[1]        P. Árendás, T. Furtenbacher, and A. G. Császár, Verification Labels for Rovibronic Quantum State Energy Uncertainties, Sci. Rep. 2024, 14, 794. https://doi.org/10.1038/s41598-023-46665-0 [PDF (1770 kB)]

[2]        J. Salem, R. Tóbiás, A. G. Császár, M. Mogren Al-Mogren, N.-E. Jaidane, and M. Hochlaf, Temperature-Dependent Line-Broadening Effects in CO2 Caused by Ar, ChemPhysChem 2024, 25, e202300467. https://doi.org/10.1002/cphc.202300467 [PDF (3102 kB)]

[3]        P. Árendás, T. Furtenbacher, and A. G. Császár, Spectroscopic Heat Maps Reveal How to Design Experiments to Improve the Uncertainties of Transitions and Energy Levels Present in Line-by-Line Databases, J. Quant. Spectrosc. Rad. Transf. 2024, 315, 108878. https://doi.org/10.1016/j.jqsrt.2023.108878 [PDF (3051 kB)]

[4]        M. T. I. Ibrahim, D. Alatoom, T. Furtenbacher, A. G. Császár, S. N. Yurchenko, A. A. A. Azzam, and J. Tennyson, MARVEL Analysis of High-Resolution Rovibrational Spectra of 13C16O2, J. Comp. Chem. 2024, in press.

[5]        R. Tóbiás, M. L. Diouf, F. M. J. Cozijn, W. Ubachs, and A. G. Császár, All Paths Lead to Hubs in the Spectroscopic Networks of Water Isotopologues H216O and H218O, Comms. Chem. 2024, in press.

[6]        J. Tennyson, T. Furtenbacher, S. N. Yurchenko, and A. G. Császár, Empirical Rovibrational Energy Levels for Nitrous Oxide, J. Quant. Spectrosc. Rad. Transf. 2024, in press.

[7]        D. Alatoom, M. T. I. Ibrahim, T. Furtenbacher, A. G. Császár, S. N. Yurchenko, A. A. A. Azzam, M. Alghizzawi, and J. Tennyson, MARVEL Analysis of High-Resolution Rovibrational Spectra of 16O12C18O, J. Comp. Chem. 2024, submitted.