100/MKF.2019.03.105 [PDF (313 kB)]

[249][12]    O. Asvany, S. Schlemmer, T. Szidarovszky, and A. G. Császár, Infrared Signatures of the HHen+ and DHen+, n = 3–6, Complexes, J. Phys. Chem. Lett. 2019, 10, 5325-5330. https:doi.org/10.1021/acs.jpclett.9b01911 [PDF (864 kB)]

[250][13]    T. Szidarovszky, G. J. Halász, A. G. Császár, and Á. Vibók, Rovibronic Spectra of Molecules Dressed by Laser Fields, Phys. Rev. A 2019, 100, 033414. https://doi.org/10.1103/PhysRevA.00.003400 [PDF (2351 kB)]

[251][14]    B. Lu, C. Song, W. Qian, Z. Wu, A. G. Császár, and X. Zeng, Heterocumulenic Carbene Nitric Oxide Radical OCCNO, Chem. Comm. 2019, 55, 13510-13503. https://doi.org/10.1039/c9cc07056g [PDF (2986 kB)]