[1] A. A. A. Azzam, J. Tennyson, S. N.
Yurchenko, T. Furtenbacher, and A. G.
Császár, MARVEL Analysis of High-Resolution Rovibrational Spectra of 16O13C18O,
J. Comp. Chem. 2025, 46, e27541. https://doi.org/10.1002/jcc.27541 PDF
[2] T. Salomon, C. Baddeliyanage, C.
Schladt, I. Simkó, A. G. Császár, W.
G. D. P. Silva, S. Schlemmer, and O. Asvany, High-Resolution Leak-Out
Spectroscopy of HHe2+, Phys. Chem. Chem. Phys. 2025,
27, 4826-4828. https://doi.org/10.1039/d4cp04767b
PDF
[3] S. Mahmoud, N. El-Kork, N. A. Elkher, M.
Almehairbi, M. S. Khalil, T. Furtenbacher, and A. G. Császár, O. P. Yurchenko, S. N. Yurchenko, J. Tennyson,
MARVEL Analysis of Measured High-Resolution Spectra of 12C16O,
Astrophys. J. Suppl. Ser. 2025, 276, 66. https://doi.org/10.3847/1538-4365/ada3c9
PDF
[4] A. A. A. Azzam, D. Alatoom, B. M. J.
Abou Doud, M. Q. A. Shersheer, B. K. M. Almasri, C. N. M. Bader, B. O. A. Kh.
Musleh, A. M. H. Abu Khudair, A. W. M. Al Shatarat, B. I. M. Qattan, L. H. M.
Hamamsy, A. O. G. Saafneh, M. N. A. ALso’ub, M. M. A. Alkashashneh, H. O. M.
Al-Zawahra, M. T. I. Ibrahim, J. Tennyson, S. N. Yurchenko, T. Furtenbacher,
and A. G. Császár, The 626M24 Dataset
of Validated Transitions and Empirical Rovibrational Energy Levels of 16O12C16O,
Sci. Data 2025, 12, 532. https://doi.org/10.1038/s41597-025-04755-w
PDF
[5] S. A. M. Obaidat, A. A. A. Azzam, D.
Alatoom, M. T. I. Ibrahim, J. Tennyson, A.
G. Császár, and T. Furtenbacher, MARVEL Analysis of High-Resolution
Rovibrational Spectra of 16O12C17O, J. Quant. Spectrosc. Radiat. Transf. 2025, 340, 109444. https://doi.org/10.1016/j.jqsrt.2025.109444 PDF
[6] A. A. A. Azzam, J. M. A. AlAlawin, J.
Tennyson, T. Furtenbacher, and A. G.
Császár, MARVEL Analysis of High-Resolution Rovibrational Spectra of 17O13C18O
and 17O13C17O, J. Quant. Spectrosc. Radiat. Transf. 2025, 343, 109485. https://doi.org/10.1016/j.jqsrt.2025.109485
PDF
[7] T. Furtenbacher, S. Egbert, K. Sung, S.
C. Coburn, B. J. Drouin, G. B. Rieker, and A.
G. Császár, Improved Assessment of H216O Transitions
in the Region 6600-7500 cm-1,
J. Quant. Spectrosc. Radiat. Transf. 2025,
344, 109513. https://doi.org/10.1016/j.jqsrt.2025.109513
PDF
[8] T. Turányi, I. Gy. Zsély, M. Papp, T.
Nagy, T. Furtenbacher, R. Tóbiás, P. Árendás, and A. G. Császár, ReSpecTh: Reaction Kinetics, Spectroscopy, and
Thermochemical Datasets, Sci. Data 2025, 12, 1021. https://doi.org/10.1038/s41597-025-05272-6
PDF
[9] R. Tóbiás, T. Furtenbacher, and A. G. Császár, Past, Present, and
Future of Joint Utilization of Experimental, Empirical, and Computed
Spectroscopic Data: Challenges, Advantages, and Recommendations, Adv. Quant. Chem. 2025, in press. https://doi.org/10.1016/bs.aiq.2025.01.002
[10] T. Furtenbacher, A. H. Harvey, and A. G. Császár, Improved Partition
Functions and Related Thermochemical Quantities for the 16O2
and H216O Molecules, J.
Phys. Chem. Ref. Data 2025, 54, 033103. https://doi.org/10.1063/5.0273661
PDF
[11] A.
G. Császár, R. Tóbiás, P. Árendás, and T. Furtenbacher, A Network Approach
to High-Resolution and Precision Spectroscopy, ISTE Encyclopedia 2025,
in press.
[12] M. H. I. Mansour, A. B. I. Al-Iter, A. A.
A. Azzam, J. Tennyson, T. Furtenbacher, and A. G. Császár, MARVEL Analysis of High-Resolution Rovibrational
Spectra of 16O13C17O and 17O12C17O,
Mol. Phys. (Zlatko Bacic Special Issue) 2025,
in press.
[13] R. Tóbiás, C. Fábri, M. Bosquez Fuentes,
M. Kodrycka, K. Patkowski, and A. G.
Császár, Rovibrational Dynamics of the Quasistructural N2 dimer,
Commun. Chem. 2025, under revision.
[14] A. Altman, R. Tóbiás, A. S. Bogomolov, M.
L. Diouf, F. M. J. Cozijn, A. G. Császár,
C. Lauzin, and W. Ubachs, Precise Frequencies of H216O
Lines Protected for Radio Astronomy, Astrophys.
J. Suppl. 2025, under review.
[15] T. Furtenbacher, M. Horváth, D. Koller, P.
Sólyom, A. Balogh, I. Balogh, and A. G.
Császár, Erratum: “MARVEL Analysis of the Measured High-Resolution
Rovibronic Spectra and Definitive Ideal-Gas Thermochemistry of the 16O2
Molecule” [J. Phys. Chem. Ref. Data 48, 023101 (2019)], J. Phys. Chem. Ref. Data 2025,
under review.