[1]        P. Árendás, T. Furtenbacher, and A. G. Császár, Verification Labels for Rovibronic Quantum State Energy Uncertainties, Sci. Rep. 2024, 14, 794. https://doi.org/10.1038/s41598-023-46665-0 [PDF (1770 kB)]

[2]        J. Salem, R. Tóbiás, A. G. Császár, M. Mogren Al-Mogren, N.-E. Jaidane, and M. Hochlaf, Temperature-Dependent Line-Broadening Effects in CO2 Caused by Ar, ChemPhysChem 2024, 25, e202300467. https://doi.org/10.1002/cphc.202300467 [PDF (3102 kB)]

[3]        P. Árendás, T. Furtenbacher, and A. G. Császár, Spectroscopic Heat Maps Reveal How to Design Experiments to Improve the Uncertainties of Transitions and Energy Levels Present in Line-by-Line Databases, J. Quant. Spectrosc. Rad. Transf. 2024, 315, 108878. https://doi.org/10.1016/j.jqsrt.2023.108878 [PDF (3051 kB)]

[4]        M. T. I. Ibrahim, D. Alatoom, T. Furtenbacher, A. G. Császár, S. N. Yurchenko, A. A. A. Azzam, and J. Tennyson, MARVEL Analysis of High-Resolution Rovibrational Spectra of 13C16O2, J. Comp. Chem. (Special collection to celebrate the 70th birthday of Professor Elfi Kraka) 2024, 45, 969-984. https://doi.org/10.1002/jcc.27266 [PDF (2982 kB)]

[5]        R. Tóbiás, M. L. Diouf, F. M. J. Cozijn, W. Ubachs, and A. G. Császár, All Paths Lead to Hubs in the Spectroscopic Networks of Water Isotopologues H216O and H218O, Comms. Chem. 2024, 7, 34. https://doi.org/10.1038/s42004-024-01103-8 [PDF (2101 kB)]

[6]        J. Tennyson, T. Furtenbacher, S. N. Yurchenko, and A. G. Császár, Empirical Rovibrational Energy Levels for Nitrous Oxide, J. Quant. Spectrosc. Rad. Transf. 2024, 316, 108902. https://doi.org/10.1016/j.jqsrt.2024.108902 [PDF (3241 kB)]

[7]        C. Fábri, A. G. Császár, G. J. Halász, L. S. Cederbaum, and Á. Vibók, Coupling Polyatomic Molecules to Lossy Nanocavities: Lindblad vs Schrödinger Description, J. Chem. Phys. 2024, 160, 214308. https://doi.org/10.1063/5.0205048 [PDF ( kB)]

[8]        W. Ubachs, A. G. Császár, M. L. Diouf, F. M. J. Cozijn, and R. Tóbiás, A Network Approach for the Accurate Characterization of Water Lines Observable in Astronomical Masers and Extragalactic Environments, ACS Earth Space Chem. (Harold Linnartz Festschrift) 2024, 8, 1901-1912. https://doi.org.10.1021/acsearthspacechem.4c00161 [PDF (3875 kB)]

[9]        A. A. A. Azzam, S. A. A. Azzam, K. A. A. Aburumman, J. Tennyson, S. N. Yurchenko, A. G. Császár, and T. Furtenbacher, MARVEL Analysis of High-Resolution Rovibrational Spectra of 18O12C18O, 17O12C18O, and 18O13C18O Isotopologues of Carbon Dioxide, J. Mol. Spectrosc. 2024, 405, 111947. https://doi.org/10.1016/j.jms.2024.111947 [PDF (3539 kB)]

[10]      T. Furtenbacher, R. Tóbiás, J. Tennyson, R. R. Gamache, and A. G. Császár, The W2024 Database of the Water Isotopologue H216O, Sci. Data 2024, 11, 1058. https://doi.org/10.1038/s41597-024-03847-3 [PDF (2874 kB)]

[11]      D. Alatoom, M. T. I. Ibrahim, T. Furtenbacher, A. G. Császár, M. Alghizzawi, S. N. Yurchenko, A. A. A. Azzam, and J. Tennyson, MARVEL Analysis of High-Resolution Rovibrational Spectra of 16O12C18O, J. Comp. Chem. 2024, 45, 2558-2573. https://doi.org/10.1002/jcc.27453 [PDF (3625 kB)]

[12]      A. A. A. Azzam, J. Tennyson, S. N. Yurchenko, T. Furtenbacher, and A. G. Császár, MARVEL Analysis of High-Resolution Rovibrational Spectra of 16O13C18O, J. Comp. Chem. 2024, in press. https://doi.org/10.1002/jcc.27541

[13]  S. Mahmoud, N. El-Kork, N. A. Elkher, M. Almehairbi, M. S. Khalil, T. Furtenbacher, and A. G. Császár, O. P. Yurchenko, S. N. Yurchenko, J. Tennyson, MARVEL Analysis of Measured High-Resolution Spectra of 12C16O, Astrophys. J. Suppl. Ser. 2024, accepted for publication.