2021
[1] A. G. Császár, C. Fábri, and T. Szidarovszky, Exact Numerical Methods for Stationary-State-Based Quantum Dynamics of Complex Polyatomic Molecules, in Molecular Spectroscopy and Quantum Dynamics, eds. M. Quack and R. Marquardt, Elsevier, 2021, pp. 43-78.
[2] A. G. Császár and C. Fábri, From
Tunneling Control to Controlling Tunneling, in Tunnelling in Molecules, eds. Sebastian Kozuch
and Johannes Kaestner, Royal Society of Chemistry: London, 2021, pp. 146-166.
[3] J.
Sarka, B. Poirier, V. Szalay, and A. G.
Császár, On Neglecting Coriolis and Related Couplings in First-Principles
Rovibrational Spectroscopy: Considerations of Symmetry, Accuracy, and
Simplicity. II. Case Studies for H2O isotopologues, H3+,
O3, and NH3, Spectrochim.
Acta Part A 2021, 250, 119164. https://doi.org/10.1016/j.saa.2020.119164
[PDF (1547 kB)]
[4] P.
Árendás and A. G. Császár, Comment
on “Wigner Numbers” [J. Chem. Phys. 151, 244122 (2019)], J. Chem. Phys. 2021, 154, 087101. https://doi.org/10.1063/5.0040954
[PDF (892 kB]
[5] O.
Asvany, S. Schlemmer, A. van der Avoird, T. Szidarovszky, and A. G. Császár, Vibrational Spectroscopy
of H2He+ and D2He+, J. Mol. Spectrosc. (Laboratory Spectroscopy for Astrophysics: Festschrift for Stephan
Schlemmer) 2021, 377, 111423. https://doi.org/10.1016/j.jms.2021.111423 [PDF (759 kB)]
[6] A.
Al-Derzi, J. Tennyson, S. Yurchenko, M. Melosso, N. Jiang, C. Puzzarini, L.
Dore, T. Furtenbacher, R. Tóbiás, and A.
G. Császár, An Improved Rovibrational Line List of Formaldehyde, H212C16O,
J. Quant. Spectrosc. Rad. Transf. 2021, 266, 107563. https://doi.org/10.1016/j.jqsrt.2021.107563 [PDF (1955 kB)]
[7] J.
Šmydke and A. G. Császár,
Understanding the Structure of Complex Multidimensional Wave Functions. A Case
Study of Excited Vibrational States of Ammonia, J. Chem. Phys. 2021, 154, 144306. https://doi.org/10.1063/5.0043946 [PDF (9615 kB)]
[8] J.
I. Rawlinson, C. Fábri, and A. G.
Császár, Exactly Solvable 1D Model Explains the Low-Energy Vibrational
Level Structure of Protonated Methane, Chem.
Comm. 2021, 57, 4827-4830. https://doi.org/10.1039/d1cc01214b [PDF (1752 kB)]
[9] M.
L. Diouf, R. Tóbiás, I. Simkó, F. M. J. Cozijn, E. J. Salumbides, W. Ubachs,
and A. G. Császár, Network-Based
Design of Near-Infrared Lamb-Dip Experiments and Determination of Pure
Rotational Energies of H218O at kHz Accuracy, J. Phys. Chem. Ref. Data 2021, 50, 023106. https://doi.org/10.1063/5.0052744
[PDF (3514 kB)]
[10] R.
Tóbiás, K. Bérczi, C. Szabó, and A. G.
Császár, autoECART: Automatic Energy Conservation Analysis of Rovibronic
Transitions, J. Quant. Spectrosc. Rad.
Transf. 2021, 272, 107756. https://doi.org/10.1016/j.jqsrt.2021.107756. [PDF (2138 kB)]
[11] A. G. Császár, Á. Szabados, and I.
Szalai, The Future is Present. Roundtable Discussions on the Occasion of OTDK.
Part I, Magy. Kém. Lapja 2021, 76, 250-254 (in Hungarian). [PDF (1611 kB)]
[12] A. G. Császár, Á. Szabados, and I.
Szalai, The Future is Present. Roundtable Discussions on the Occasion of OTDK.
Part II, Magy. Kém. Lapja 2021, 76, 293-297 (in Hungarian). [PDF (1012 kB)]
[13] P.
Árendás, T. Furtenbacher, and A. G.
Császár, Selecting Lines for Spectroscopic (Re)measurements to Improve the
Accuracy of Absolute Energies of Rovibronic Quantum States, J. Cheminform. 2021, 13, 67. https://doi.org/10.1186/s13321-021-00534-y [PDF (1864 kB)]
[14] J.
I. Rawlinson, C. Fábri, and A. G.
Császár, The Rovibrational Aharonov-Bohm Effect, Phys. Chem. Chem. Phys. 2021, 23, 24154-24164. https://doi.org/10.1039/d1cp03358a
[PDF (1799 kB)]