2020  

[252][1]      A. G. Császár, C. Fábri, and J. Sarka, Quasistructural Molecules, WIREs Comput. Mol. Sci., 2020, 10, e1432. https://doi.org/10.1002/wcms.1432 [PDF (2918 kB] Free full text from publisher

[253][2]      J. Sarka, B. Poirier, V. Szalay, and A. G. Császár, On Neglecting Coriolis and Related Couplings in First-Principles Rovibrational Spectroscopy: Considerations of Symmetry, Accuracy, and Simplicity, Sci. Rep. 2020, 10, 4872. https://doi.org/10.1038/s41598-020-60971-x [PDF (1595 kB)] Free full text from publisher

[254][3]      R. Tóbiás, T. Furtenbacher, I. Simkó, A. G. Császár, M. L. Diouf, F. M. J. Cozijn, J. M. A. Staa, E. J. Salumbides, and W. Ubachs, Spectroscopic-Network-Assisted Precision Spectroscopy and its Application to Water, Nat. Commun. 2020, 11, 1708. https://doi.org/10.1038/s41467-020-15430-6 [PDF (1240 kB)] https://go.nature.com/3bU6Hgl Free full text from publisher

[255][4]      T. Furtenbacher, P. A. Coles, J. Tennyson, S. N. Yurchenko, S. Yu, B. Drouin, R. Tóbiás, and A. G. Császár, Empirical Rovibrational Energy Levels of Ammonia up to 7500 cm-1, J. Quant. Spectrosc. Rad. Transfer 2020, 251, 107027. https://doi.org/10.1016/j.jqsrt.2020.107027 [PDF (1543 kB)] Free full text from publisher

[256][5]      T. Furtenbacher, R. Tóbiás, J. Tennyson, O. L. Polyansky, and A. G. Császár, W2020: A Database of Validated Rovibrational Experimental Transitions and Empirical Energy Levels of H216O, J. Phys. Chem. Ref. Data 2020, 49, 033101. https://doi.org/10.1063/5.0008253 [PDF (8949 kB)] Free full text from publisher

[257][6]      A. G. Császár, I. Simkó, T. Szidarovszky, G. C. Groenenboom, T. Karman, and A. van der Avoird, Rotational-Vibrational Resonance States, Phys. Chem. Chem. Phys. 2020, 22, 15081-15104. https://doi.org/10.1039/D0CP00960A [PDF (5724 kB)]

[258][7]      T. Szidarovszky, G. J. Halász, A. G. Császár, and Á. Vibók, Light-Dressed Spectroscopy, in Progress in Ultrafast Intense Laser Science XV, eds. Kaoru Yamanouchi, Philippe Martin, Marc Sentis, Li Ruxin, and Didier Normand, Top. Appl. Phys. 2020, 136, 77-100. https://doi.org/10.1007/978-3-030-47098-2_4 [PDF (1060 kB)]

[259][8]      L. K. McKemmish, A.-M. Syme, J. Borsovszky, S. N. Yurchenko, J. Tennyson, T. Furtenbacher, and A. G. Császár, An Update to the MARVEL Dataset and ExoMol Line List for 12C2, Mon. Not. R. Astron. Soc. 2020, 497, 1081-1097. https://doi.org/10.1093/mnras/staa1954 [PDF (3116 kB)]

[260][9]      M. Töpfer, A. Jensen, K. Nagamori, H. Kohguchi, T. Szidarovszky, A. G. Császár, S. Schlemmer, and O. Asvany, Spectroscopic Signatures of HHe2+ and HHe3+, Phys. Chem. Chem. Phys. 2020, 22, 22885-22888. https://doi.org/10.1039/d0cp04649c [PDF (1719 kB)]

[261][10]    P. Árendás, T. Furtenbacher, and A. G. Császár, From Bridges to Cycles in Spectroscopic Networks, Sci. Rep. 2020, 10, 19489. https://doi.org/10.1038/s41598-020-75087-5 [PDF (1776 kB)] Free full text from publisher

[262][11]    T. Furtenbacher, R. Tóbiás, J. Tennyson, O. L. Polyansky, A. A. Kyuberis, R. I. Ovsyannikov, N. F. Zobov, and A. G. Császár, The W2020 Database of Validated Rovibrational Experimental Transitions and Empirical Energy Levels of Water Isotopologues. Part II. H217O and H218O with an Update to H216O, J. Phys. Chem. Ref. Data 2020, 49, 043103. https://doi.org/10.1063/5.0030680 [PDF (32503 kB)] Free full text from publisher