[1] P. Árendás, T. Furtenbacher, and A. G. Császár, Verification Labels for
Rovibronic Quantum State Energy Uncertainties, Sci. Rep. 2024, 14, 794. https://doi.org/10.1038/s41598-023-46665-0 [PDF (1770 kB)]
[2] J. Salem, R. Tóbiás, A. G. Császár, M. Mogren Al-Mogren,
N.-E. Jaidane, and M. Hochlaf, Temperature-Dependent Line-Broadening Effects in
CO2 Caused by Ar, ChemPhysChem
2024, 25, e202300467. https://doi.org/10.1002/cphc.202300467 [PDF (3102 kB)]
[3] P. Árendás, T. Furtenbacher, and A. G. Császár, Spectroscopic Heat Maps Reveal
How to Design Experiments to Improve the Uncertainties of Transitions and
Energy Levels Present in Line-by-Line Databases, J. Quant. Spectrosc. Rad. Transf. 2024, 315, 108878. https://doi.org/10.1016/j.jqsrt.2023.108878
[PDF (3051 kB)]
[4] M.
T. I. Ibrahim, D. Alatoom, T. Furtenbacher, A. G. Császár, S. N. Yurchenko, A. A. A. Azzam, and J. Tennyson,
MARVEL Analysis of High-Resolution Rovibrational Spectra of 13C16O2,
J. Comp. Chem. (Special collection to
celebrate the 70th birthday of Professor Elfi Kraka) 2024, 45, 969-984. https://doi.org/10.1002/jcc.27266
[PDF (2982 kB)]
[5] R. Tóbiás, M. L. Diouf, F. M. J. Cozijn,
W. Ubachs, and A. G. Császár, All
Paths Lead to Hubs in the Spectroscopic Networks of Water Isotopologues H216O
and H218O, Comms.
Chem. 2024, 7, 34. https://doi.org/10.1038/s42004-024-01103-8 [PDF (2101 kB)]
[6] J. Tennyson, T. Furtenbacher, S. N.
Yurchenko, and A. G. Császár,
Empirical Rovibrational Energy Levels for Nitrous Oxide, J. Quant. Spectrosc. Rad. Transf. 2024, 316, 108902. https://doi.org/10.1016/j.jqsrt.2024.108902
[PDF (3241 kB)]
[7] C. Fábri, A. G. Császár, G. J. Halász, L. S. Cederbaum, and Á. Vibók,
Coupling Polyatomic Molecules to Lossy Nanocavities: Lindblad vs Schrödinger
Description, J. Chem. Phys. 2024, 160, 214308. https://doi.org/10.1063/5.0205048
[8] W. Ubachs, A. G. Császár, M. L. Diouf, F. M. J. Cozijn, and R. Tóbiás, A
Network Approach for the Accurate Characterization of Water Lines Observable in
Astronomical Masers and Extragalactic Environments, ACS Earth Space Chem. (Harold
Linnartz Festschrift) 2024, 8, 1901-1912. https://doi.org.10.1021/acsearthspacechem.4c00161
[PDF (3875 kB)]
[9] A. A. A. Azzam, S. A. A. Azzam, K. A. A.
Aburumman, J. Tennyson, S. N. Yurchenko, A.
G. Császár, and T. Furtenbacher, MARVEL Analysis of High-Resolution
Rovibrational Spectra of 18O12C18O, 17O12C18O,
and 18O13C18O Isotopologues of Carbon Dioxide,
J. Mol. Spectrosc. 2024, 405, 111947. https://doi.org/10.1016/j.jms.2024.111947
[PDF (3539 kB)]
[10] T. Furtenbacher, R. Tóbiás, J. Tennyson,
R. R. Gamache, and A. G. Császár,
The W2024 Database of the Water Isotopologue H216O, Sci.
Data 2024, 11, 1058. https://doi.org/10.1038/s41597-024-03847-3
[PDF (2874 kB)]
[11] D. Alatoom, M. T. I. Ibrahim, T.
Furtenbacher, A. G. Császár, M.
Alghizzawi, S. N. Yurchenko, A. A. A. Azzam, and J. Tennyson, MARVEL Analysis
of High-Resolution Rovibrational Spectra of 16O12C18O,
J. Comp. Chem. 2024, 45, 2558-2573. https://doi.org/10.1002/jcc.27453
[PDF (3625 kB)]
[12] A. A. A. Azzam, J. Tennyson, S. N.
Yurchenko, T. Furtenbacher, and A. G.
Császár, MARVEL Analysis of High-Resolution Rovibrational Spectra of 16O13C18O,
J. Comp. Chem. 2024, in press. https://doi.org/10.1002/jcc.27541